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ABSTRACT Here, we report the complete genome sequence of strain NMC 61 of
Salmonella enterica serovar Enteritidis, which was previously isolated from conveyor
belts during chicken slaughter and has the potential to form biofilms on several sur-
faces. The genome is predicted to contain 110 noncoding small RNAs on the chro-
mosome.

Salmonella belonging to Enterobacteriaceae is a globally widespread foodborne
pathogen. All are at risk for Salmonella infection but especially those with weakened

immune systems. Salmonella enterica serovar Enteritidis is the most frequently detected
causative agent in foodborne outbreaks and recalls (1, 2). Complete elimination of
Salmonella bacteria is often challenging due to the formation of protective biofilms,
which is significantly affected by intracellular and environmental factors (3–5) and can
vary based on the source of isolation. Biofilms present on conveyor belts can serve as
sources of contamination for meat during processing (6). However, the many strains
that have had their genomes completely sequenced have been isolated from sources
outside those involved in meat processing (7, 8). Therefore, the complete genome
sequence of S. Enteritidis strain NCM 61, which was isolated from the conveyor belts of
chicken by wiping, and had a high potential for biofilm formation (9, 10), was deter-
mined in this study.

A single colony of S. Enteritidis NCM 61 was picked to 5 ml of Trypticase soy broth
(TSB) and incubated at 37°C for 18 h with shaking. The DNA was extracted using a
QIAamp DNA microbiome kit and used to prepare a library with a fragment size of �10
Kb selected with the BluePippin system. The genome of S. Enteritidis was sequenced on
a Pacific Biosciences instrument (PacBio, Menlo Park, CA) using P4-C2 chemistry.
Hierarchical Genome Assembly Process (HGAP) software (version 2.3.0) was used to
assemble a total of 86,659 reads with an average length of 11,156 bp. The de novo
assembled chromosome genome of S. Enteritidis NCM 61 is 4,679,739 bp with GC
content of 52.17%. The 4,660 coding sequences, 106 structural RNAs (22 rRNAs and 84
tRNAs), and 14 gene islands (GIs) were annotated using Glimmer version 1.1, rRNAmmer
1.2 server, tRNAscan-SE 2.0, Rfam 14.0, and IslandViewer 4 (11, 12). One 59,387-bp
circular plasmid (GC content of 51.92% and 109 predicted coding regions) was also
identified during assembly by HGAP. A total of 380 genes on the chromosome were
predicted to be associated with bacterial virulence factors, and 16 multiresistance
determinants were found on the chromosome using ardbAnno version 1.0 software
(13), including arc, mdt, tol, pbp, mdf, mac, ksg, emr, bcr, arn, and acr. The chromosome
genome collinearities between the NCM 61 strain and S. Typhimurium LT2 (GenBank
accession number AE006468), S. Heidelberg SL476 (CP001120), and S. Enteritidis Dur-
ban (CP007507) were 95.04%/91.54%, 94.18%/90.14%, and 99.12%/99.14%, respec-
tively, which were determined using NCBI BLAST between two genomes with an E
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value less than or equal to 10�5 and alignments exceeding 80% identity within 1,000
bp of the query sequence. In addition, using the Rfam database, a total of 110
noncoding small RNAs were identified on the chromosome. The availability of the
whole-genome sequence will provide future insight into the adhesion and pathogenic
profiles of the S. Enteritidis NCM 61 strain.

Data availability. The whole-genome sequence for Salmonella Enteritidis strain
NCM 61 has been deposited in NCBI under the BioProject accession number
PRJNA492709. The GenBank accession number is CP032851 for the chromosome and
CP032850 for the plasmid. The SRA accession number is SRS3887548.
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