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Abstract: This is the first pilot study with children that has assessed the effects of a brain–computer
interface-assisted mindfulness program on neural mechanisms and associated cognitive performance.
The participants were 31 children aged 9–10 years who were randomly assigned to either an eight-
session mindfulness training with EEG-feedback or a passive control group. Mindfulness-related
brain activity was measured during the training, while cognitive tests and resting-state brain activity
were measured pre- and post-test. The within-group measurement of calm/focused brain states and
mind-wandering revealed a significant linear change. Significant positive changes were detected in
children’s inhibition, information processing, and resting-state brain activity (alpha, theta) compared
to the control group. Elevated baseline alpha activity was associated with less reactivity in reaction
time on a cognitive test. Our exploratory findings show some preliminary support for a potential
executive function-enhancing effect of mindfulness supplemented with EEG-feedback, which may
have some important implications for children’s self-regulated learning and academic achievement.

Keywords: mindfulness training; EEG-feedback; neurofeedback; brain-sensing device; brain–computer
interface (BCI); executive functions; children; technology

1. Introduction

It is difficult to overestimate the role of children’s self-regulatory skills and atten-
tion regulation in education. In fact, self-regulation and executive functions (inhibition,
working memory, and cognitive flexibility) are strong predictors of children’s academic
achievement [1–3]. As prior meta-analyses have shown, one of the most effective ways
to enhance executive functions and self-regulation has been proven to be mindfulness-
based interventions [4–7]. Mastering the skills related to mindfulness can facilitate learners’
self-awareness to recognize moments of mind-wandering and practice self-regulation by
redirecting attention to the here-and-now from task-irrelevant thoughts [8]. However, prac-
ticing mindful attention can be especially difficult for children because there are no overt
signs of awareness that can be used for feedback by the teacher. In that vein, providing
scaffolding through feedback on the electrical activity of the brain, which is known to
vary as a function of mindful awareness, may assist the learning process and facilitate
the effects of mindfulness practices [9,10]. Moreover, supplementing mindfulness with a
brain-sensing device can empower children to regulate their own attention, which in turn
could lead to self-regulated or mindful learning [11,12].

Despite increasing evidence for the benefits of mindfulness with electroencephalo-
graphic (EEG) feedback on adults’ attention and psychological outcomes [13–19], its effects
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in children are less studied. Two available studies with elementary school children found
that mindfulness practice with EEG-feedback successfully improved subjective measures
of attention and discipline reported by teachers [20,21]. The present study aimed to extend
these prior investigations by examining the effects of mindfulness training supplemented
with EEG-feedback on objective measures of executive functions and brain activity cor-
relates among typically developing elementary school children. The significance of this
also lies within the fact that learning environments have been undergoing a fundamental
change in the last decade driven by the widespread availability of digital technology and
the intention to empower children to promote their own mental health and learning [22,23].
In that vein, the current study has important relevance for educational practice and might
serve, in addition to providing implications in the applied context, as a guide for future
research that plans to investigate such technology combined with mindfulness within an
educational context.

1.1. Mindfulness-Related Skills and Brain Mechanisms

In recent decades, the concept of mindfulness defined by Jon Kabat-Zinn [24] as
‘the awareness that emerges through attention on purpose in the present moment with
a nonjudgmental attitude’ has been supplemented by cognitive theories that describe
mindfulness as a ‘special’ attentional state [25] and as a ‘set of neurocognitive-behavioral
skills’ that cultivate the regulation of attention and executive functions [26]. Many previous
researchers have agreed upon the central role of the voluntary control of attention in the
development of mindfulness, which facilitates the effects on cognitive, behavioral, and af-
fective skills, including metacognition and executive functions [27–31]. Executive functions
(EFs) are defined as top-down regulated, goal-directed cognitive processes involved in
monitoring and controlling one’s behavior [32]. Poor EFs, such as the inability to regulate
attention, delay gratification, and flexibly switch between cognitions or behaviors to solve
problems, have been associated with a host of short- and long-term problems across the
lifespan, including school failure, drug abuse, and psychological disorders [3,31]. However,
previous research has demonstrated that EFs can be enhanced, and they are especially
malleable in childhood; thus, early interventions that address these skills are of enormous
relevance [33]. The pedagogical relevance of nurturing EFs in schools is further supported
by findings from previous decades that showed teachers reported 15 to 50% percent of
children to have behavior problems related to EFs, such as paying attention, remembering
instructions, completing tasks independently, transitioning between tasks, or controlling
automatic responses, such as raising their hand before participating or taking turns [34,35].
As a prior meta-analysis investigating the effects of interventions in childhood pointed
out, mindfulness is one of the most effective interventions to enhance EFs among all the
different behavioral approaches [5].

Mindfulness-induced changes in self-regulation have been associated with neuropsy-
chological mechanisms approached by EEG studies investigating neural oscillations [34–36].
Neural oscillations serve as key mechanisms in enabling communication between distant
brain areas, with oscillations of different frequencies corresponding to different brain net-
work configurations and processes [37]. Accordingly, prior research has mainly reported
alpha (8–12 Hz) and theta (4–8 Hz) oscillations as brain activity correlates of mindful aware-
ness, with an acute increase in amplitude during mindfulness practices and in the resting
state after training [34,35,38,39]. Alpha brain activity has been reported to play a role in at-
tention regulation, inhibition, information processing, and filtering incoming sensory input
from the environment [27,39–41]. Similar to alpha oscillations, theta oscillations have also
been associated with inhibitory processes, in addition to memory consolidation processes;
however, they also signal a deep internally focused state connected to self-reflection [27].
In contrast, low beta brain activity has been associated with external attention in a wake-
ful state, while increased high beta activity (22–30 Hz) has been related to arousal and
stress [42,43].
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Based on these findings from neuropsychology and the recent development of brain–
computer interfaces (BCIs), EEG-feedback protocols have been composed to target
mindfulness-related neuromodulation. This application of EEG-feedback is strikingly
different from classical neurofeedback to reduce attention-deficit/hyperactivity disorder
(ADHD) symptomatology. Generally, EEG-feedback protocols to reduce ADHD symp-
toms suppress theta activity and enhance low beta activity (12–20 Hz) [44]. In contrast,
EEG-feedback protocols for mindfulness-related brain activity aim to reinforce activity in
alpha and theta bands with positive feedback while decreasing high beta activity [45–48].
Additionally, studies of mindfulness training and alpha-based neurofeedback training have
found that both can lead to increases in alpha power and mindful awareness, and have
proposed alpha as a mediator of the training effect on cognitive functioning [45,46,49–54].
This improvement in regulating alpha waves exerts its positive influence on learning by
allocating attentional resources more fully during early processing phases and by the
neuromodulation of beta waves to slower alpha waves, the process of which is responsible
for memory consolidation [29,55].

1.2. Previous Studies on Mindfulness with a Brain-Sensing Device

The number of studies investigating the effect of mindfulness training with EEG-
feedback for adults has been constantly growing in this decade, showing positive effects
on attention and cognitive performance [14,16,18,47] and a relaxed mindset with reduced
stress and anxiety when compared to a control condition [15,17,46,47]. However, evidence
from other research regarding mindfulness with EEG-feedback has not shown a conclusive
positive effect; thus, it is still an open question whether such technological innovations can
render any positive effects and support traditional mindfulness training [13,19,52].

In a prior study, Bhayee and colleagues [16] randomly assigned adult participants to
either real-time mindfulness training with auditory EEG-feedback with a wearable Muse
brain-sensing headband and mobile application for 6 weeks or an active control group
with the same amount of time solving online math problems. The results revealed that
participants in the intervention group had a significantly larger reduction in reaction time
from pre- to post-test on the Stroop task than the active control group, which may suggest
that the mindfulness group’s inhibitory responses and attention became faster and thus
more efficient. Likewise, Crivelli and colleagues [17] implemented 4 weeks of intensive
mindfulness training with auditory EEG-feedback supported by the Muse brain-sensing
device. Adult participants were randomly allocated to either the neurofeedback-assisted
mindfulness meditation group or the active control group. The mindfulness group demon-
strated a relaxed mindset, improved electrophysiological markers of attention regulation
(i.e., alpha/beta ratio at resting-state, event-related potentials during a Stroop-like task)
and improved cognitive performance as measured by a complex reaction time task. An-
other prior study by Hunkin and colleagues [47] found that BCI-assisted mindfulness
training with a Muse headband resulted in an increased state of mindfulness and less
mind-wandering than the training with regular mindfulness (without feedback) group.
Interestingly, they also found that for some participants, receiving feedback on mind-
wandering during mindfulness practice heightened their arousal and frustration; thus, for
them, the feedback was rather distracting and incongruent with their subjective experience.
These studies with adult participants provide some initial support for the effect of supple-
menting mindfulness practice with EEG-feedback to improve aspects of attention and EFs;
however, it is much less studied whether this novel approach is feasible and effective with
children. To the best of our knowledge, there have been only two empirical studies with
children; however, both of these studies measured the effects using only subjective reports
by teachers. A study by Martinez and Zhao [21] found that 3 min of technology-supported
mindfulness practice with the Muse headband once a week for 6 months resulted in fewer
office discipline referrals among 13- to 14-year-old students. Another empirical study from
Antle and colleagues [20] implemented 24 sessions of mindfulness training with an alpha
and theta visual EEG-feedback protocol to reduce anxiety and increase mindful attention.
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Computer games were combined with visual feedback to create an age-appropriate environ-
ment for 5- to 11-year-old children. According to their findings, this protocol successfully
increased within-group relaxation and mindful attention from pre- to post-test in a class-
room context, as reported by teachers and school counselors. Lastly, the study of Mishra
and colleagues [56] explored the effects of a closed-loop digital meditation intervention
(without EEG-feedback), with performance-adaptive and adjusted task difficulty, on the
neurocognitive functioning of 10–18 year old adolescents who experienced early childhood
neglect. They found a significant improvement in neural functional connectivity in the
domains of cognition and hyperactive behavior as well as higher academic performance in
the digital meditation group. Although these results are promising, no studies have been
conducted assessing the effects of mindfulness with EEG-feedback on objective measures
of executive functions and brain activity correlates compared to a control condition. The
current study extends the prior research by assessing whether mindfulness supplemented
with EEG-feedback modulates plausible mindfulness-related electrophysiological correlates
and translates to observable benefits in terms of objective measures of executive functions,
which are essential skills for academic performance and self-regulated learning.

1.3. Hypotheses

In particular, we expected that: (i) children in the mindfulness with auditory EEG-
feedback group would show systematically increased slow neural oscillatory brain activity
(specifically alpha and theta) during the eight sessions, mirrored by the calm/focused and
active/mind-wandering states as logged by the Muse application; (ii) the mindfulness
with EEG-feedback group would show increased theta and alpha amplitude from pre- to
post-test at resting-state compared to the control group; and (iii) neuromodulation would
be accompanied by improvement from pre- to post-test on measures of executive functions
regarding accuracy and reaction time compared to the control group.

2. Materials and Methods
2.1. Sample

Children who were 8 to 12 years old were recruited from a local primary school in
Budapest, Hungary (2019). From the six classes within this age range, two head teachers
of fourth grade classes were willing to participate in the research program. After a verbal
presentation about the research, an information letter and written consent were provided
for all parents. Children with a diagnosis of a psychological disorder were excluded
from participating in the study. From the two fourth grade classes, 31 parents applied to
participate in the research. Using G-power, we determined that a total sample size of at
least 22 participants would suffice to detect between/within-factor interactions, assuming
a moderate effect size (0.09 partial eta squared) with alpha set at 0.05 and power at 0.8.
The participants were from families of middle and high socioeconomic status. The gender
distribution was relatively close to equal within the whole group, with 51% girls and
49% boys. The age range was 9–10 years (M = 9.92; SD = 4.35). None of the participants
dropped out.

2.2. Research Design

This exploratory pilot study was a 4 week randomized controlled trial (RCT). To assess
the efficacy of mindfulness training with EEG-feedback on EFs and neural oscillations,
the intervention group was compared to a passive control group (with no treatment, only
pre- and post-test). After the pretest, children were matched by their age, gender, and
executive function pretest scores to relatively equal pairs, then randomly allocated with
a random number generator to either the mindfulness group with EEG-feedback or the
passive control group.
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2.3. Measures
2.3.1. Location–Direction Stroop-Like Arrow Test

In this computer-based neuropsychological test of EFs, children are prompted to
respond (by pressing a button) either to the location or the direction of an arrow appearing
rapidly on the screen [57]. In the first block of the test, the rule was to judge the location
of the arrow relative to a fixation point while inhibiting the direction of the point of the
arrow. In the next block, subjects had to judge the direction of the arrow and inhibit the
location. Each block began with a practice block of 12 trials with feedback (with a sad or a
happy smiley face depending on accuracy), after which point children did not receive any
feedback. Half of the stimuli were congruent trials (i.e., the location on the screen and the
direction of the arrow matched), and half of them were incongruent (i.e., the location on
the screen and direction of the arrow were the opposite), presented in a pseudorandom
order. Both blocks had 60 trials. Figure S1 demonstrates the timing of the task. The number
of correct responses in each block and the reaction time (RT) were metrics of inhibitory
performance. Responses in less than 0.25 s were excluded for being too fast to be considered
a response to the stimulus.

2.3.2. Hearts and Flowers Test

This task was a computer-based measure of cognitive inhibition and flexibility [32,58].
In the first congruent blocks of the test, rapidly appearing hearts were presented on the
left or right side of the screen. The task was to press a predetermined button on the same
side of the keyboard. The aim of this block was to “warm up”; thus, it was not considered
to load on executive functions. In the next incongruent block, red flowers were presented
on the left or right side of the screen, and the task was to press a button on the opposite
side of the keyboard. This block required inhibitory control, meaning that the prepotent
tendency to respond toward a stimulus had to be inhibited for a successful trial. In the
final mixed block, hearts (congruent) and flowers (incongruent) were displayed on each
of the screens, and the task was to switch between the two previously learned rules and
press either on the same (i.e., hearts) or the opposite side (i.e., flowers). This part required
cognitive flexibility to switch between rules and inhibit incongruent trials. One stimulus
was presented per trial in all blocks. Each test block was preceded by instructions and
followed by 10 practice trials with feedback (smiley face) after each key response. The
timing of the task is presented in Figure S1. Data were gathered regarding RT of correct
answers and accuracy (number of errors in congruent and incongruent trials). Based on the
protocol of Diamond and Wright [59], responses in less than 0.25 s were considered too fast
to be interpreted as a response to the stimulus and were thus excluded.

2.3.3. Adapted Stop Signal Task (SST)

SST measures inhibitory control [60–62]. In the implemented adapted SST, visual
go stimuli to which a simple button press was required were infrequently followed by
a subsequent visual stop stimulus that signaled that the prepotent response had to be
withheld. Specifically, the go stimulus was a picture of a lion or bird, and participants
had to press the L button when the lion was shown and the A button if the bird was
shown (see Figure S1). Participants were requested to respond as fast and as accurately
as possible to the go stimuli. The stop stimulus was a picture of a bee, and it required
participants to withhold the prepotent response. For each trial, the stimuli were presented
centrally and sequentially, and the stimulus duration was set at 150 ms. The trial duration
was 1500 ms. The task started with a practice block, which consisted of 64 go trials. The
experimental block consisted of 128 trials, of which 32 trials (25%) were stop trials. This
block started with a go-stop stimulus onset asynchrony of 350 ms. Subsequently, the time
between go stimulus onset and stop stimulus onset was dynamically adjusted using a
tracking algorithm to yield an inhibition success of approximately 50%. The trials were
randomized for each participant. The relevant outcome of the SST was the stop signal
reaction time (SSRT), a measure that is thought to reflect inhibitory control. The SSRT
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was calculated with an integration method using the inhibition rate together with the
reaction time distribution on go stimuli and the average go–stop stimulus interval [62]. A
shorter SSRT corresponds to better inhibition. The mean response time was calculated by
subtracting the mean RT of congruent trials from the mean RT of incongruent trials, with
smaller costs indicating better performance. The percentage of correct go stimuli responses
(neutral), no go stimuli inhibitions, and omissions to go stimuli were also calculated. In the
present sample of children, the tracking algorithm and associated corrections of go-stop
stimulus onset asynchrony yielded an inhibition rate of approximately 50%, validating our
implementation of the paradigm.

2.3.4. Trail Making Test (TMT)

This paper-and-pencil test is a neuropsychological measure of visual scanning, atten-
tion, and cognitive flexibility [63,64]. Task A was to connect fifteen numbers in circles from
1 to 15 with a pencil in ascending order following a numerical sequence as fast as possible
(to measure visual processing speed). Task B was to connect fifteen numbers and letters
in ascending order alternately following a numerical and alphabetical sequence, to assess
cognitive flexibility (e.g., A-2, 2-B, B-3, etc.). Before each block, there was a practice page
with a few circles. During the completion, if the examinee made a mistake, the examiner im-
mediately stopped the examinee, pointed to the last correct circle, and asked the examinee
to proceed from that point, which contributed to the overall completion time recorded.

2.3.5. Resting-State Electroencephalography (EEG) Recording

Resting-state EEG measurements pre- and post-test were performed with a 14-channel
Emotiv Epoc+ EEG headband, and data were transferred to an Asus X556U laptop through
CyKIT 3.0 (Python server) and OpenVIBE 2.2 software [65]. The EEG data were sampled
at 128 Hz from 14 electrodes placed at AF3, AF4, F3, F4, F7, F8, FC5, FC6, T7, T8, P7, P8,
O1, and O2 (subset of the 10/10 system) and referenced to linked P3 and P4. However,
half of the electrode positions were excluded from the final analysis (i.e., F7, T7, T8, P7, P8,
O1, and O2) because the EEG data were invaluable in those positions due to calibration
problems or extremely noisy data. It is important to note that the circumstances within the
school context were not similar to those in the laboratory.

Raw data from the EEG measurements were processed using Python in JupyterLab.
Emotiv Epoc+ automatically bandpass filtered the EEG at 0.2–45 Hz and applied a notch
filter at 50 Hz. Additionally, the EEG data were corrected for DC drift with the whole
segment baseline correction of each epoch. The EEG data were segmented into 2 s epochs.
The epochs were baseline corrected using the average amplitude in the given epoch. Epochs
with artifacts, ±75 µV deviation from the baseline, and epochs with low to no activity
(all samples in the given epoch < 5 µV) were discarded. For a similar approach, see
Schönenberg and colleagues [66]. With respect to dealing with eye-movement-related
artifacts, a strict approach was used that involved the exclusion of those trials that included
EOG blink activity, because Zeng and Song [67] reported that correction procedures, such
as independent component analysis, cannot fully correct for nonstationary EOG artifacts
in the EEG. The remaining nonoverlapping epochs were used to estimate power spectra
using Bartlett’s method. Finally, the absolute power of theta, alpha, beta, and gamma
was estimated using composite Simpson’s rule. The variables were averaged from all
recorded channels to define the global absolute power of theta, alpha, and beta activity. All
data (including EFs and feasibility) were analyzed with IBM SPSS Statistics (for Windows
version 20.0) software [68].

2.3.6. Electroencephalography (EEG) Recording during Mindfulness Sessions

Data collection and EEG-feedback of brain states during the mindfulness sessions was
implemented using a 4-channel Muse brain-sensing headband and application (version 18.6).
The Muse headband had four dry electrodes located at AF7, AF8, TP9, and TP10 refer-
enced to Fpz. The data were transferred to an Android device through an application that
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processed raw EEG and provided the following metrics: (i) percentage of calm/focused
states during a session; (ii) percentage of neutral states during a session; (iii) percentage
of active/mind-wandering states during a session; (iv) number of birds during a session
(referring to deep sustained focus); and (v) number of stars during a session (referring
to the regulation of mind-wandering). However, to our knowledge, there is no existing
research on the reliability and validity of these metrics for measuring mindfulness-related
skills or performance.

2.4. Mindfulness Training with a Brain-Sensing Device

Based on the findings of Gruzelier [27] regarding optimal neurofeedback dosage
and the mindfulness-based stress reduction protocol by Kabat-Zinn [24], this intervention
consisted of 8 sessions. As displayed in the protocol, each session began with an instruction
supporting the comprehension and learning of breathing awareness (see Table S1). From
the third session, we shortened the instruction, given that children were already familiar
with it, and added the explanation of other essential elements of mindfulness, such as the
observation of sensations during breathing (e.g., through the nose tips, in the abdomen,
anchors) or the acceptance and non-judgmental attitude toward the constantly changing
nature of awareness (i.e., concentration level, mind-wandering). These explanations were
designed in an age-appropriate language by using metaphors from previous MBIs to
communicate difficult concepts [69].

The length of the sessions was gradually incremented in the following way: (a) the
first and second sessions lasted for 1 min; (b) the third and fourth sessions lasted for 2 min;
(c) the fifth and sixth sessions lasted for 3 min; and (d) the seventh and eighth sessions
lasted for 4 min. This was recommended by Jennings and colleagues [70], who suggested
shorter (3–5 min) periods of practice for children during the primary grades as they begin.

The Muse application provided a calibration period prior to each session to customize
EEG-feedback to the participant’s actual state of mind with a machine learning algorithm.
In the calibration period, children were asked to sit with their eyes open and then their
eyes closed for a couple of minutes. During each session, the children individually prac-
ticed mindful breathing with the Muse headband and smartphone application with the
experimenter in the room to provide support if necessary. The children were instructed
by the experimenter to concentrate on their breathing and try to calm down the sound of
the rain and hear the birds singing through the headphones. More specifically, the rain
sound rumbled when the participant’s mind wandered and beta or gamma brainwaves
were dominant; meanwhile, the sound of the rain turned down when attention was focused
on breathing and alpha power increased [48]. Children heard birds twittering as a reward
when the most desired deep meditative theta brainwaves increased in power. Each session
ended with sharing and explaining the Muse application’s metrics and figures to the child
(i.e., calm/focused, neutral, active/mind-wandering) and inviting the child to reflect on
his/her subjective experience.

2.5. Procedure

Before and after the 8 sessions of mindfulness with EEG-feedback, we assessed the
EFs and brain activity of all participants. Data collection took place in the rooms of the
participating elementary school. The children were taken out of their class for the sessions
individually. The research assistant informed children about the examination process, and
the children could ask questions. After the children’s verbal consent to the examination, an
approximately 30 min individual testing session began. First, resting-state neural activity
was measured. Specifically, children were asked to sit calm for 150 s with their eyes open
and 150 s with their eyes closed, while their brain activity was recorded with a 14-electrode
wireless EEG headband (Emotiv Epoc+) on a laptop. Subsequently, the children were
requested to perform four neurocognitive tests measuring EFs in a counterbalanced order.
After the children were assigned to the conditions, the mindfulness group started the
intervention in school as an extracurricular activity. The children were invited to individual
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mindfulness sessions during school hours. There was an agreement with the teacher of both
classes that the children could leave their pre-arranged classes individually for 5–10 min
in order to participate in the sessions. During the mindfulness sessions, neural activity
was recorded with the Muse headband, and the feasibility checklist was filled out for each
child. The order of the neurocognitive tests was the same for the pre- and post-test for each
child. The children were rewarded with a certificate for their participation in the research
project at the first meeting, and they could collect stickers on it for each task during the
pre- and post-testing sessions. A few days after the pretests, the mindfulness training with
EEG-feedback began. Post-testing was conducted 3 to 5 days after the last mindfulness
session, and it followed the same protocol as the pretesting.

2.6. Statistical Analyses

All statistical analyses were conducted using SPSS 20. Prior to randomization, baseline
independent sample t-tests were conducted to match equivalent pairs based on gender,
age, and aggregated EF test scores.

To reveal any differences in changes between the mindfulness with EEG-feedback
and the control group on cognitive tests and resting-state brain activity, repeated measures
ANOVA tests were performed. Repeated measures ANOVAs were used in several previous
studies investigating the efficacy of interventions with relatively small sample sizes [71,72].
The measurement points (two levels: pre-test and post-test) were used as a within-subject
factor, while the conditions (two levels: experimental and control) were used as a between-
subject factor. The assumptions to conduct repeated measures ANOVAs were tested
as suggested [73–75]. The assumption of normality in both conditions was tested by
calculating the standardized values of skewness and kurtosis in the case of all variables, as
well as the significance of the Kolmogorov–Smirnov test [74]. Additionally, extreme values
were identified with box plot diagrams for all variables. Values were considered extreme
when they were lower or greater than the interquartile range multiplied by 1.5, based on the
classic 1.5 × IQR rule [76]. Leys and colleagues [77] pointed out that unusual values that
are extremely far from the central tendency can be dealt with using two statistical strategies:
keeping them or removing them from the dataset. As many of the variables were non-
normally distributed because of the extreme outliers, we applied these aforementioned two
statistical strategies to control for this. To this end, in the first statistical model, the extreme
values in non-normally distributed variables were kept. As Blanca and colleagues [78]
tested, ANOVAs remain a valid statistical procedure under non-normality in a variety of
conditions. The second assumption of ANOVAs, homogeneity of variances, was examined
using Levene’s test, and was violated in the case of almost all variables. Although it is
a controversial issue in statistics, some studies state that ANOVAs can be robust for this
assumption as well [79]. In the second statistical model, we removed extreme outliers
as potentially non-representative data. Regarding the nature of the outliers, we suspect
that some children might have misunderstood some rules on the EF tests, which could
cause an unusually high number of errors in some cases. In the case of EEG variables, we
suspect that there was a great individual variability in this small sample which would be
plausibly reduced in a larger sample. By removing the extreme outliers, the homogeneity
of variances assumption was fulfilled for all EF variables, yet still not for EEG variables.
Finally, for significant time × group interactions, exploratory paired t-tests were conducted
to maximize insight into the relationships between variables with significant interactions,
and correlation analyses were planned.

3. Results
3.1. Tests of Baseline Differences between Groups and Missing Data

Table 1 demonstrates the means and standard deviations of all EF and EEG variables.
The baseline differences between groups were evaluated using one-way analysis of variance
(ANOVA), and an independent sample t-test in the case of age. Between-group statistical
comparison at baseline confirmed that the mean age in months (Mexp = 119.4, SDexp = 4.99;
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Mcontr = 118.7, SDcontr = 3.77) did not differ significantly between the mindfulness and
control groups (t(29) = 0.450, p = 0.66). However, there was a significant baseline difference
between the number of correct responses during the location block of the Stroop-like arrows
test (F(1,21) = 4.750, p = 0.04). As Table 2 shows, most of the main group effects regarding
EF tests and resting-state EEG power were also non-significant (p > 0.05), except for the
response time of the SST. It is important to note that baseline differences could challenge
the interpretation of post-intervention differences between groups. However, by including
time as a within-subjects factor that includes the pre-test level, and testing the time × group
interaction, we effectively controlled for baseline differences.

Table 1. Means and standard deviations of all dependent variables included in the study.

Dependent Variable n Pre M (SD) n Post M (SD) n Pre M (SD) n Post M (SD)

Mindfulness Control

Executive function measures
Hearts and flowers test

Flowers block RT 13 0.55 (0.07) 13 0.50 (0.06) 12 0.55 (0.08) 12 0.48 (0.12)
Mixed block RT 15 0.85 (0.09) 15 0.75 (0.07) 10 0.90 (0.08) 10 0.73 (0.14)

Flowers block errors 12 1.92 (1.51) 12 0.92 (0.90) 13 1.46 (1.27) 13 2.00 (2.00)
Mixed block errors 14 5.29 (3.65) 14 4.50 (2.79) 12 5.42 (3.97) 12 4.86 (3.28)

Location–direction Stroop-like arrows test
Location block RT 15 0.54 (0.04) 15 0.53 (0.07) 15 0.50 (0.06) 15 0.49 (0.07)
Direction block RT 15 0.61 (0.04) 15 0.61 (0.04) 11 0.60 (0.03) 11 0.59 (0.04)

Location block correct responses 12 48 (7.97) 12 55 (5.78) 11 54 (4.71) 11 56 (2.48)
Direction block correct responses 15 25 (10.4) 15 38 (13.4) 15 30 (14.9) 15 41 (11.2)

Stop signal task
SSRT 10 321 (67.7) 10 274 (58.2) 11 389 (192) 11 262 (82.3)

Response time 9 838 (116) 9 772 (125) 11 618 (195) 11 713 (177)
% of omissions 10 4.79 (4.40) 10 1.77 (2.87) 8 6.38 (3.67) 8 2.47 (3.10)

Trail making test (B)
Errors 13 0.38 (0.65) 13 0.08 (0.28) 14 0.71 (0.99) 14 0.29 (0.61)

Completion time 13 46.9 (15.7) 13 39.9 (22.6) 15 53.4 (21.8) 15 38.8 (14.7)
EEG measures

Resting-state eyes-closed condition—Global mean absolute power (µV2)
Theta 9 3.69 (3.51) 9 3.58 (3.63) 9 5.56 (15.81) 9 2.18 (1.50)
Alpha 9 2.45 (3.32) 9 2.67 (3.12) 9 3.10 (2.06) 9 1.30 (0.84)
Beta 10 5.48 (4.01) 10 4.20 (3.99) 8 5.86 (1.82) 8 4.80 (3.96)

Resting-state eyes-open condition—Global mean absolute power (µV2)
Theta 10 2.92 (2.70) 10 3.69 (3.36) 10 5.21 (3.56) 10 2.19 (1.14)
Alpha 10 1.65 (1.71) 10 1.69 (1.79) 10 2.52 (1.37) 10 1.13 (0.49)
Beta 12 6.93 (5.27) 12 5.26 (4.72) 9 8.83 (4.73) 9 4.60 (3.37)

M, mean; RT, reaction time in milliseconds (ms); SST, stop signal task; SSRT, stop signal reaction time in
milliseconds (ms); TMT, trail making test; completion time in seconds (s); frequencies were fixed for theta (4–8 Hz),
alpha (8–12 Hz), and beta (12–30 Hz).

Information about missing or excluded data is reported in Table S2. Missing data were
caused by either a logging error issue in computer-based EF pretests or absence from school
at post-test. The average data loss of the resting-state EEG measurement varied between
22 and 58% depending on the electrode site. Data loss was as expected and was due to
the rejection of epochs consisting of artifacts, noise, muscle activity, and eye movements.
In some cases (N = 7), EEG data were excluded because of a very low number of retained
segments (<5) due to a high noise ratio.
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Table 2. Results of the repeated measures ANOVAs (model 2).

Dependent Variable Time Group Time × Group

Hearts and flowers test
Flowers block RT F(1, 23) = 66.347, ηp

2 = 0.743 ** F(1, 23) = 0.256, ηp
2 = 0.011 F(1, 23) = 3.847, ηp

2 = 0.143 +

Mixed block RT F(1, 23) = 65.404, ηp
2 = 0.740 ** F(1, 23) = 1.847, ηp

2 = 0.074 F(1, 23) = 1.485, ηp
2 = 0.061

Flowers block errors F(1, 23) = 2.879, ηp
2 = 0.111 * F(1, 23) = 0.071, ηp 2 = 0.003 F(1, 23) = 5.353, ηp

2 = 0.189 *
Mixed block errors F(1, 24) = 3.645, ηp

2 = 0.190 F(1, 24) = 0.016, ηp 2 = 0.002 F(1, 24) = 0.243, ηp
2 = 0.022

Location–direction Stroop-like arrows test
Location block RT F(1, 28) = 1.379, ηp

2 = 0.047 F(1, 28) = 2.844, ηp
2 = 0.090 F(1, 28) = 0.003, ηp

2 = 0.001
Direction block RT F(1, 24) = 0.033, ηp

2 = 0.001 F(1, 24) = 1.923, ηp
2 = 0.074 F(1, 24) = 0.345, ηp

2 = 0.014
Location block correct responses F(1, 21) = 14.917, ηp

2 = 0.415 ** F(1, 21) = 2.943, ηp
2 = 0.123 F(1, 21) = 5.433, ηp

2 = 0.206 *
Direction block correct responses F(1, 28) = 35.856, ηp

2 = 0.562 ** F(1, 28) = 1.026, ηp
2 = 0.035 F(1, 28) = 0.221, ηp

2 = 0.008
Stop signal task

SSRT F(1, 19) = 6.944, ηp
2 = 0.268 * F(1, 19) = 0.543, ηp

2 = 0.028 F(1, 19) = 1.454, ηp
2 = 0.071

Response time F(1, 18) = 0.040, ηp
2 = 0.002 F (1, 18) = 5.023, ηp

2 = 0.218 * F(1, 18) = 4.291, ηp
2 = 0.193 *

% of omissions F(1, 16) = 11.984, ηp
2 = 0.428 * F(1, 16) = 0.699, ηp

2 = 0.042 F(1, 16) = 0.196, ηp
2 = 0.012

Trail making test
Errors F(1, 25) = 5.020, ηp

2 = 0.167 * F(1, 25) = 1.672, ηp
2 = 0.063 F(1, 25) = 0.135, ηp

2 = 0.005
Completion time F(1, 26) = 8.867, ηp

2 = 0.254 * F(1, 26) = 0.192, ηp
2 = 0.007 F(1, 26) = 1.069, ηp

2 = 0.040

Resting-state eyes-closed condition—Global mean absolute power(µV2)
Theta F(1, 16) = 2.613, η ηp

2 = 0.140 F(1, 16) = 0.033, ηp
2 = 0.002 F(1, 16) = 2.311, ηp

2 = 0.126
Alpha F(1, 16) = 1.963, ηp

2 = 0.109 F(1, 16) = 0.118, ηp
2 = 0.007 F(1, 16) = 3.241, ηp

2 = 0.168
Beta F(1, 16) = 0.083, ηp

2 = 0.063 F(1, 16) = 0.142, ηp
2 = 0.009 F(1, 16) = 0.010, ηp

2 = 0.001
Resting-state eyes-open condition—Global mean absolute power(µV2)

Theta F(1, 18) = 2.500, ηp
2 = 0.122 F(1, 18) = 0.452, ηp

2 = 0.022 F(1, 18) = 7.093, ηp
2 = 0.283 *

Alpha F(1, 18) = 5.135, ηp
2 = 0.222 * F(1, 18) = 0.073, ηp

2 = 0.004 F(1, 18) = 5.804, ηp
2 = 0.244 *

Beta F(1, 19) = 6.369, ηp
2 = 0.251 * F(1, 19) = 0.135, ηp

2 = 0.007 F(1, 19) = 1.197, ηp
2 = 0.059

RT, reaction time in milliseconds (ms); SST, stop signal task; SSRT, stop signal reaction time in milliseconds
(ms); TMT, trail making test; completion time in seconds (s); ηp

2, partial eta squared effect size; effect size (ηp
2)

interpreted as: small—0.01, medium—0.06, large—0.14; + p < 0.06; * p < 0.05; ** p < 0.001. Average differences
across the two groups and the corresponding 95% confidence interval were calculated with a standard 0.05
significance level (two-tailed).

3.2. Effects of Mindfulness Practice with a Brain-Sensing Device on Executive Functions and
Resting-State Brain Activity

In our first statistical model, there was only one significant difference in pre- to posttest
change in the mindfulness group relative to the control group, reflected by a marginally
significant time × group interaction regarding the RT during the mixed block of the hearts
and flowers test (see Table S3). Paired t tests indicated a significant decrease in mean
RT for the mixed block in the mindfulness group (t(14) = 5.643, p < 0.001) and also the
control group (t(13) = 5.708, p < 0.001). All other time × group interactions were non-
significant, and the observed power of the tests was low. However, after exclusion of
participants with significant outlying values (see statistical model 2), we found that the
mindfulness group outperformed the control group on several measures. Specifically,
on two EF tests, accuracy improved significantly more in the mindfulness group than
in the control group. With respect to the ‘location’ block of the Stroop-like arrow test,
the mindfulness group showed an increased number of correct responses reflected by a
significant time × group interaction (see Table 2), with a significant growth of correct
responses in the mindfulness with EEG-feedback group (t(11) = −4.732, p < 0.001) and no
change in the control group (t(10) = −1.004, p = 0.34). As shown in Table 2, there was a
significant time × group interaction in the ‘flower’ block of the hearts and flowers test,
with a significantly greater decrease in errors in the mindfulness group relative to the
control. Paired t tests revealed a significant decrease in errors in the mindfulness group
(t(11) = 2.872, p = 0.02) and a non-significant increase in the control group (t(12) = −0.433,
p = 0.67). Additionally, in the ‘flowers’ block of the hearts and flowers test, there was a
marginally significant difference between the groups in the pre- to post-test change of
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reaction time, reflected by a time × group interaction (see Table 2), with the mindfulness
group exhibiting a less decreased mean reaction time compared to the control group. Post
hoc tests showed a significant decrease in RT during the flower block in the mindfulness
group (t(12) = 5.198, p < 0.001) and a significant decrease in the control group (t(11) = 6.178,
p < 0.001).

Importantly, these effects were mirrored by the effects on the relevant frequency
bands. The results from the resting-state brain activity measurements suggested that there
was an overall decline in frequency band power from pre- to post-test in both groups,
except for the eyes-open alpha and theta activity in the mindfulness group. Namely,
in the resting-state eyes-open condition, the analysis of variance showed a significant
time × group interaction effect of the changes in theta and alpha absolute power (see
Table 2). Paired t tests demonstrated that the control group showed a significant decrease
in theta (t(9) = 2.458, p = 0.04) and alpha (t(9) = 2.564, p = 0.03), while the mindfulness
group showed a non-significant change from pre- to post-test for both theta (t(9) = −1.073,
p = 0.31) and alpha (t(9) = −0.174, p = 0.89). All other time × group interactions of the EF
tests and EEG were non-significant (p > 0.05).

The exploratory correlation analysis showed a significant positive relationship between
the change in RT for the flower block in the hearts and flowers test and the change in resting-
state eyes-open theta activity (r(18) = 0.54, p = 0.03). There was also a marginally significant
positive correlation between the change in RT for the flower block and the change in alpha
activity in the eyes-open condition (r(18) = 0.47, p = 0.06). However, the correlation between
the change in accuracy in the EF tests and the change in alpha or theta activity in the
eyes-open condition was non-significant (p > 0.05). The correlation between resting-state
alpha and theta activity change was positive and significant, r(20) = 0.92, p < 0.001.

3.3. Effects on Brain States across Mindfulness Sessions

One-way repeated measures ANOVAs were performed to analyze the modulation
of three brain states (calm/focused, neutral, and active/mind-wandering) within the
mindfulness with EEG-feedback group. The means were calculated for all metrics from
two sessions within the same week. Thus, there were four time conditions: (1) the first and
second sessions (week 1); (2) the third and fourth sessions (week 2); (3) the fifth and sixth
sessions (week 3); and (4) the seventh and eighth sessions (week 4) (see Table 3).

Table 3. Within-group changes in brain states during the mindfulness sessions with EEG-feedback
(n = 15).

Session 1 and 2 Session 3 and 4 Session 5 and 6 Session 7 and 8

Mean (SD)

Calm/focused state (%) 60 (21.65) 56 (18.79) 67 (19.48) 68 (23.70)
Neutral state (%) 39 (20.77) 43 (17.99) 32 (18.19) 30 (21.94)

Active/mind-wandering
state (%) 1 (3.03) 2 (3.23) 2 (2.57) 1 (1.99)

Birds/minute 4.5 (3.44) 3.9 (2.65) 5.6 (2.84) 6.0 (3.04)
Stars/minute 0.2 (0.42) 3.9 (2.65) 5.6 (2.84) 6.0 (3.03)

The statistical analysis of within-subject variance showed a non-significant effect of time
on the percentage of calm/focused brain states (F(3, 13) = 2.466, p = 0.08, ηp

2 = 0.150); however,
there was a significant linear contrast of time within the four sessions (F(1, 14) = 5.671, p = 0.03,
ηp

2 = 0.288). Additionally, there was a main effect of time regarding the number of birds,
reflecting longer periods of time in a calm/focused brain state (F(3, 13) = 3.200, p = 0.03,
ηp

2 = 0.186), with a significant linear within-subjects contrast of time (F(1, 14) = 7.489, p = 0.02,
ηp

2 = 0.349). In summary, these results suggest a steady increase in the calm/focused brain
state across the sessions.
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Regarding neutral brain state, the ANOVA test also showed a significant effect of
time, (F(3, 13) = 2.09, p = 0.05, ηp

2 = 0.172), with a significant linear within-subjects contrast
(F(1, 14) = 7.869, p = 0.01, ηp

2 = 0.360).
Finally, ANOVAs of the active/mind-wandering brain states indicated a non-significant

effect of time (F(3, 13) = 0.130, p = 0.85, ηp
2 = 0.009) and regarding the linear within-subjects

contrast, (F(1, 14) = 0.004, p = 0.95, ηp
2 = 0.001). On the other hand, the number of re-

covery stars from the active/mind-wandering state showed a significant effect of time
(F(3, 13) = 22.959, p < 0.001, ηp

2 = 0.621), and the tests indicated a significant linear within-
subjects contrast (F(1, 14) = 52.069, p < 0.001, ηp

2 = 0.788), with an average increase in
recovering from active/mind-wandering states (see Table 3).

4. Discussion

To the best of our knowledge, this is the first exploratory study to test the effects of
an EEG-feedback-based mindfulness program on children’s executive functioning and
attention-related brain activity. The aim of the present study was to explore the poten-
tial effects of a mindfulness program with EEG-feedback adopted for elementary school
children to empower their own attention regulation (required for self-regulated learning),
objectively measured using neurocognitive tests and brain activity.

With our first statistical model, the results showed that both groups became faster at
the mixed block of the hearts and flowers test; however, the control group became faster
than the other group. There were no other observed effects on the other EF variables or
resting-state brain activity when we compared the mindfulness with EEG-feedback group
to the control group. With the second statistical model, extreme outlier values that were
potentially non-representative were excluded based on the 1.5 × IQR rule. This second
statistical model provided some initial support for a potential positive effect of mindfulness
training with EEG-feedback for children. Potential positive effects were found for two out of
the four EF tests regarding the accuracy of inhibition- and attention-related responses. More
specifically, in the hearts and flowers test, the mindfulness group made significantly fewer
errors (failed inhibitions) from pre- to post-test, which was accompanied by a tendency of
a decrease in reaction time from pre- to post-test. It is important to note that the control
group showed an even larger decrease in RT from pre- to post-test; however, this was not
accompanied by fewer errors. The improvement in RT in both groups could be attributed
to a retest effect, as previous studies have shown that individuals can improve due to
experience with the tasks or other non-specific factors [80]; however, the errors changed
differently in the two groups. As Diamond [81] described, errors are often made because of
not being able to wait; if inhibition is well-developed, errors can be avoided. These findings
may suggest that mindfulness training with EEG-feedback empowered children to regulate
their immediate responses and slow down, which at least contributed to the enhanced
inhibitory performance. Furthermore, the mindfulness group showed significantly more
correct responses (successful inhibitions) on the Stroop-like arrow test from pre- to post-test
compared to the control group. This effect was not accompanied by any changes in RT.
A recent meta-analysis by Sumantry and Stewart [82] concluded that mindfulness led to
greater improvements in accuracy-based tasks rather than reaction time, which is in line
with our findings. Interestingly, in the study of Bhayee and colleagues [16] with adults,
reaction time (RT) results showed a somewhat different effect: the neurofeedback-assisted
mindfulness group’s inhibitory responses on the Stroop task became faster, while their
accuracy did not change. As Davidson and colleagues [32] concluded, inhibition requires
greater effort from children, which can be seen in the errors of difficult trials, while RT
remains relatively constant, in contrast to adults whose RT slows down in difficult trials.
Our findings extend this literature by showing a change in accuracy (related to inhibition)
due to mindfulness, with a preliminary effect on RT, similar to the above-mentioned
adult performance.

The results from the resting-state brain activity measurement suggested that in the
eyes-open condition, the mindfulness with EEG-feedback group showed no change in
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alpha and theta absolute power from pre- to post-test, while the control group showed a
significant decrease in these low-frequency neural oscillations. To fully understand alpha
and theta neural oscillations among children, it is important to note that longitudinal
research has demonstrated that infant EEG is at a much lower frequency, which increases
with aging [83]. For instance, in relaxed wakefulness when the alpha frequency from
8 Hz to 13 Hz is dominant in adults, infants exhibit a lower frequency range from 6 Hz
to 9 Hz [84]. Therefore, it could be that the participating 9- to 10-year-old children in our
study also exhibited a somewhat lower frequency range for the alpha band than adults,
and the observed increase in the theta band could demonstrate an increase in the alpha
band. To connect our neuropsychological findings to previous research, we concluded that
the non-significant increase in baseline alpha and theta oscillations in the mindfulness with
EEG-feedback group accompanied by significant improvement in inhibition and attention
was somewhat surprising, given that both neurofeedback and mindfulness separately were
found to increase these brain waves in previous studies [27,35]. Interestingly, Navarro-Gil
and colleagues [51] also found that baseline alpha was not modulated by alpha upregulating
neurofeedback training, and only task-related alpha increased.

Finally, an exploratory correlation analysis showed that the pre-to-post changes in
resting-state eyes-open theta and alpha activity were positively correlated with the changes
in RT in the executive function test (where accuracy increased in the mindfulness with EEG-
feedback group). These findings lend support to the theory of Klimesch and colleagues [41],
who proposed that alpha oscillations have two central roles in information processing,
namely timing and inhibition. Our exploratory results extend Klimesch’s theory by showing
that an increase in baseline alpha oscillations (before the EF task) was associated with
improved information processing speed during an EF task and thus timing. However, it is
important to note that we could not inspect whether alpha during the task was associated
with timing or inhibition because there was no EEG measurement during the EF task.

The results from the second exploratory analysis showed that there was a linear effect
of time regarding the percentage of time spent in a calm/focused state during mindfulness
with EEG-feedback sessions. From the first to the last session, children improved by
8% on average at being in a calm/focused state during the session. Additionally, there
was a significant linear effect of time regarding the longer and deeper focused states
(birds/minute), showing 1.5 birds/minute more on average during the last session than in
the first. These indicators, measured by the Muse headband and application, suggest an
increase in the lower frequency alpha and theta brain waves during the training and thus a
relaxed yet focused mind state. The variance of analysis regarding the change of neutral
states during the technology-supported mindfulness training also indicated a linear effect
of time, with a 9% mean decrease from the first session to the last session. Interestingly, the
mean active/mind-wandering states were generally very low even during the first session
among the sample (1% of the session duration), and this stayed true for the last session
as well. However, the mean number of recovery stars per minute showed a significant
increase from the first to the last session, with a mean of 5.8 recovery stars per minute
increase, which suggests that the children improved in recognizing mind-wandering states
and redirecting their attention to their breathing. These results are somewhat contradictory
to the findings of Acabchuk and colleagues [13], who found non-significant changes in
the calm/focused states of adults in the Muse group from pre- to post-test. This non-
significant difference between the pre- and post-test may be due to high individual variance
in mindfulness performance within sessions, with decreases, stagnation, and increases in
performance over the whole training. Our exploratory results extend prior research by
highlighting the potential to investigate the learning process from session to session instead
of only focusing on pre- and post-test measures of mindfulness. It may also raise attention
to the need for repeated measures of state mindfulness due to the high variance between
different mindfulness sessions.
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Limitations

There were five perceived limitations in this pilot study: (i) low sample size; (ii) a
passive control group; (iii) a low-intensity training protocol; (iv) the lack of blinding of
conditions; and (v) the possibility of a carryover effect. We addressed the first limitation
in the current study by conducting ANOVAs, which are quite robust and are claimed to
be applicable to relatively low sample sizes [85]. However, as the power analysis showed,
the sample size was underpowered to detect small effects. Regarding the methodological
limitations of the study, we highly recommend adding an active control condition to the
design (i.e., sham-feedback or mindfulness group) to rule out non-specific (e.g., training or
placebo) effects, from effects specific to the supplementation of EEG-feedback to simple
mindfulness. In addition, we cannot exclude the presence of expectancy bias from the
experimenters and participants due to the lack of blinding of conditions; thus, this could
also be addressed in future studies. Another possible confounding effect could be observed
in the study from the carryover effect of mindfulness practice on post-test resting-state EEG
measurement, as the results showed a clear reduction in alpha and theta activity in the
control group from pre-to-post but not in the mindfulness group. We applied the post-test
EEG measurement 3–5 days after the last mindfulness session; however, future studies
could aim to test the effects at a more delayed post-test or at follow-up. In subsequent
research, the carryover effect might be addressed by counterbalancing the order of EEG
measurement and cognitive tests, or by planning resting-state EEG measurement as the
last measurement after cognitive tests to avoid the sequential order of mindfulness practice
and resting-state EEG measurement [86].

Another limitation that is also important to note is that the variables obtained from
the Muse headset (brain states, birds, and stars) are derived from black-box algorithms,
which brings their reliability and validity into question. The study of Kovacevic and
colleagues [48] provided some information about the outline of the algorithms; however,
important details were not reported. This lack of a clear EEG-feedback protocol might also
be addressed in future research by applying a predesigned protocol (i.e., alpha and theta
training); for more examples see [27,34].

Moreover, another perceived limitation was that our sample consisted of a restricted
age and SES range (9–10 years, middle and high SES). Hence, an applicable nuance should
be applied when generalizing these results to other samples. Furthermore, we did not
control for demographic characteristics in the statistical analyses (i.e., SES, intelligence, etc.)
which could also influence the cognitive outcomes in children, and the statistical analyses
were not corrected for multiple comparisons.

5. Conclusions

Based on our findings, it can be concluded that mindfulness training with EEG-
feedback (provided by the Muse headband) linearly increased calm/focused brain states
and the redirection of attention when it wandered. With our first line of statistical models,
no positive effects on executive functions and resting-state brain activity could be observed
when we compared the mindfulness and control groups. However, with the second more
stringent line of statistical models excluding outliers, significant changes from pre- to
post-test were detected for two out of the four EF tasks and in the resting-state eyes-open
alpha and theta brain activity between the mindfulness and the control group. More
specifically, the mindfulness with EEG-feedback group showed a significant improvement
in inhibition and information processing compared to the control group. Our findings
extend Klimesch’s [41] theory by connecting baseline alpha brain activity with information
processing during a cognitive task. These findings provide some preliminary evidence for
technology-supported mindfulness practice embedded in everyday practice in schools to
empower children to practice regulating their own attention without the assistance of an
adult. The results from our pilot study also call attention to future research with a larger
sample, a longer intervention, and a sham-feedback group.
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