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Abstract: Identifying brain regions contained in brain functional networks and functions of brain
functional networks is of great significance in understanding the complexity of the human brain. The
160 regions of interest (ROIs) in the human brain determined by the Dosenbach’s template have been
divided into six functional networks with different functions. In the present paper, the complexity of
the human brain is characterized by the sample entropy (SampEn) of dynamic functional connectivity
(FC) which is obtained by analyzing the resting-state functional magnetic resonance imaging (fMRI)
data acquired from healthy participants. The 160 ROIs are clustered into six clusters by applying the
K-means clustering algorithm to the SampEn of dynamic FC as well as the static FC which is also
obtained by analyzing the resting-state fMRI data. The six clusters obtained from the SampEn of
dynamic FC and the static FC show very high overlap and consistency ratios with the six functional
networks. Furthermore, for four of six clusters, the overlap ratios corresponding to the SampEn
of dynamic FC are larger than that corresponding to the static FC, and for five of six clusters, the
consistency ratios corresponding to the SampEn of dynamic FC are larger than that corresponding
to the static FC. The results show that the combination of machine learning methods and the FC
obtained using the blood oxygenation level-dependent (BOLD) signals can identify the functional
networks of the human brain, and nonlinear dynamic characteristics of the FC are more effective than
the static characteristics of the FC in identifying brain functional networks and the complexity of the
human brain.

Keywords: sample entropy; brain functional networks; complexity; dynamic functional connectivity;
static functional connectivity; K-means clustering algorithm

1. Introduction

The human brain shows complex spatiotemporal behaviors when executing physiological
functions. Characterizing dynamics of the complex spatiotemporal behaviors is of great significance in
understanding the human brain. Since blood oxygenation level-dependent (BOLD) signals of different
brain regions can be measured by the functional magnetic resonance imaging (fMRI) technique at
high spatial and temporal resolutions, BOLD signals have been widely used to characterize dynamics
of the spatiotemporal behaviors of the human brain [1,2]. For instance, the temporal correlation
in BOLD signals of two distinct brain regions is commonly employed to describe the functional
connectivity (FC) between them [3]. A positive and strong temporal correlation corresponds to a strong
FC, and some brain regions with strong FCs among them constitute a brain functional network [4–6].
Alterations of some FCs in a brain functional network are often associated with brain disorder, such
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as schizophrenia [7], major depression [8], autism [9], Alzheimer’s Disease [10], and attention deficit
hyperactivity disorder [11]. For example, Cheng et al. evaluated the FC between different brain regions
in subjects with autism and found a key system in the middle temporal gyrus with reduced FC and a
key system in the precuneus with reduced FC [12].

In most previous research on FC, only one correlation coefficient is acquired using entire BOLD
signals of two distinct brain regions. The one correlation coefficient is called the static FC between the
two brain regions. Recently, to understand dynamics of the spatiotemporal behaviors of the human
brain more deeply, some researchers acquired a sequence of correlation coefficients by applying the
sliding-window approach to BOLD signals of two distinct brain regions [13–23]. These correlation
coefficients form a time series which is called the dynamic FC between the two brain regions. The
dynamic FC exhibits complex characteristics which are effective in describing properties of the brain
functional networks of patients with brain disorder. For instance, in one of our recent studies,
complex characteristics of dynamic FC were described by sample entropy (SampEn), and the effects of
schizophrenia on such complex characteristics were investigated. It was shown that the visual cortex
of the patients with schizophrenia exhibited significantly higher SampEn than that of the healthy
controls [24]. As introduced above, both the static FC and the SampEn of dynamic FC are effective in
describing properties of the brain functional networks of patients with brain disorder. However, the
effectivenesses of the static FC and the dynamic FC have not been compared directly.

Studies on the static FC or the dynamic FC are often carried out by first extracting BOLD signals
of different brain regions and then evaluating the static or the dynamic FC between different brain
regions for further analysis. Different brain regions are often determined by a brain template, such
as the Dosenbach’s template [25]. The Dosenbach’s template includes 160 regions of interest (ROIs)
determined by a sequence of meta-analyses of task-based fMRI studies which cover much of the human
brain [25]. Furthermore, the 160 ROIs can be separated into six functional networks including the
default, the frontal-parietal, the cingulo-opercular, the sensorimotor, the occipital, and the cerebellum
networks, which were identified by performing modularity optimization on the average FC matrix
across a large cohort of healthy subjects [25]. The six functional networks have been used in predicting
brain maturity across development [25,26], parcellating cortical or subcortical regions [27], examining
the influence of temporal properties of BOLD signals on FC [28] and so on. For instance, Zhong et al.
parcellated the hippocampus based on the FC, and showed that both the left and right hippocampus
were divided into three subregions exhibiting different FC profiles with the six functional networks [27].
However, machine learning algorithms have not been used to identify the six functional networks.

The K-means clustering algorithm is one of the unsupervised learning algorithms [29]. Since the
K-means clustering algorithm can cluster different observations into different clusters in a simple and
easy way, it has been widely used in fMRI studies [30–38]. For instance, Fan et al. used the K-means
clustering algorithm to parcellate the thalamus based on the static FC and found that the thalamus
could be divided into seven symmetric thalamic clusters [36]. Park et al. parcellated the primary and
secondary visual cortices (V1 and V2) into several subregions by applying the K-means clustering
algorithm to the static FC and found that V1 and V2 could be separated into anterior and posterior
subregions [38].

The present study intends to cluster the Dosenbach’s 160 ROIs into six clusters by applying
the K-means clustering algorithm to the static FC and the SampEn of dynamic FC, to analyze the
overlap and consistency between the six clusters and the six functional networks, and to compare the
effectivenesses of the static FC and the dynamic FC. It is shown that applying the K-means clustering
algorithm to FC is feasible to identify the six functional networks, and the SampEn of dynamic FC is
more effective than the static FC as the six clusters obtained from the SampEn of dynamic FC show
higher overlap and consistency ratios with the six functional networks.

This paper is organized as follows. The experiments and methods are presented in Section 2. The
cluster results for the static FC and the SampEn of dynamic FC and the comparisons between them are
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shown in Section 3. The conclusion and discussion are described in Section 4. Some supplementary
tables are presented in the appendix.

2. Experiments and Methods

2.1. Participants

FMRI data for this study were acquired at Olin Neuropsychiatry Research Center and have been
made publicly available http://fcon_1000.projects.nitrc.org/indi/abide. The data were acquired from
31 healthy participants (18 males and 13 females) over the age range 18–30 years. This sample was
retained after applying criteria for head motion, from a total of 35 healthy participants. Informed
consent was obtained from all participants in accordance with Olin Neuropsychiatry Research Center
Institutional Review Board oversight.

2.2. Data Acquisition and Preprocessing

BOLD signals are extracted from three-dimensional functional images collected on a Siemens 3T
MRI scanner with the following parameters: repetition time (TR), 475 ms; echo time, 30 ms; field of
view, 240× 240 mm2; slices, 48; slice thickness, 3 mm; flip angle, 60◦. During the data collection, all
participants were instructed to rest but not fall asleep. For each participant, 947 three-dimensional
functional images were collected.

The functional images are preprocessed using SPM8 and DPABI softwares [39,40]. Firstly, the
first 4 images are discarded to reduce the negative effects of scanner’s stabilization on the analysis
results. Secondly, the images are corrected for time delay in slice acquisition and rigid-body head
motion. Thirdly, several confounding factors are regressed out from the images, including 6 head
motion parameters and the cerebrospinal, the white matter, and the global brain signals. Fourthly,
temporal band-pass filtering (0.01–0.08 Hz) of the images are performed to reduce the negative effects of
low-frequency drift and high-frequency physiological noise on the analysis results. Fifthly, the images
are spatially normalized to the Montreal Neurological Institute space and are resampled to voxels of
size 3× 3× 3 mm3. Sixthly, the images are smoothed with a Gaussian kernel of 8 mm full-width at
half-maximum. Finally, the BOLD signal of each voxel is extracted from the functional images.

2.3. The Dosenbach’s Template and the 6 Functional Networks

One hundred and sixty regions of interest (ROIs) are selected based on the Dosenbach’s
template [25]. The centroid of each ROI is derived from a sequence of meta-analyses of task-based
fMRI studies (Figure 1a). The radius of each ROI equals 5 mm (Figure 1a). The name and the sequential
number of each ROI can be found in Table A1 in Appendix A. The 160 ROIs can further be grouped
into 6 functional networks, including the default, the frontal-parietal, the cingulo-opercular, the
sensorimotor, the occipital, and the cerebellum networks (Figure 1a). The name and the sequential
number of each ROI in each functional network can be found in the first and second columns of
Tables A2–A7 in Appendix A.

Based on the 6 functional networks, an adjacent matrix can be generated [36,41,42]. The adjacent
matrix is labeled as

A =

 a1,1 · · · a1,160
...

. . .
...

a160,1 · · · a160,160

 . (1)

Each of the elements on the main diagonal of A is 1. Other elements of A are defined as follows: ai,j = 1
if the ith ROI and the jth ROI are contained in the same functional network and ai,j = 0 otherwise
(i, j = 1, 2, . . . , 160) (Figure 1b).

http://fcon_1000.projects.nitrc.org/indi/abide
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Figure 1. (a) One hundred and sixty regions of interest (ROIs) are shown on a surface rendering of the
brain. ROIs in different functional networks are shown in different colors. (b) The adjacent matrix A of
160 ROIs in 6 functional networks.

2.4. The Static FC and the Dynamic FC

The BOLD signal of each ROI is extracted by averaging the BOLD signals over all voxels in this
ROI. Then both the static FC and the dynamic FC are evaluated (Figure 2).

Figure 2. The static functional connectivity (FC) matrix B and the SampEn matrix E obtained from the
BOLD signals of 160 ROIs. The matrices B and E are used to cluster the 160 ROIs into 6 clusters by the
K-means clustering algorithm.
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The static FC between each pair of ROIs is assessed by a Pearson correlation coefficient. For each
of the 31 participants, after the static FC between each pair of ROIs is evaluated, a static FC matrix of
size 160× 160 is obtained (Figure 2), which is labeled as

B =

 b1,1 · · · b1,160
...

. . .
...

b160,1 · · · b160,160

 =

 B1
...

B160

 . (2)

The ith row Bi represents the static FC between the ith ROI and all the other ROIs (i = 1, 2, . . . , 160).
The matrix B is used to cluster the 160 ROIs into 6 clusters.

Dynamic FC is assessed by the sliding-window approach. Specifically, a tapered window is
created by convolving a rectangle window (size = 20 TRs = 9.5 s) with a Gaussian curve (standard
deviation = 3 TRs) [14,15,23]. The window is used to extract BOLD signals in a step of 1 TR, leading
to 923 time windows per subject (Figure 2). For the kth time window (k = 1, 2, . . . , 923), a Pearson
correlation coefficient is used to evaluate the FC between each pair of ROIs and thus a FC matrix of
size 160× 160, which is labeled as

Dk =

d1,1,k · · · d1,160,k
...

. . .
...

160,1,k · · · d160,160,k

 , (3)

which is obtained for each subject (Figure 2). As k increases from 1 to 923, di,j,k forms a time series
(i, j = 1, 2, . . . , 160), which represents the temporal evolution of the FC between the ith and jth ROIs
and is named as the dynamic FC (Figure 2). Since previous studies showed that the window of size 20
TRs captures more transient patterns in dynamic FC [23], the window size is fixed at 20 TRs throughout
the study.

2.5. SampEn of a Dynamic FC Time Series

For each dynamic FC time series, di,j(i, j = 1, 2, . . . , 160, i 6= j), the SampEn is calculated. For
convenience, time series di,j is denoted by x = (x1, x2, . . . , xN)(N = 923). SampEn of x is computed as
follows [24,43–46].

Firstly, constructing embedding vectors vi = (xi, xi+1, . . . , xi+m−1), in which m stands for the
dimension of vi(1 ≤ i ≤ N −m + 1).

Secondly, define

Cm
i =

1
N −m

N−m+1

∑
j=1,j 6=i

Θ(r− ‖vi − vj‖). (4)

r stands for a tolerance value which is defined as r = ε · σx, where ε is a small parameter and σx is the
standard deviation of x. Θ(·), the Heaviside function, which is defined as

Θ(x) =

{
0, x < 0;
1, x ≥ 0.

(5)

‖ · ‖ represents the Chebyshev distance, i.e.,

‖vi − vj‖ = max(|xi − xj|, |xi+1 − xj+1|, . . . , |xi+m−1 − xj+m−1|). (6)

Similarly, define

Cm+1
i =

1
N −m− 1

N−m

∑
j=1,j 6=i

Θ(r− ‖vi − vj‖). (7)



Entropy 2019, 21, 1156 6 of 18

Thirdly, in view of Equations (4) and (7), we define

Um =
1

N −m + 1

N−m+1

∑
i=1

Cm
i , (8)

and

Um+1 =
1

N −m

N−m

∑
i=1

Cm+1
i . (9)

Finally, calculate SampEn of x as

SampEn = − ln
Um+1

Um . (10)

The value of SampEn is not less than 0, and a larger value of SampEn means more complexity [47].
Similar to our previous study [24,43], m and ε are fixed at 2 and 0.2, respectively.

In addition, because di,i,k = 1(i = 1, 2, . . . , 160, k = 1, 2, . . . , 923), the SampEn of di,i equals 0
(i = 1, 2, . . . , 160). Thus, for each participant, a SampEn matrix of size 160× 160 is obtained (Figure 2).
The SampEn matrix is labeled as

E =

 e1,1 · · · e1,160
...

. . .
...

e160,1 · · · e160,160

 =

 E1
...

E160

 . (11)

The element ei,j represents the SampEn of dynamic FC between the ith ROI and jth ROI (i, j =

1, 2, . . . , 160). ei,i equals 0 (i = 1, 2, . . . , 160). The matrix E is used to cluster the 160 ROIs into 6 clusters.

2.6. Clustering ROIs into 6 Clusters by Applying the K-Means Clustering Algorithm to the Static FC Matrix

For each of the 31 participants, there exists a static FC matrix B of size 160× 160. The ith (1 ≤ i ≤
160) row Bi = (bi,1, bi,2, . . . , bi,160) represents the static FC between the ith ROI and all the other ROIs.

The K-means clustering algorithm is commonly used to cluster different observations into different
clusters based on the distance between these observations [29]. In the present paper, the K-means
clustering algorithm is applied to the matrix B to cluster 160 ROIs into 6 clusters. Procedures of the
algorithm are briefly described as follows.

First, select 6 rows from the matrix B and use these 6 rows as initial cluster centroids.
Secondly, calculate the squared Euclidean distance between each row and each initial cluster

centroid, and then assign each row to the cluster with the closest centroid.
Thirdly, when all rows have been assigned, calculate the average of the rows in each cluster to

obtain 6 new cluster centroids.
Finally, repeat the second and the third steps until the centroids no longer change.
The algorithm generates 6 clusters, and each cluster is composed of different rows of the matrix

B (or of different ROIs). Based on the 6 clusters, an individual adjacent matrix of size 160× 160 is
generated [36,41,42]. The individual adjacent matrix is labeled as

F =

 f1,1 · · · f1,160
...

. . .
...

f160,1 · · · f160,160

 . (12)

Each of the elements on the main diagonal of F is 1, and other elements of F are defined as follows:
fi,j = 1 if the ith ROI and the jth ROI are contained in the same cluster and fi,j = 0 otherwise.
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Since the study includes 31 participants, 31 individual adjacent matrices are obtained. A group
adjacent matrix of size 160× 160 is obtained by averaging 31 individual adjacent matrices. The group
adjacent matrix is labeled as

G =

 g1,1 · · · g1,160
...

. . .
...

g160,1 · · · g160,160

 . (13)

The K-means clustering algorithm is further applied to the matrix G to obtain the group cluster
result [36,41,42] and the 6 clusters of the group cluster result are compared with the 6 functional
networks shown in Figure 1a.

The detailed clustering procedure is performed by MATLAB software (MATLAB R2014b).
Considering that the K-means clustering algorithm is sensitive to the initial cluster centroids, we
repeat each clustering procedure 500 times, and the cluster result with the lowest within-cluster
distance is adopted.

2.7. Clustering ROIs into 6 Clusters by Applying the K-Means Clustering Algorithm to the SampEn Matrix

The procedures described in Section 2.6 are also applied to the SampEn matrix E, and 6 clusters
are obtained.

3. Results

3.1. Six Clusters of ROIs for the Static FC

The group adjacent matrix for the static FC is shown in Figure 3a. The horizontal and vertical
coordinates represent the sequential numbers of the ROIs. The sequential number and the name of
each ROI can be found in Table A1 in Appendix A.

Figure 3. (a) The group adjacent matrix for the static FC. (b) The reorganization of the group adjacent
matrix based on the 6 clusters obtained by applying the K-means clustering algorithm to the group
adjacent matrix. Since the ith row and the ith column of the group adjacent matrix are reorganized
simultaneously, the reorganized matrix is also symmetric. (c) The 6 clusters are shown on a surface
rendering of the brain. C1: cluster 1; C2: cluster 2; C3: cluster 3; C4: cluster 4; C5: cluster 5; C6: cluster 6.

Rows of the group adjacent matrix can be clustered into six clusters by the K-means clustering
algorithm (Figure 3b). The numbers of rows in clusters 1–6 are 26, 29, 23, 35, 30, and 17, respectively
(Table 1). The ROIs in clusters 1–6 can be found in the third and fourth columns of Tables A2–A7 in
Appendix A. Since each row of the adjacent matrix corresponds to a ROI, the six clusters can also be
shown on a surface rendering of the brain (Figure 3c), which resembles Figure 1a to a large extent.

The average of the squared Euclidean distances from all ROIs in each of the six clusters to
the centroid of cluster i(i = 1, 2, 3, 4, 5, 6) is also evaluated, as shown in Figure 4a–f. For each
centroid, among the six averaged distances, the averaged distance from the cluster i(i = 1, 2, 3, 4, 5, 6)
to the centroid of cluster i is the lowest. This is consistent with the main idea of the K-means
clustering algorithm.
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Figure 4. The average of the squared Euclidean distances from all ROIs in each of the six clusters to the
centroid of cluster i(i = 1, 2, 3, 4, 5, 6). (a) Centroid of cluster 1. (b) Centroid of cluster 2. (c) Centroid of
cluster 3. (d) Centroid of cluster 4. (e) Centroid of cluster 5. (f) Centroid of cluster 6. The error bars
represent standard deviations.

3.2. The Overlap Ratios between the Six Clusters for the Static FC and the Six Functional Networks

The overlap ratios between each cluster and each functional network is analyzed in Table 1.
The overlap ratios between cluster 1 and the default network, the frontal-parietal network, the
cingulo-opercular network, the sensorimotor network, the occipital network, as well as the cerebellum
network are 25/26 (≈96.15%), 0, 1/26 (≈3.85%), 0, 0, and 0, respectively. Obviously, the overlap ratio
between cluster 1 and the default network is the highest. Thus, cluster 1 corresponds to the default
network. Similarly, we can obtain that clusters 2–6, respectively, correspond to the frontal-parietal
network, the cingulo-opercular network, the sensorimotor network, the occipital network, and the
cerebellum network, with the overlap ratios, respectively, equaling 20/29 (≈68.97%), 21/23 (≈91.30%),
32/35 (≈91.43%), 22/30 (≈73.33%), and 14/17 (≈82.35%). These overlap ratios are high.

Table 1. The number of ROIs in the overlapping part between each functional network and each cluster
obtained from the static FC.

Cluster 1
(n = 26)

Cluster 2
(n = 29)

Cluster 3
(n = 23)

Cluster 4
(n = 35)

Cluster 5
(n = 30)

Cluster 6
(n = 17)

Default (n = 34) 25 2 0 0 6 1
Frontal-Parietal (n = 21) 0 20 1 0 0 0

Cingulo-Percular (n = 32) 1 5 21 3 0 2
Sensorimotor (n = 33) 0 0 1 32 0 0

Occipital (n = 22) 0 0 0 0 22 0
Cerebellum (n = 18) 0 2 0 0 2 14

3.3. The Consistency Ratios between the Six Clusters for the Static FC and the Functional Networks

Based on the data shown in Table 1, the consistency between the cluster results and the functional
networks can also be evaluated. The consistency ratio between cluster 1 and the default network
is 25/(25 + 9 + 1) (≈71.43%), in which 9 is the number of ROIs in the default network but not in
cluster 1, and 1 is the number of ROIs in cluster 1 but not in the default network. Similarly, we can
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obtain that the consistency ratios between cluster 2 and the frontal-parietal network, cluster 3 and the
cingulo-opercular network, cluster 4 and the sensorimotor network, cluster 5 and the occipital network,
and cluster 6 and the cerebellum network are 20/(20 + 1 + 9) (≈66.67%), 21/(21 + 11 + 2) (≈61.76%),
32/(32 + 1 + 3) (≈88.89%), 22/(22 + 0 + 8) (≈73.33%), and 14/(14 + 4 + 3) (≈66.67%), respectively.
These consistency ratios are high.

3.4. Six Clusters of ROIs for the SampEn of Dynamic FC

The group adjacent matrix for the SampEn of dynamic FC is presented in Figure 5a. The horizontal
and vertical coordinates stand for the sequential numbers of the ROIs. The sequential number and the
name of each ROI can be found in Table A1 in Appendix A.

Figure 5. (a) The group adjacent matrix for the SampEn of dynamic FC. (b) The reorganization of the
group adjacent matrix based on the six clusters obtained by applying the K-means clustering algorithm
to the group adjacent matrix. Since the ith row and the ith column of the group adjacent matrix are
reorganized simultaneously, the reorganized matrix is also symmetric. (c) The six clusters are shown
on a surface rendering of the brain. C1: cluster 1; C2: cluster 2; C3: cluster 3; C4: cluster 4; C5: cluster 5;
C6: cluster 6.

Rows of the group adjacent matrix can be divided into six clusters by the K-means clustering
algorithm (Figure 5b). The numbers of rows in clusters 1–6 are 30, 23, 27, 33, 27, and 20, respectively
(Table 2). The ROIs in clusters 1–6 can be found in the fifth and sixth columns of Tables A2–A7 in
Appendix A. The six clusters can also be shown on a surface rendering of the brain (Figure 5c), which
resembles Figures 1a and 3c to a large extent.

Furthermore, other values of K(K = 2, . . . , 12) are also tried in the K-means clustering algorithm,
and the optimal value of K is determined by the elbow criterion of the cluster validity index, which is
defined as the ratio of within-cluster distances to between-cluster distances [15,20,27]. The dependence
of the cluster validity index on K is shown in Figure 6. It is seen that two elbows appear at K = 4 and 6
due to the changes of slopes of the trend lines. Thus, the optimal values of K are 4 and 6. In order to
compare the cluster results with the six functional networks already discussed in the literature [25],
K is fixed at 6 in the present paper.

The average of the squared Euclidean distances from all ROIs in each of the six clusters to the
centroid of cluster i(i = 1, 2, 3, 4, 5, 6) is calculated, as shown in Figure 7a–f. For each centroid, among
the six averaged distances, the averaged distance from the cluster i(i = 1, 2, 3, 4, 5, 6) to the centroid of
cluster i is the lowest. This is also in line with the main idea of the K-means clustering algorithm.

3.5. The Overlap Ratios between the Six Clusters for the SampEn of Dynamic FC and the Six Functional Networks

The overlap ratio between each cluster and each functional network is analyzed in Table 2.
By evaluating the overlap ratio between each cluster and each functional network, we find that clusters
1–6, respectively, correspond to the default network, the frontal-parietal network, the cingulo-opercular
network, the sensorimotor network, the occipital network, and the cerebellum network, with the
overlap ratios, respectively, equaling 29/30 (≈96.67%), 20/23 (≈86.96%), 23/27 (≈85.19%), 30/33
(≈90.91%), 22/27 (≈81.48%), and 18/20 (≈90.00%). These overlap ratios are very high.
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Figure 6. The dependence of the cluster validity index on K. The thin solid, dotted, and bold solid lines
are trend lines of the filled circles. Since slopes of the trend lines change significantly at K = 4 and 6,
based on the elbow criterion, the optimal values of K are 4 and 6.

Figure 7. The average of the squared Euclidean distances from all ROIs in each of the six clusters to the
centroid of cluster i(i = 1, 2, 3, 4, 5, 6). (a) Centroid of cluster 1. (b) Centroid of cluster 2. (c) Centroid of
cluster 3. (d) Centroid of cluster 4. (e) Centroid of cluster 5. (f) Centroid of cluster 6. The error bars
represent standard deviations.

3.6. The Consistency Ratios between the Six Clusters for the SampEn of Dynamic FC and the Six Functional Networks

Based on the data shown in Table 2, the consistency ratios between the six clusters obtained from
the SampEn of dynamic FC and the six functional networks are evaluated. The consistency ratios
between cluster 1 and the default network, cluster 2 and the frontal-parietal network, cluster 3 and
the cingulo-opercular network, cluster 4 and the sensorimotor network, cluster 5 and the occipital
network, and cluster 6 and the cerebellum network are 29/(29 + 5 + 1) (≈82.86%), 20/(20 + 1 + 3)
(≈83.33%), 23/(23 + 9 + 4) (≈63.89%), 30/(30 + 3 + 3) (≈83.33%), 22/(22 + 0 + 5) (≈81.48%), and 18/(18
+ 0 + 2) (≈90.00%), respectively. These consistency ratios are very high.
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Table 2. The number of ROIs in the overlapping part between each functional network and each cluster
obtained from the SampEn of dynamic FC.

Cluster 1
(n = 30)

Cluster 2
(n = 23)

Cluster 3
(n = 27)

Cluster 4
(n = 33)

Cluster 5
(n = 27)

Cluster 6
(n = 20)

Default (n = 34) 29 0 0 0 5 0
Frontal-parietal (n = 21) 0 20 1 0 0 0

Cingulo-percular (n = 32) 1 3 23 3 0 2
Sensorimotor (n = 33) 0 0 3 30 0 0

Occipital (n = 22) 0 0 0 0 22 0
Cerebellum (n = 18) 0 0 0 0 0 18

3.7. The SampEn of Dynamic FC is More Effective Than the Static FC

For the two different measurements (the static FC and the SampEn of dynamic FC), the overlap
ratios between cluster 1 and the default network, cluster 2 and the frontal-parietal network, cluster 3
and the cingulo-opercular network, cluster 4 and the sensorimotor network, cluster 5 and the occipital
network, and cluster 6 and the cerebellum network are shown in Figure 8. For cluster 3, the overlap
ratio corresponding to the static FC (91.30%) is larger than that corresponding to the SampEn of
dynamic FC (85.19%). For cluster 4, the overlap ratio corresponding to the static FC (91.43%) is slightly
larger than that corresponding to the SampEn of dynamic FC (90.91%). For the other four clusters
(clusters 1, 2, 5, and 6), the overlap ratios corresponding to the SampEn of dynamic FC are larger
than that corresponding to the static FC. For clusters 1, 2, 5, and 6, the overlap ratios corresponding
to the SampEn of dynamic FC are 96.67%, 86.96%, 81.48%, and 90.00%, whereas the overlap ratios
corresponding to the static FC are 96.15%, 68.97%, 73.33%, and 82.35%.

Figure 8. The overlap ratios between cluster 1 and the default network, cluster 2 and the frontal-parietal
network, cluster 3 and the cingulo-opercular network, cluster 4 and the sensorimotor network, cluster 5
and the occipital network, and cluster 6 and the cerebellum network for the two different measurements.

For the two different measurements, the consistency ratios between cluster 1 and the default
network, cluster 2 and the frontal-parietal network, cluster 3 and the cingulo-opercular network,
cluster 4 and the sensorimotor network, cluster 5 and the occipital network, and cluster 6 and the
cerebellum network are shown in Figure 9. For cluster 4, the consistency ratio corresponding to the
static FC (88.89%) is larger than that corresponding to the SampEn of dynamic FC (83.33%). For the
other five clusters, the consistency ratios corresponding to the SampEn of dynamic FC are larger than
that corresponding to the static FC. For clusters 1, 2, 3, 5, and 6, the consistency ratios corresponding to
the SampEn of dynamic FC are 82.86%, 83.33%, 63.89%, 81.48%, and 90.00%, whereas the consistency
ratios corresponding to the static FC are 71.43%, 66.67%, 61.76%, 73.33%, and 66.67%.
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Figure 9. The consistency ratios between cluster 1 and the default network, cluster 2 and the
frontal-parietal network, cluster 3 and the cingulo-opercular network, cluster 4 and the sensorimotor
network, cluster 5 and the occipital network, and cluster 6 and the cerebellum network for the two
different measurements.

According to the results shown in Figures 8 and 9, we conclude that the SampEn of dynamic FC
is more effective than the static FC in clustering different ROIs into different functional networks. This
phenomenon can be interpreted by evaluating the similarity between the adjacent matrix generated
based on the six functional networks (Figure 1b) and the group adjacent matrix for the static FC
(Figure 3a) or for the SampEn of dynamic FC (Figure 5a). The similarity is evaluated by the squared
Euclidean distance, and a smaller distance means more similarity. The distances from the adjacent
matrix shown in Figure 1b to the group adjacent matrices shown in Figure 3a and in Figure 5a are
2409.58 and 2376.52, respectively. The latter is smaller than the former, i.e., the similarity between the
adjacent matrix shown in Figure 1b and the group adjacent matrix shown in Figure 5a is larger than
the similarity between the adjacent matrix shown in Figure 1b and the group adjacent matrix shown in
Figure 3a. This causes the SampEn of dynamic FC to be more effective than the static FC in clustering
different ROIs into different functional networks.

4. Conclusions and Discussion

Different brain regions in the human brain functionally interact with each other to construct
multiple functional networks. Identifying the function of each functional network and the brain
regions contained in each functional network is very important for understanding the human brain.
The present study tests the feasibility of using the K-means clustering algorithm to identify the
functional networks based on the FC, including the static FC and the dynamic FC. By applying the
K-means clustering algorithm to the static FC or the SampEn of dynamic FC between different ROIs
determined by the Dosenbach’s template, we show that the Dosenbach’s 160 ROIs can be divided into
six clusters which show high overlap and consistency ratios with the six functional networks identified
by applying modularity optimization on the average FC matrix across a large cohort of healthy subjects.
The results indicate that the combination of the K-means clustering algorithm and the FC can identify
the functional networks of the human brain. The K-means algorithm has been commonly used to
parcellate cortical or subcortical regions based on the static FC [30–38]. These previous studies along
with the present study extend the application of machine learning methods in brain sciences.

Furthermore, we show that, for four of six clusters, the overlap ratios corresponding to the
SampEn of dynamic FC are larger than that corresponding to the static FC, and for five of six clusters,
the consistency ratios corresponding to the SampEn of dynamic FC are larger than that corresponding
to the static FC. This indicates that nonlinear dynamic characteristics of the FC is more effective than
the static characteristics of the FC in identifying brain functional networks. In our previous studies,
by characterizing the nonlinear characteristics of dynamic FC in healthy subjects and patients with
schizophrenia, we have shown that SampEn of the amygdala-cortical FC in healthy subjects decreased
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with age increasing, and the visual cortex of the patients with schizophrenia exhibited significantly
higher SampEn than that of the healthy subjects [24,43]. In the future, nonlinear characteristics of
dynamic FC should be deeply used to characterize properties of brain functional networks and the
complexity of the human brain.
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Appendix A

Table A1. The names and the sequential numbers of 160 ROIs.

No. Name No. Name No. Name No. Name

1 vmPFC 41 pre-SMA 81 fusiform 121 inf cerebellum
2 aPFC 42 vFC 82 temporal 122 inf cerebellum
3 aPFC 43 SMA 83 temporal 123 temporal
4 mPFC 44 mid insula 84 fusiform 124 angular gyrus
5 aPFC 45 frontal 85 precuneus 125 TPJ
6 vmPFC 46 precentral gyrus 86 sup parietal 126 occipital
7 vmPFC 47 thalamus 87 precuneus 127 med cerebellum
8 aPFC 48 mid insula 88 IPL 128 lat cerebellum
9 vent aPFC 49 precentral gyrus 89 parietal 129 occipital
10 vent aPFC 50 parietal 90 post cingulate 130 med cerebellum
11 vmPFC 51 precentral gyrus 91 inf temporal 131 inf cerebellum
12 vlPFC 52 precentral gyrus 92 occipital 132 precuneus
13 vmPFC 53 precentral gyrus 93 post cingulate 133 occipital
14 ACC 54 parietal 94 precuneus 134 IPS
15 vlPFC 55 mid insula 95 temporal 135 occipital
16 dlPFC 56 mid insula 96 IPL 136 occipital
17 sup frontal 57 thalamus 97 parietal 137 occipital
18 vPFC 58 thalamus 98 lat cerebellum 138 med cerebellum
19 ACC 59 mid insula 99 post parietal 139 occipital
20 sup frontal 60 temporal 100 sup temporal 140 inf cerebellum
21 ACC 61 mid insula 101 IPL 141 occipital
22 dlPFC 62 parietal 102 angular gyrus 142 occipital
23 vPFC 63 inf temporal 103 temporal 143 med cerebellum
24 dlPFC 64 parietal 104 IPL 144 med cerebellum
25 vFC 65 parietal 105 precuneus 145 occipital
26 ant insula 66 parietal 106 occipital 146 occipital
27 dACC 67 precentral gurus 107 IPL 147 occipital
28 ant insula 68 temporal 108 post cingulate 148 occipital
29 dFC 69 parietal 109 lat cerebellum 149 occipital
30 basal ganglia 70 post insula 110 inf cerebellum 150 inf cerebellum
31 mFC 71 basal ganglia 111 post cerebellum 151 inf cerebellum
32 frontal 72 inf temporal 112 precuneus 152 post occipital
33 vFC 73 post cingulate 113 lat cerebellum 153 post occipital
34 dFC 74 parietal 114 IPS 154 post occipital
35 dFC 75 parietal 115 post cingulate 155 inf cerebellum
36 dFC 76 post insula 116 IPS 156 post occipital
37 vFC 77 parietal 117 angular gyrus 157 post occipital
38 basal ganglia 78 temporal 118 occipital 158 post occipital
39 basal ganglia 79 post parietal 119 occipital 159 post occipital
40 vFC 80 post cingulate 120 med cerebellum 160 post occipital

www.nitrc.org
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Table A2. ROIs in the default network and in cluster 1 for the static FC and the SampEn of dynamic
FC. ROIs in cluster 1 but not in the default network are marked by underlines.

Default Network
(n = 34)

Cluster 1 for the Static FC
(n = 26)

Cluster 1 for the SampEn
(n = 30)

ROI 1 ROI 92 ROI 1 ROI 1
ROI 4 ROI 93 ROI 4 ROI 93 ROI 4 ROI 93
ROI 5 ROI 94 ROI 94 ROI 5 ROI 94
ROI 6 ROI 105 ROI 6 ROI 105 ROI 6 ROI 105
ROI 7 ROI 108 ROI 7 ROI 108 ROI 7 ROI 108

ROI 11 ROI 111 ROI 11 ROI 111 ROI 11 ROI 111
ROI 13 ROI 112 ROI 13 ROI 112 ROI 13 ROI 112
ROI 14 ROI 115 ROI 14 ROI 115 ROI 14 ROI 115
ROI 15 ROI 117 ROI 15 ROI 117 ROI 15 ROI 117
ROI 17 ROI 124 ROI 17 ROI 124 ROI 17 ROI 124
ROI 20 ROI 132 ROI 20 ROI 20
ROI 63 ROI 134 ROI 63 ROI 134 ROI 63 ROI 134
ROI 72 ROI 136 ROI 72 ROI 72
ROI 73 ROI 137 ROI 73 ROI 73 ROI 137
ROI 84 ROI 141 ROI 84
ROI 85 ROI 146 ROI 85 ROI 85 ROI 146
ROI 90 ROI 102 ROI 102
ROI 91 ROI 91 ROI 91

Table A3. ROIs in the frontal-parietal network and in cluster 2 for the static FC and the SampEn of
dynamic FC. ROIs in cluster 2 but not in the frontal-parietal network are marked by underlines.

Frontal-Parietal Network
(n = 21)

Cluster 2 for the Static FC
(n = 29)

Cluster 2 for the SampEn
(n = 23)

ROI 2 ROI 99 ROI 2 ROI 99 ROI 2 ROI 99
ROI 3 ROI 101 ROI 3 ROI 101 ROI 3 ROI 101
ROI 9 ROI 104 ROI 9 ROI 104 ROI 9 ROI 104

ROI 10 ROI 107 ROI 10 ROI 107 ROI 10 ROI 107
ROI 12 ROI 114 ROI 12 ROI 114 ROI 12 ROI 114
ROI 16 ROI 116 ROI 16 ROI 116 ROI 16 ROI 116
ROI 21 ROI 21 ROI 5 ROI 21 ROI 8
ROI 22 ROI 22 ROI 8 ROI 22 ROI 18
ROI 23 ROI 23 ROI 18 ROI 23 ROI 81
ROI 24 ROI 24 ROI 19 ROI 24
ROI 29 ROI 29 ROI 25 ROI 29
ROI 34 ROI 81
ROI 36 ROI 36 ROI 137 ROI 36
ROI 88 ROI 88 ROI 140 ROI 88
ROI 96 ROI 96 ROI 155 ROI 96
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Table A4. ROIs in the cingulo-percular network and in cluster 3 for the static FC and the SampEn of
dynamic FC. ROIs in cluster 3 but not in the cingulo-percular network are marked by underlines.

Cingulo-Percular Network
(n = 32)

Cluster 3 for the Static FC
(n = 23)

Cluster 3 for the SampEn
(n = 27)

ROI 8 ROI 61 ROI 61 ROI 61
ROI 18 ROI 71 ROI 71 ROI 71
ROI 19 ROI 76 ROI 19
ROI 25 ROI 78 ROI 78 ROI 25 ROI 78
ROI 26 ROI 80 ROI 26 ROI 26
ROI 27 ROI 81 ROI 27 ROI 27
ROI 28 ROI 87 ROI 28 ROI 87 ROI 28 ROI 87
ROI 30 ROI 89 ROI 30 ROI 89 ROI 30 ROI 89
ROI 31 ROI 95 ROI 31 ROI 95 ROI 31 ROI 95
ROI 33 ROI 97 ROI 33 ROI 97 ROI 33 ROI 97
ROI 38 ROI 100 ROI 38 ROI 38 ROI 100
ROI 39 ROI 102 ROI 39 ROI 39
ROI 40 ROI 103 ROI 40 ROI 103 ROI 40 ROI 103
ROI 44 ROI 125 ROI 125 ROI 125
ROI 47 ROI 47 ROI 32 ROI 32
ROI 57 ROI 57 ROI 34 ROI 57 ROI 34
ROI 58 ROI 58 ROI 58 ROI 35
ROI 59 ROI 37

Table A5. ROIs in the sensorimotor network and in cluster 4 for the static FC and the SampEn of
dynamic FC. ROIs in cluster 4 but not in the sensorimotor network are marked by underlines.

Sensorimotor Network
(n = 33)

Cluster 4 for the Static FC
(n = 35)

Cluster 4 for the SampEn
(n = 33)

ROI 32 ROI 62 ROI 62 ROI 62
ROI 35 ROI 64 ROI 35 ROI 64 ROI 64
ROI 37 ROI 65 ROI 37 ROI 65 ROI 65
ROI 41 ROI 66 ROI 41 ROI 66 ROI 41 ROI 66
ROI 42 ROI 67 ROI 42 ROI 67 ROI 42 ROI 67
ROI 43 ROI 68 ROI 43 ROI 68 ROI 43 ROI 68
ROI 45 ROI 69 ROI 45 ROI 69 ROI 45 ROI 69
ROI 46 ROI 70 ROI 46 ROI 70 ROI 46 ROI 70
ROI 48 ROI 74 ROI 48 ROI 74 ROI 48 ROI 74
ROI 49 ROI 75 ROI 49 ROI 75 ROI 49 ROI 75
ROI 50 ROI 77 ROI 50 ROI 77 ROI 50 ROI 77
ROI 51 ROI 79 ROI 51 ROI 79 ROI 51 ROI 79
ROI 52 ROI 82 ROI 52 ROI 82 ROI 52 ROI 82
ROI 53 ROI 83 ROI 53 ROI 83 ROI 53 ROI 83
ROI 54 ROI 86 ROI 54 ROI 86 ROI 54 ROI 86
ROI 55 ROI 55 ROI 44 ROI 55 ROI 44
ROI 56 ROI 56 ROI 59 ROI 56 ROI 59
ROI 60 ROI 60 ROI 76 ROI 60 ROI 76



Entropy 2019, 21, 1156 16 of 18

Table A6. ROIs in the occipital network and in cluster 5 for the static FC and the SampEn of dynamic
FC. ROIs in cluster 5 but not in the occipital network are marked by underlines.

Occipital Network
(n = 22)

Cluster 5 for the Static FC
(n = 30)

Cluster 5 for the SampEn
(n = 27)

ROI 106 ROI 153 ROI 106 ROI 153 ROI 106 ROI 153
ROI 118 ROI 154 ROI 118 ROI 154 ROI 118 ROI 154
ROI 119 ROI 156 ROI 119 ROI 156 ROI 119 ROI 156
ROI 123 ROI 157 ROI 123 ROI 157 ROI 123 ROI 157
ROI 126 ROI 158 ROI 126 ROI 158 ROI 126 ROI 158
ROI 129 ROI 159 ROI 129 ROI 159 ROI 129 ROI 159
ROI 133 ROI 160 ROI 133 ROI 160 ROI 133 ROI 160
ROI 135 ROI 135 ROI 84 ROI 135 ROI 90
ROI 139 ROI 139 ROI 90 ROI 139 ROI 92
ROI 142 ROI 142 ROI 92 ROI 142 ROI 132
ROI 145 ROI 145 ROI 132 ROI 145 ROI 136
ROI 147 ROI 147 ROI 136 ROI 147 ROI 141
ROI 148 ROI 148 ROI 138 ROI 148
ROI 149 ROI 149 ROI 141 ROI 149
ROI 152 ROI 152 ROI 143 ROI 152

Table A7. ROIs in the cerebellum network and in cluster 6 for the static FC and the SampEn of dynamic
FC. ROIs in cluster 6 but not in the cerebellum network are marked by underlines.

Cerebellum Network
(n = 18)

Cluster 6 for the Static FC
(n = 17)

Cluster 6 for the SampEn
(n = 20)

ROI 98 ROI 138 ROI 98 ROI 98 ROI 138
ROI 109 ROI 140 ROI 109 ROI 109 ROI 140
ROI 110 ROI 143 ROI 110 ROI 110 ROI 143
ROI 113 ROI 144 ROI 113 ROI 144 ROI 113 ROI 144
ROI 120 ROI 150 ROI 120 ROI 150 ROI 120 ROI 150
ROI 121 ROI 151 ROI 121 ROI 151 ROI 121 ROI 151
ROI 122 ROI 155 ROI 122 ROI 122 ROI 155
ROI 127 ROI 127 ROI 80 ROI 127 ROI 47
ROI 128 ROI 128 ROI 100 ROI 128 ROI 80
ROI 130 ROI 130 ROI 146 ROI 130
ROI 131 ROI 131 ROI 131
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