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Abstract

The present study uses stable isotopes of nitrogen and carbon (5'°Nand5'3C) as trophic
indicators for Atlantic bluefin tuna larvae (BFT) (6—10 mm standard length) in the highly con-
trasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic Sea (MED).
These regions are differentiated by their temperature regime and relative productivity, with
the GOM being significantly warmer and more productive. MED BFT larvae showed the high-
est 5'°N signatures, implying an elevated trophic position above the underlying microzoo-
plankton baseline. Ontogenetic dietary shifts were observed in the BFT larvae from the GOM
and MED which indicates early life trophodynamics differences between these spawning
habitats. Significant trophic differences between the GOM and MED larvae were observed in
relation to 8'°N signatures in favour of the MED larvae, which may have important implica-
tions in their growth during their early life stages.These low 5'°N levels in the zooplankton
from the GOM may be an indication of a shifting isotopic baseline in pelagic food webs due to
diatrophic inputs by cyanobacteria. Lack of enrichment for 5'°N in BFT larvae compared to
zooplankton implies an alternative grazing pathway from the traditional food chain of phyto-
plankton—zooplankton—Iarval fish. Results provide insight for a comparative characteriza-
tion of the trophic pathways variability of the two main spawning grounds for BFT larvae.
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Introduction

Atlantic bluefin tuna (Thunnus thynnus) (BFT) has the largest geographical distribution of any
large pelagic fish living in temperate Atlantic waters [1-2]. This species reproduces in two geo-
graphically separate spawning regions: the Gulf of Mexico (GOM) and in the Mediterranean
Sea (MED). Tagging studies have shown that BFT have spawning site fidelity to either the
MED or the GOM ([3-4], supporting a hypothesis of homing behavior to spawning grounds
[5-6]. This spawning segregation led fisheries assessment managers to distinguish between a
western and eastern BFT stock [3], [6]. While spawning in the GOM takes place from April to
June, spawning in the MED occurs from June to August [6-9].

Spawning grounds in the GOM and the MED show particular bio-physical and climatic
characteristics [9-13]. The main oceanographic driving force in the GOM is the Loop Current,
which flows from the Yucatan Straits into the eastern GOM, originating a strong anticyclonic
flow. Meanders and frontal eddies associated with the Loop Current create areas of positive
and negative vorticity that generate retention and enhanced production areas [14], influencing
BFT spawning [15-16]. The western GOM is indirectly influenced by the Loop Current
through mesoscale anticyclonic and cyclonic eddies, which detach and are driven westward
from the Loop Current [17]. Cyclonic eddies may have enhanced primary and secondary pro-
duction compared to surrounding oligotrophic waters [18-22]. The GOM can thus essentially
be divided into two regions on the basis of oceanographic features: eastern (E-GOM) and west-
ern (W-GOM). Adult BFT in the GOM are found preferentially in the shelf break region of the
western GOM, in areas with surface temperatures ranging from 24-27°C and relatively low
chlorophyll (<0.16 mg m>)[9]. Similarly, BFT larval abundance is higher in the western part
of the GOM [23], [10].

The Balearic Sea is amongst the most important BFT spawning areas in the MED. The
spawning grounds are strongly linked to the hydrographic features that characterize the Bale-
aric Sea [11], [12], [24]. The area is under the influence of incoming Atlantic surface waters
encountering resident surface water masses, which results in a complex hydrography charac-
terized by frontal structures and associated mesoscales features, such as anticyclonic and
cyclonic gyres [25-27]. BFT spawning in the area appears to be associated with a surface tem-
perature range of ~ 21.5-26.5°C [12], [28].

When comparing the GOM and Balearic Sea spawning habitats, some common features
stand out. Both are characterized by warm temperature regimes (21.5-28°C) in open sea
regions, where chlorophyll production is low and where a series of mesoscale hydrographic fea-
tures, such as frontal systems and eddy formation, occur. These mesoscale structures may pro-
vide conditions matching the “ocean triad” hypothesis (enrichment, concentration, retention)
[14], [29] and facilitate the concentration of both, food particles and BFT larvae [11]. Thus,
higher BFT larval abundances appear to be linked to anticyclonic gyres or eddies in the Balearic
Sea, south of the island of Menorca [28] and to the boundaries of anticyclonic eddies in the
GOM [30].

Although several previous studies have described the distributions and environmental asso-
ciations of BFT larvae, very little is known regarding their ecology, and the primary processes
influencing larval survival in oligotrophic spawning grounds. Previous trophic studies on lar-
vae of apex predators, including BFT and other scombrids, have mainly relied on stomach con-
tent analysis, which only records the recently ingested prey [31]. The only study on stomach
content analysis of BFT larvae from the MED showed that the main prey items were cladocer-
ans and nauplii [32]. Moreover, unlike other tuna species from this area, such as T. alalunga
and Auxis thazard, BFT larvae did not show a piscivorous diet. Other tuna larvae, such as
Auxis spp., showed a preference for appendicularians [33-34]. These organisms, which
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constitute an essential part of the diet for tuna larvae in the Pacific Ocean, form part of the tro-
phic link to the microbial loop [35].

This study aimed at gaining the first known insight into the trophodynamics of early life
stages of BFT through a comparative spawning ecosystem approach using stable isotope analy-
sis (SIA). The comparative trophic ecology of GOM and MED BFT larvae was assessed using
SIA of larvae in relation to baseline feeding levels defined by the micro and the mesozooplank-
ton size fractions. Currently, few studies have attempted to use these natural dietary tracers to
examine the early life feeding ecology of pelagic fishes in marine ecosystems [36-39].

Trophic flow is analyzed using the heavy isotope of nitrogen, '°N. This tracer is enriched
through successive trophic levels, thereby providing information on the trophic position of
organisms ([40-42]. In addition, SIA can trace sources of nitrogen and N2 inputs, because
atmospheric nitrogen is relatively depleted in heavy (*°N) isotopes compared with marine
nitrate [43]. Assimilation of this light N, by diazotrophs produces organic matter with a char-
acteristic isotopic signature that can be traced throughout the food web. Nitrogen isotopes in
seston reflect the uptake of atmospheric N, by cyanobacteria (e.g. [44]), while those in zoo-
plankton show the assimilation of organic matter initially produced by diazotrophs [45].

On the other hand, the heavy isotope of carbon (*3*C) can be used for determining the
energy sources of dietary carbon, since it varies significantly among primary producers which
have different photosynthetic pathways. In contrast to '°N, it does not vary substantially with
trophic transfers [41], [42], [46]. The SIA approach using >N and "°C thus provides a more
integrated view of trophic dynamics than stomach content analysis [47], as it analyzes species
trophic interactions with assimilated food rather than ingested food [48-49].

This STA study examines the early life trophodynamics of BFT by comparings'’C and 8'°N
tracers as indicators of the trophic relationships between BFT larvae originating from different
spawning grounds (GOM and MED). The possible dietary shifts during larval development
and the differences observed in the nitrogen cycle of each BFT spawning region are discussed.

Material and Methods
Field collection of BFT larvae and planktonic sampling

BFT larvae were collected in the two main reproductive areas for this species: the GOM and
MED (Fig 1A). A total of 208 stations were sampled onboard NOAA’s R/V Gordon Gunter, of
which 127 were completed in the GOM, during spring 2012, from April 24 to May 28, as part
of an annual larval survey carried out by the National Marine Fisheries Service Southeast Area
Monitoring and Assessment Program (SEAMAP) (Fig 1B). The MED BFT larvae were sampled
from 124 systematic stations during summer 2013 (Junel9 to July 13) in the Balearic Sea, West-
ern Mediterranean; (Fig 1C) onboard the R/V SOCIB. (See S1 Table for station’s geographical
coordinates) Fish larvae were sampled using similar methodologies in both study areas. That is
standard double oblique subsurface hauls using a 505um mesh net attached to a standard 1 x 2
meter neuston frame in the GOM and a squared-mouth Bongo frame of 0.9 meter in the MED,
fitted also with 505um mesh size net. The nets were towed in an undulating manner through
the upper 10-20 m of the water column for ten minutes per tow [39], [50]. General Oceanics
2030 flowmeters were placed at the center of the net’s mouth to calculate the water volume fil-
tered. The research presented in this manuscript involved no endangered or protected species.
No special permission was required for field sampling in the locations of the off shore study
areas. Fish larvae included in the plankton samples are dead upon retrieval of the net No spe-
cific approval for this vertebrate scientific activity is required since ichthyoplankton sampling
involved collecting deceased fish larvae.
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Fig 1. Location of the study areas. (A) Gulf of Mexico (GOM) and Balearic Sea (MED). (B) Eastern
(E-GOM) and Western (W-GOM) and (C) MED bluefin tuna study area showing the oceanographic-
planktonic stations sampling distribution. Bathymetric image generated from ETOPO1 database [51].

doi:10.1371/journal.pone.0133406.g001

Larvae were sorted from the plankton samples immediately after retrieval of the net and
preserved frozen at -200°C onboard. A total of 119 BFT larvae were sorted onboard from the
E-GOM, 109 from the W-GOM and 853 from the MED. In order to avoid maternally transmit-
ted isotopes effects on preflexion BFT larvae [52], preflexion stages were excluded from the
comparative trophic ecology analysis and only a similar size range of 6-10mm postflexion BFT
larvae have been used in this study (Fig 2). From all sorted larvae, 49 from the E-GOM, 31
from W-GOM and 30 from the MED were respectively selected for stable isotope analysis as
described in [39].

A 20 cm diameter Bongo net was geared above the neuston net to sample different zoo-
plankton fractions by employing 55 and 200 um mesh nets, each one equipped with General
Oceanics flowmeters. Mesozooplankton (>200 um) samples were divided into two aliquots
using a Folsom plankton sample splitter. One sub-sample was preserved in 90% ethanol, and
the other frozen for SIA. Samples from the 55 um mesh nets were sieved on board to separate
the microzooplankton (55 to 200 pm) fraction. These samples were also stored frozen at -20°C.
Both microzooplankton and mesozooplankton samples were weighed to the nearest 1 ug on an

Bl E-GOM - n = 49
] W-GOM: n = 31

18 '] MED: n = 40

Y Y
N L

No of obs.
3

[1T11H

55 6.0

6.5

70 7.5 8.0 8.5 90 9.5 100

SL mm

Fig 2. Bluefin tuna larval size frequency distributions. Eastern Gulf of Mexico (E-GOM), Western Gulf of Mexico (W-GOM) and Balearic Sea (MED)
bluefin tuna larval size frequency distributions analyzed for trophic ecology studies.

doi:10.1371/journal.pone.0133406.9002
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electronic microbalance after freeze drying for 48 h at —20°C for biomass estimations. Dry
weight biomass values were standardised to mg m™.

Hydrographic data were collected at each sampling station using a Seabird 19+ CTD profiler
cast to a minimum depth of 200 m for the GOM, or within 10m of the seabed at shallower sta-
tions,and 350 m or at least 5 m above the seabed for the MED.

Isotopic analyses and trophic level calculation

In the laboratory, larvae were thawed to ambient temperature, measured to standard length
(SL), dehydrated in a freeze dryer for 24 h and dry weighed (DW) on a precision microbalance
(0.01mg) for subsequent SIA. Dry weighed larvae (0.08-1.9 mg) were packed in tin vials (0.03
ml) before analysis. Natural abundance of N (8"°N, %N) and C (8"*C, %C) were measured
using an isotope-ratio spectrometer (Thermo-Finnigan Deltaplus; www.thermoscientific.com)
coupled to an elemental analyser (FlashEA1112 Thermo- Finnigan) at the Instrumental Unit
of Analysis of the University of A Corufia. Ratios of '>N:'*N and ">C:">C were expressed in
conventional delta notation (3), relative to the international standard [atmospheric air (N,)
and Pee-Dee Belemnite (PDB), respectively, using acetanilide as standard]. The accuracy of the
measurements for 8'°N and §'°C were 0.17 and 0.15%o, respectively.

Lipid correction was not possible due to the low amount of sample available, which ham-
pered a previous chemical extraction. Nevertheless, a posterior correction of the §'°C values
for lipid content was performed for the different plankton size fractions. The equations pro-
posed by [53] for marine invertebrates were applied to select the best model predicting the
lipid correction. The average of the three equations of the model were applied to estimate a
value of 1.59%o (SD = 0.41) and 0.82%o (SD = 0.26) for micro- and meso-zooplankton, respec-
tively. These values were used for the 8'°C lipid correction in both zooplankton size fractions.
The lipid correction for BFT larvae took into account the parameters of Atlantic BFT muscle
reported by [53]. The mean value for lipid correction was 2.45 %o (SD = 0.44) for the GOM
BFT larvae and 1.38 (SD = 0.38) for MED BFT larvae.

Trophic position (TP) for each BFT larvae was calculated following Eq (1):

- "N

515N micro
(1)

TP — TP + larva _
basal AL)N

8"°Nlarva Were the isotopic signatures for individual BFT larvae and 8"*Nmicro Were the isotopic
values of microzooplankton of the larvae related station. We applied a basal trophic position
(TPpasa) of 2, assuming microzooplankton as primary consumers [49], [54]. The values of the
mean nitrogen isotopic discrimination factor for (A'°N) proposed by [55] for BFT juveniles
were used (1.64 %o).

Statistical analysis

As the common size ranges of larval cohorts, ranging from 6 to 10 mm, showed significant sta-
tistical differences for SL and DW relationships, the analysis of covariance (ANCOVA) tests
with SL as covariate were used. ANCOV A tests were applied to verify differences among
regions for somatic variables (SL, DW), larval stable isotopes (8'°N, 8'3C), N and C content
(%N, %C and C:N) and trophic position. Logarithmic and arcsine transformations of the data
were carried out when necessary to fulfil the conditions of ANOVA. The differences between
groups for 8'°N were analyzed using a 2-way crossed ANOV A with plankton size fractions
(micro- and mesozooplankton and larvae) and regions (E-GOM, W-GOM and MED) as main
factors. Post-hoc comparisons were made using a Fisher’s test. All statistical tests were per-
formed using Statistica7.1 (Statsoft).
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Results
GOM and MED BFT spawning habitat conditions

The hydrographic conditions of each BFT spawning grounds analyzed in this study showed
differences in temperatures and salinities (Table 1). The average surface temperatures in the
E-GOM and W-GOM were significantly higher than in the MED (over 2-3°C). Inversely, sea
surface salinity was higher in the MED. Within the GOM, the W-GOM was warmer than the
E-GOM. Temperature at 100m was also much warmer in the GOM than in the MED, where at
100m depth the water temperature was around 13°C, which are those found throughout the
water column during the non stratified winter period, since the thermocline during the strati-
fied water column period, which lasts from the end of the spring to early autumn only reach
around 50 m depth. The Balearic Sea scenario was characterized by the presence of a density
front resulting from the encounter of water masses with distinct salinity, the saltier resident
Atlantic water and the fresher Atlantic water, flowing directly from the Atlantic Ocean.

Both, micro- and mesozooplankton biomass were higher in the GOM than in the MED
(Fig 3). The greatest differences were found in the mesozooplankton fraction (ANOVA p<
0.001), where the mean mesozooplankton biomass in the GOM was up to 10 times greater
than that recorded in the MED.

The W-GOM microzooplankton fraction showed the lowest 8'°N signatures among
regions (ANOVA, p<0.001)(Fig 4A) whereas the lowest micro 8"2C values were recorded in
the E-GOM region. (ANOVA, p<0.001) (Fig 4B). In contrast, while 8'°N signatures did not
show significant differences in the mesozooplankton fraction among the spawning regions
(ANOVA, p>0.05), 8"°C showed lowest 5'"°C signatures in the MED mesozooplankton
fraction, followed by the E- and W-GOM regions, respectively (ANOVA, p<0.001) (Fig 4A
and 4B).

Isotopic signatures from plankton to BFT larvae

The isotopic signatures of §'°N in the microzooplankton (55-200um) and mesozooplankton
fractions (>200um) showed no statistical differences between the three regions considered; the
E-GOM, the W-GOM and the MED (Fig 4A). However, the 8"°N signatures in BFT larvae
from the three areas showed important differences between them (two-way ANOVA, F4,

Table 1. Basic hydrographic data of the study area.

E-GOM
W-GOM
MED

E-GOM
W-GOM
MED

MeanzStdDv
25.51 £ 0.55
26.65 + 0.59
22.98 + 0.68

MeanzStdDv
19.99 + 0.74
20.90 £ 0.39
13.40+0.15

5 m depth

Temperature °C Salinity %o
Max. Min. MeanzStdDv Max. Min.
26.13 24.63 36.07 £ 0.23 36.34 35.64
27.25 25.95 36.34 £ 0.32 36.63 36.03
23.97 21.76 37.72 £ 0.16 38.12 37.51

100 m depth

Temperature °C Salinity %o
Max. Min. MeanzStdDv Max. Min.
20.95 19.16 36.43 £ 0.15 36.58 36.18
21.31 20.43 36.50 + 0.03 36.52 36.45
13.64 13.14 38.24 £ 0.09 38.39 38.09

Temperature (°C) and salinity (%o)of the selected stations from the Eastern Gulf of Mexico (E-GOM) Western Gulf of Mexico (W-GOM) and Balearic Sea
(MED) sampling regions.

doi:10.1371/journal.pone.0133406.t001
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Fig 3. Biomass of zooplankton size fractions. One-way ANOVA analyses of both (A) microzooplankton [MICRO,55-200 um]- and (B) mesozooplankton
[MESO, >200 um] size fraction biomass (mg-m) in Eastern Gulf of Mexico (E-GOM) (®), Western Gulf of Mexico (W-GOM) (®) and Balearic Sea (MED) (o)
regions. Post-hoc comparisons were made using a Tukey’s test. Different letters indicate a significant difference between ecosystems. Box represents std
error and whisker Std dev respectively.

0

doi:10.1371/journal.pone.0133406.9003
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Gulf of Mexico (E-GOM) (), Western Gulf of Mexico (W-GOM) (®) and Balearic Sea (MED) (o) regions. Regions (E-GOM, W-GOM and MED) and plankton
size fraction (MICRO, MESO and BFTL) were the main factors for the 2-way ANOVA analysis. Post-hoc comparisons were made using a Tukey'’s test.
Different letters indicate significant differences (p< 0.05) among plankton size fractions within same region. * denotes a significant difference (p< 0.05)
between regions for the same plankton size fraction.

doi:10.1371/journal.pone.0133406.g004

178 = 11.1; p <0.001). The MED BFT larvae showed the greatest trophic enrichment of 5'°N
in comparison to micro and mesozooplankton, while both the E- and W-GOM BFT larvae
showed similar 8'°N signatures to that of the zooplankton size fractions.

The §"°C signature of the microzooplanktonin the E-GOM was significantly lower than in
the W-GOM and MED (Fig 4B), whereas for the mesozooplankton size fraction, the MED
showed significantly lower '°C signatures than the E- and W-GOM. Similarly, the MED BFT
larvae had significantly lower §'°C ratios than the GOM BET larvae.

BFT larval morphometrics and C:N ratio

The BFT larvae used for this study represented a selected fraction of the larvae collected at
positive BFT stations of both MED and GOM surveys. The larval samples originated from 24,
8 and 4 positive stations for the MED, E-GOM and W-GOM, respectively.

While no differences were observed between the E-GOM and the W-GOM BFT larval SL vs
DW relationship, larvae from the MED and both GOM regions showed significant differences
(Fig 5). The MED BFT larvae had a higher DW by SL (ANCOVA, F, ;6 =125.5; p< 0.001)
than either E-GOM or W-GOM larvae (ANCOVA, F, 116 =130.9; p< 0.001).

24 | YO _E-GOM: P <0.001;r=0.77; y = -1.73 + 0.29*x ’
O W-GOM:- p<0001;r=084;y=-186 + 0.31*x ’
22 "OMED: P<0001,r=093;y=-253+047x !

20
187
16
14
12
10
0.8
0.6
041
02
00

DW (mg)

5.5 60 6.5

70 75 80 8.5 90 95 100

SL (mm)

Fig 5. Dry weight-standard length BFTL relationships. Bluefin tuna larval dry weight (DW) vs. standard length (SL) relationships for Eastern Gulf of
Mexico (E-GOM) (®), Western Gulf of Mexico (W-GOM) (®) and Balearic Sea (MED) (o) regions larval cohorts.

doi:10.1371/journal.pone.0133406.9005
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Fig 6. Nitrogen and carbon stable isotope scatterplot in bluefin tuna larvae. Relationship between 5'3C and 5'°N (%.) in bluefin tuna larvae in Eastern
Gulf of Mexico (E-GOM) (®), Western Gulf of Mexico (W-GOM) (®) and Balearic Sea (MED) (o) regions. The ellipses represent the prediction interval with

0.95 coefficient.

doi:10.1371/journal.pone.0133406.9006

Higher C:N ratios were observed in GOM BFT larvae in comparison to the MED larvae
(ANOVA, F, ;5 =182.6; p< 0.001), while no statistical differences were observed between the
E-GOM and W-GOM BFT larvae. Consequently, the 8'°C lipid correction model showed sig-
nificant differences between the GOM and MED BFT larvae (ANOVA F, ¢, = 58.8, p< 0.001)

BFT larvae trophic relationship

The 8"°N vs §"°C relationships of BFT larvae from the three studied spawning grounds showed
clearly segregated 5'°N signatures (Fig 6). On the other hand, the 8'°C values were more simi-
lar among regions, with the W-GOM slightly more enriched than the E-GOM.

No significant trends in 8'°N larval signatures were observed in association withSL
(Fig 7A). The highest 8'°N values corresponded to the BFT larvae from the MED, followed
by the E-GOM and W-GOM larvae. The signatures of ' °C of MED BFT were significantly
lower than the GOM BFT larvae. However, the §'°C values of the MED BFT larvae showed a
significant linear increase with SL (r = 0.49; p < 0.05; §"°C = -20.523 + 0.156-SL), while alterna-
tively, these showed significant linear decrease in the E- and W-GOM BFT larvae (r = -0.44;
p < 0.05; 8"°C = -17.161-0.234-SL and r = -0.40; p < 0.05; 8"°C = -17.766-0.129-SL, respec-
tively) (Fig 7B).

The estimated Trophic Position (TP) of BFT larvae was significantly higher in the MED
(3.00 £ 0.06) than in both the E-GOM (2.31 + 0.06) and W-GOM (2.20 + 0.07) (ANCOVA, F2,
112 = 39.8; p <0.001).
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doi:10.1371/journal.pone.0133406.9008

The relationship between 5'°N and §'°C in the mesozooplankton and BFT larvae together
with the baselines levels are shown in Fig 8. In the MED region, BFT larvae showed the highest
8'°N mean, located above the mesozooplankton fraction values and above the microzooplank-
ton fraction signature in that order. In contrast, in the GOM region, the mean §'°N of BFT lar-
vae from the E-GOM are in the same level as the mesozooplancton fraction values, while the
mean 8'°N of BFT larvae from the W-GOM are within the microzooplankton level. Maximum
mean values of 8'°C were found in the lower levels of the size-fractionated groups in the MED,
whereas the lowest 8'°C values belonged to the MED mesozooplankton biomass fraction

(Fig 8).

Discussion
BFT Spawning scenarios

Though much progress has been made in the past several years in the knowledge of BFT tuna
populations, studies have mainly been focused on defining stock identity and structure through
genetics, tagging studies[56], [57] and stable isotope markers in otoliths (5'°C, §'°0) [58].
However, in regard to the early life history of BFT, knowledge has only increased on BFT
spawning habitat preferences and on climatic effects on larval growth and condition [59], [10],
[11], [60], [13].
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The GOM and the MED spawning regions have kinetic energy being supplied by mesoscale
structures that cause eddy and frontal formations [28], [9], [10], [60], [14]. Both regions are
also characterized by markedly oligotrophic waters, although surface chlorophyll and overall
productivity is higher in the offshore GOM compared to the MED [28], [12], [60]. This strategy
of spawning in nutrient-poor waters could be developed to overcome predation pressure on
larvae[61], [62], [14]. Secondary productivity also appeared to be higher in the GOM than in
the MED, with higher mesozooplankton biomass. However, no significant differences were
observed in the microzooplankton biomass.

Stable isotope values reported in this study for micro- and meso-zooplankton are in the
same ranges as those previously reported for both, the GOM and MED regions [36], [63], [64],
[65], [39], [66]. However, despite having similar microzooplankton biomasses, 8'°N microzoo-
plankton signatures from the W-GOM were significantly lower than in the E-GOM and MED
regions. These rather depleted 5'°N values could be the outcome of diazotrophic N fixation
from atmospheric sources. Cyanobacteria such as Trichodesmium spp fix atmospheric nitrogen
(N,) at high rates and thereby contribute to new production in nutrient depleted waters [67].
Trichodesmium is abundant in oceanic stratified warm waters of subtropical regions [68], [69].
This genus is commonly observed, although with highly variable abundances, in the Gulf of
Mexico [70], [71], [72].

Nitrogen limitation and the remineralisation of organic matter in microbial food webs may
be responsible for the lower §'°N enrichment of the plankton size-classes. Rapid consumption
of substrates would prevent the discrimination of light versus heavy nitrogen isotopes and the
composition of prey and predator would converge [44]. [73] Conclude that N* fixation by Tri-
chodesmium is quantitatively significant in the eastern GOM, whereas in the western GOM
over Campeche Canyon, high Trichodesmium spp. occurrence appears related to geostrophic
front associated to cyclonic and anticyclonic circulation observed below the thermocline [74].

The lowest values for microzooplankton 8'>C were observed in the E-GOM region. The
8"°C signatures of consumers are determined by the §'°C values of primary producers. Ele-
vated §"°C values might reflect a carbon source derived from benthic primary producers in
addition to phytoplankton [75], thus a carbon with more coastal or inshore origin source [76],
[771, [39].

BFT larval morphometrics

BFT rearing experiment showed that maternal stable isotope signatures are transmitted to the
eggs, and progressively to the early larvae of BFT [52]. This maternal signature was discernible
until larvae attained postflexion stages. Therefore, this study only considered postflexion stages
of BFT larvae, when these are fully capable of preying on a wide range of planktonic organisms,
and hence avoiding the effect of maternally transmitted stable isotope signatures.

BFT larvae from the GOM showed significantly lower DW in relation to SL than the MED.
This implies region-specific differences in larval growth or condition patterns. Surface temper-
atures in the GOM were higher than in the MED, suggesting that in the presence of sufficient
food BFT larvae in the GOM may grow faster [59].

Moreover, since the total amount of C and N are a consequence of protein synthesis and
lipid/fatty acids, C:N ratios can be used to assess the nutritional status [78], [79], [80], [81]and
as a proxy for lipid content [82], [83], [84]. The significantly higher C:N ratios of the GOM
BFT larvae with respect to the MED larvae seem to indicate differentiated larval growth strate-
gies which may represent the species’ adaptation to the environmental conditions of each
spawning area.
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BFT larval trophodynamics

In this comparative study, MED BFT larvae had significantly greater 5'°N values in compari-
son to the GOM larvae. Within the GOM, E-GOM larvae had higher §'°N values than the
W-GOM.This was likely due to differences in the characteristics of water masses among
regions, as was shown by a smaller scale SIA study of larval bullet tuna in the Balearic Sea [39].

BFT larvae from the GOM also did not show nitrogen enrichment compared to the micro
and mesozooplankton. Rather, 8'°N signatures for larval BFT from the GOM showed similar
trophic level to the zooplankton. This result does not seem to reflect the traditional grazing
food chain of phytoplankton-> micro- and mesozooplankton-> fish larvae. However, the
average isotopic signatures for 8'°N of the E-GOM BFT larvae fall within the range of some of
the larval and juvenile apex predator species analyzedby [63], such as swordfish, Xiphias gla-
dius and the dolphin fishes, Coryphaena hippurus and C. equiselis, suggesting that this pattern
may be characteristic of the GOM region.

The low nitrogen signature of larvae in the GOM could be reflecting the particular prey
items and nutrient sources on which larvae are feeding, and where those prey items are in the
food chain. It is possible that alternative grazing pathways may be occurring, as a result of the
assimilation of N, fixation by the cyanobacterium Trichodesmium sp. in the GOM food web.
[64] Hypothesized that organisms collected from areas where Trichodesmium is abundant will
retain significantly depleted 8'°N values compared to those in areas where concentrations of
this cyanobacterium are low, as a result of diazotrophic inputs by Trichodesmium.

In this study, isotope signatures were determined for the whole micro- and mesozooplank-
ton populations. However, 8'° N signatures of individual zooplankton taxa can range widely.
Selective feeding by larvae could therefore result in different 8'° N signatures than if larvae
were feeding indiscriminately. [34] found that prior to piscivory, Thunnus spp. larvae collected
in the Straits of Florida had a mixed diet of crustaceans and appendicularians. Consumption of
appendicularians by Thunnus spp. increased with larval length to a maximum when nearly
80% of the larvae 7-11 mm body length had appendicularians in their guts, suggesting a prefer-
ential behavior for consuming this gelatinous zooplankton despite the availability of several
types of prey. Thunnus spp. may rely on appendicularians as a nutritional “place holder” in
an oligotrophic habitat as they try to manage energy demands of fast growth and warm tem-
peratures [34]. Appendicularians are rather ubiquitous in warm oligotrophic regions, and
often numerically dominate mesozooplankton assemblages [85]. They filter and ingest small
particles using a mucous, external filtering device with small pores, which favors feeding on
nanoand picoplankton [86]. Since appendicularians in the W Mediterranean are consumed
by BFT larvae [32], and the 815 N levels of this zooplankters are relatively high in this region
with respect to other zooplankton groups (cladocera, copepods or microplankton) [65], the
higher 8'> N signature in larval BFT in the MED may therefore result from a diet rich in
appendicularians.

Lastly, another explanation for the lower GOM nitrogen isotopic values could be the
decrease of 8'°N with temperature. [87] found in cladocerans (Daphnia magna) and amphi-
pods (Hyalella spp.) consuming identical diets that their body-averaged 8'°N values declined
dramatically with increasing temperatures. The potential causes for the decline included
decreasing nitrogen excretion with increasing growth and reduced nitrogen assimilation effi-
ciencies with increased metabolism. A nitrogen trophic fractionation decrease with increased
temperature in Dicentrarchus labraxhas been reported [88], explaining that temperature accel-
erates most physiological processes [89]and thus higher growth rates are achieved. Higher
growth rates lead to reduced excretion and, therefore, increased retention of the lighter isotope
is expected. This would result in an inverse relationship between §'°N and growth rate.
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Ontogenic feeding shifts

Protistan consumers were not enriched in §'°N relative to their prey [90], demonstrating an
isotopic invisibility of protozoan trophic steps in marine food webs. This fact can help to
explain the 8'°N ontogenic dynamics observed in this study, with no relationship between BET
larvae 8'°N values with SL in the three ecosystems studied (E-GOM, W-GOM and MED).
While direct observation on stomach content analysis revealed piscivory of most scombrid lar-
vae studied ([34], [31], the expected increase in 8'°N assumed by piscivory is not shown by our
results, probably because of the absence of isotopic enrichment in the microbial food web
whose role is important in BFT larval trophodynamics. The observations of this study are con-
sistent with previously reported results for BFT larvae [32], [91], [92], although contrary to
hypotheses that BFT larvae overcome the constraints of developing in particularly unproduc-
tive waters by relying on cannibalism [29], [93].

The 5"°C signatures of BFT larvae were distributed over a rather narrow range of values.
Differences were mainly observed in the smaller larvae from the MED region, which showed
significantly lower §'°C values. While MED larvae showed an increasing trend with size of
8'°C signatures, the GOM larvae showed a decrease with size, suggesting changes in the carbon
sources from neritic to oceanic and vice-versa[37], [62].

Comparative trophic position

Characterizing the §'°N values at the base of marine food webs is troublesome because primary
producers have short life spans that respond quickly to fluctuations in biogeochemical and
physical forces, and concurrently can be difficult to isolate from other organic suspended par-
ticulate material. An alternative approach is to use a primary consumer (e.g. zooplankton) as
the isotopic reference, i.e. a proxy for the base of the food web, representing the trophic posi-
tion 2 or slightly higher (e.g. [42]). Primary consumers integrate the phytoplankton isotopic
signal over a longer term, reducing the uncertainty in trophic position estimation of consumers
located higher in the food web [94], [95], [42]. The use of the microzooplankton baseline for
estimating the TP of each BFT larval group seemed reasonable for these regions comparisons
because this zooplankton size fraction comprises most of the organisms described in larval
tuna diets, such as nauplius stages, copepodites, cladocerans and appendicularians [96], [32],
[33], [34]. The highest trophic enrichment and therefore TP among the three regions corre-
sponded to the MED BFT, implying a greater trophic specialization and a greater trophic niche
of these larvae ([97], [98] that can result in a major nitrogen efficiency through the food webs
[99]. This hypothesis is in accordance with the observation that more productive ecosystems
show lower relative trophic levels [100], [101]. Note that the primary consumers base line
(microzooplankton) are identical for the MED and E-GOM and significantly higher than the
W-GOM (Fig 8).

Conclusions

This comparative trophic study is based on the N and C stable isotopes of BFT larvae from the
main GOM and MED BFT spawning grounds. The environmental scenarios in which these lar-
vae develop showed significant differences in temperature, and in nutrient inputs. The GOM
spawning area was warmer (around 3-4°C) in comparison to the MED waters. Such tempera-
ture differences can have important consequences for the metabolic rates of BFT larvae, and
consequently on the larval growth patterns. Although both regions are typically oligotrophic,
the GOM waters, in general, were more productive, particularly in terms of mesozooplankton
biomass.
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With regards to the stable isotope signatures, the main difference observed was the low
8" N of the micro- and mesozooplankton in the W-GOM, which resulted inlowd"°N values of
BFT larvae in this region. This low trophic positioning of the GOM BFT larvae suggests that
they are not part of the traditional food chain from micro- and mesozooplankton to larvae.
Unlike the GOM, the MED BFT larvae showed the highest 5'°N and TP values, well above the
underlying microzooplankton baseline. The depleted §'°N microzooplankton and larval signa-
tures of the W-GOM may be explained by the rather abundant protists responsible for the fixa-
tion of atmospheric nitrogen, bringing new N in the lower levels of the food web and thereby,
decreasing the amount of §'°N. BFT larvae from the GOM and MED showed opposed ontoge-
netic diet shifts with growth, with a significant linear increase in8!>C in MED larvae with SL,
and a linear decrease in GOM larvae.

These results suggest that the food webs and consequent larval ecology among the two
spawning sites is distinct. This has implications for the effects of environmental variability and
change on larval survival and recruitment among the two stocks, and on the contribution of
each stock to overall population recruitment. Continuing research is crucial for understanding
larval growth strategies and condition between the two spawning sites, their competition for
feeding resources and their exposure to larvae of co-occurring apex predator species, all of
which could influence larval survival and recruitment.
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