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Successful behavioral inhibition involves both proactive and reactive inhibition, allowing
people to prepare for restraining actions, and cancel their actions if the response
becomes inappropriate. In the present study, we utilized the stop-signal paradigm to
examine whole-brain contrasts and functional connectivity for proactive and reactive
inhibition. The results of our functional magnetic resonance imaging (fMRI) data analysis
show that the inferior frontal gyrus (IFG), the supplementary motor area (SMA), the
subthalamic nucleus (STN), and the primary motor cortex (M1) were activated by both
proactive and reactive inhibition. We then created 70 dynamic causal models (DCMs)
representing the alternative hypotheses of modulatory effects from proactive and reactive
inhibition in the IFG-SMA-STN-M1 network. Bayesian model selection (BMS) showed
that causal connectivity from the IFG to the SMA was modulated by both proactive and
reactive inhibition. To further investigate the possible brain circuits involved in behavioral
control, including proactive inhibitory processes, we compared 13 DCMs representing
the alternative hypotheses of proactive modulation in the dorsolateral prefrontal cortex
(DLPFC)-caudate-IFG-SMA neural circuits. BMS revealed that the effective connectivity
from the caudate to the IFG is modulated only in the proactive inhibition condition
but not in the reactive inhibition. Together, our results demonstrate how fronto-basal
ganglia pathways are commonly involved in proactive and reactive inhibitory control,
with a “longer” pathway (DLPFC-caudate-IFG-SMA-STN-M1) playing a modulatory role
in proactive inhibitory control, and a “shorter” pathway (IFG-SMA-STN-M1) involved in
reactive inhibition. These results provide causal evidence for the roles of indirect and
hyperdirect pathways in mediating proactive and reactive inhibitory control.

Keywords: proactive inhibition, reactive inhibition, hyperdirect pathway, indirect pathway, dynamic causal models,
inferior frontal gyrus, caudate

Abbreviations: STN, Subthalamic nucleus; IFG, Inferior frontal gyrus; M1, Primary motor cortex; SMA, Supplementary
motor area; PFC, Prefrontal cortex; RIFC, Right inferior frontal cortex; DLPFC, Dorsolateral prefrontal cortex; DCM,
Dynamic causal model; BMS, Bayesian model selection; SSRT, Stop-signal reaction time; RT, Reaction time; MT, Movement
time; fMRI, Functional magnetic resonance imaging; EEG, electroencephalography; PMA, Premotor area; BA, Brodmann’s
area; PMd, Dorsal premotor cortex; DBS, Deep brain stimulation; GPi, Globus pallidus internalis; GPe, Globus pallidus
externalis; ROI, Region of interest; EPI, Echo-planar imaging; TR, Repetition time; TE, Echo time; MNI, Montreal
Neurological Institute; AAL, Anatomical Automatic Labeling; FDR, False discovery rate; FFX, Fixed-effect analysis.
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INTRODUCTION

The ability to voluntarily suppress actions during inappropriate
or even dangerous situations is crucial for human behavior.
Previous studies have revealed that successful behavioral control
involves both proactive and reactive inhibition (Braver et al.,
2007; Jaffard et al., 2007; Aron, 2011; Bari and Robbins, 2013).
The former is initiated by prospective cues and involved in
response selection (Verbruggen and Logan, 2009; Chikazoe
et al., 2009b), while the latter is cue-triggered and occurs
when a stop-signal is detected (Eagle et al., 2008; Chambers
et al., 2009; Aron et al., 2014). The interactions between
proactive and reactive inhibition lead to flexible behavior in a
changing environment. Some recent studies have suggested that
proactive and reactive inhibition involve shared neural systems
(Verbruggen and Logan, 2008; Cunillera et al., 2014; Cai et al.,
2016). A model consisting of a multi-step decision process
proposed large overlapping in both the frontal and parietal cortex
as well as in subcortical brain areas and postulates that the
specific interactions between these areas result in withholding or
canceling the planned response (Mirabella, 2014). Furthermore,
common and unique networks that are centered on frontal
networks were proposed to be associated with both proactive and
reactive inhibition, via a space-independent component analysis
(van Belle et al., 2014).

Several paradigms are utilized in behavioral inhibition
research. Stop-signal tasks is widely applied in the investigation
of the neural mechanisms associated with response inhibition
(Logan and Cowan, 1984; Logan et al., 1997). In the classical
stop-signal task, participants are required to respond as quickly
as possible following the appearance of the ‘‘go’’ stimuli, to
withhold their responses in the trials containing ‘‘stop’’ signals,
and to change their planned responses in ‘‘switch’’ trials. The
stop-signal reaction time (SSRT) is primarily used to estimate the
effect of reactive inhibition (Bunge et al., 2002; Band et al., 2003).
A modified go/no-go paradigm that incorporates additional
cues is usually applied to investigate proactive inhibition. The
additional cues in the modified go/no-go task indicate the
possibility of upcoming stop-signals, while the SSRT is modified
by considering the effect of uncertainty for ‘‘go’’ cues. Recently,
a paradigm comparing the reaction times (RTs) and movement
times (MTs) of reaching arm movements in different contexts
was applied to the investigation of deficits in proactive inhibition
in healthy subjects, in Parkinson’s patients, as well as in Tourette
and obsessive-compulsive patients (Mirabella et al., 2008, 2013,
2017; Mancini et al., 2018, 2019).

Functional magnetic resonance imaging (fMRI) techniques
can be used to identify regions in which increased metabolic
activity is induced by reactive inhibition (i.e., no-go > go
contrast). The prefrontal cortex (PFC), particularly the
inferior frontal gyrus (IFG) and the presupplementary
motor area (preSMA)/supplementary motor area (SMA),
are critical to reactive inhibition (Simmonds et al., 2008;
Chikazoe, 2010; Jahfari et al., 2010; Wardak, 2011; Cunillera
et al., 2014; Verbruggen et al., 2014; Rae et al., 2015). An
electrocorticographic study of stop-event related potentials
has investigated the fronto-temporal lobes of patients with

pharmacoresistant epilepsy and found the causal involvement
of the premotor area (PMA), the primary cortex (M1), and
Brodmann’s area (BA) 9. The study showed that M1 is the
destination in the frontal-basal ganglia-thalamic network in
a cognitive control task (Mattia et al., 2012). Furthermore, a
substantial proportion (30%) of monkey dorsal premotor cortex
(PMd) cells produced signals predicting forthcoming actions in
a reaching version of the stop-signal task, which suggests that
both the M1 and PMd participated in the inhibitory control task
(Coxon et al., 2006; Mirabella et al., 2011; Mattia et al., 2013).
These areas combine with the basal ganglia to form a network
that inhibits the activation of the M1 during reactive inhibition.

In contrast, the metabolic activisty associated with proactive
inhibition, which can occur throughout the task, cannot be
isolated based on simple neuroimaging contrasts. Previous
research has indicated that parts of the reactive inhibition
network including the IFG and subthalamic nucleus (STN) are
also involved in proactive inhibition (Aron et al., 2014). The
application of deep brain stimulation (DBS) to the bilateral STN
of patients with Parkinson’s led to shorter SSRT in a stop signal
task (van denWildenberg et al., 2006; Frank et al., 2007;Mirabella
et al., 2012a,b), and a similar improvement in appropriate motor
strategies that represent proactive inhibitory ability was also
found in bilateral DBS of the STN of patients with Parkinson’s
(Mirabella et al., 2013). However, no improvement was found
with unilateral DBS (Mancini et al., 2019), which is opposed to
the hypothesis that the right STN is critical to response inhibition
(Aron and Poldrack, 2006; Aron et al., 2014).

The basal ganglia circuits are centrally involved in behavioral
control via direct (cortico-striato-nigral) and indirect (cortico-
striato-pallido-subthalamonigral) pathways (Alexander et al.,
1986; Albin et al., 1989; DeLong, 1990; Aron et al., 2007a,b).
Both pathways receive cortical input, with a dissociation between
facilitation and suppression of the initiated activation. The
former is hypothesized to activate the motor cortex and the latter
is considered to suppress movement. For the direct pathway, the
cortical activity is transmitted to the striatum, then the activated
striatum inhibits the activity of the globus pallidus internalis
(GPi), which leads to the disinhibition of the thalamus and
then to the generation of movement. In contrast, the activated
striatum inhibits the globus pallidus externalis (GPe) via the
indirect pathway, which inhibits the activity of the thalamus
and leads to movement inhibition. Another pathway, the hyper-
direct pathway, which is also involved in motion information
processing (Nambu et al., 2000, 2002; Baker et al., 2010; Dunovan
et al., 2015), bypasses the striatum and connects the cortex
and STN directly, and then activates the GPi to inhibit the
activity of the thalamus in a faster way. Recently, a study related
to cortical-basal ganglia networks provided a new hypothesis
of action suppression: the action is paused via a subthalamic-
nigral pathway in the preparation step and canceled through
arkypallidal GABAergic projections (Mallet et al., 2016).

We hypothesized that there are overlapping regions in the
neural systems involved in proactive and reactive inhibitory
processes and that the effective connectivities between the
relevant brain regions are modulated differently in those
processes. In this study, we used a special neuroimaging contrast

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 June 2019 | Volume 13 | Article 124

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Zhang and Iwaki Proactive vs. Reactive Inhibition

to isolate fMRI activity associated with proactive inhibition via
the stop-signal paradigm, in order to identify the cortical and
subcortical areas involved in proactive and reactive inhibition.
We then incorporated the identified regions of interest (ROIs)
into dynamic causal models (DCMs) of proactive and reactive
inhibition. Bayesian model selection (BMS) was applied to
investigate the effective connections associated with each type
of inhibition.

MATERIALS AND METHODS

Participants
Twenty healthy right-handed adults (age, mean ± SD,
21.75 ± 2.57; range: 19–31 years; 11 males), excluding
10 participants with excessive head movement in the MRI
scanner defined as translational or rotational displacement
greater than 2.5 mm in any direction, performed a stop-signal
task during fMRI scanning. All participants were recruited
from the University of Tsukuba as paid volunteers, had
normal or corrected-to-normal vision and provided written
informed consent prior to the experiment. No participant was
taking medicine during the experiment. The present study
was approved by the Institutional Review Board (IRB) of
the National Institute of Advanced Industrial Science and
Technology (approval number: 2014-481) and all participants
gave informed consent prior to participation.

Stop-Signal Task
In the present study, we divided the ‘‘go,’’ ‘‘stop,’’ and
‘‘switch’’ trials into several substages to isolate proactive and
reactive inhibition (Figure 1). Unlike previous studies regarding

proactive inhibition, we did not use additional cues to indicate
‘‘certain go’’ trials. All trials of the present study remained
‘‘uncertain’’ at the initial stage. During each trial, a fixation
cross appeared on a black background for 500 ms, then the
point of fixation cross was replaced by the initial character
(‘‘X’’ or ‘‘O’’) for 1,500 ms. Participants were required to
press ‘‘1’’ on the button-box if the stimulus was ‘‘X’’ and
‘‘2’’ if ‘‘O’’ appeared unless the background color change. If
the background color changed to blue, participants need to
switch their response to press ‘‘3.’’ If the background color
change to red, participants were instructed to withhold their
response regardless of the current initial character. The duration
between the appearance of initial character and the change of
background color is 500 ms. Thus, participants were required
to withhold their planned response and wait for any possible
upcoming cue to avoid an incorrect response when the initial
character (‘‘X’’ or ‘‘O’’) appeared. Participants had to totally abort
the responses that were already in progress if the background
changed to red or switch their response to press ‘‘3’’ if the
background changed to blue. The proactive component was
thus present in all trials (‘‘go,’’ ‘‘stop,’’ and ‘‘switch’’ trials), and
the reactive component was present in successful ‘‘stop’’ and
‘‘switch’’ trials.

Each run consisted of 40 ‘‘go’’ trials, 10 ‘‘stop’’ trials, and 10
‘‘switch’’ trials. An equal distribution of the characters ‘‘X’’ and
‘‘O’’ was ensured across trials, in random order. Each participant
needs to complete three runs.

We applied paired t-test on mean RTs for ‘‘go’’ and ‘‘switch’’
trials to test if there were significant difference between them.
Because the fixed stop-signal delay (SSD) was used in the
current procedure, we estimated SSRT with integration method

FIGURE 1 | The components of the stop-signal task. Participants were required to press “1” or “2” as quickly as possible following the appearance of the stimulus
unless the color of the background changed to red or blue. They were required to withhold response when the background turned red, and to press “3” when the
background turned blue.
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(Logan and Cowan, 1984) by subtracting SSD from the finishing
time that is determined by the distribution of no-signal go RTs.

fMRI Data Acquisition
All fMRI scans were obtained using a 3-Tesla scanner (Ingenia
3T, Philips, Netherlands) at the Department of Information
Technology and Human Factors, AIST (Tsukuba, Japan). Each
participant’s head was fixed using foam padding to reduce head
movement. Single-shot echo-planar imaging (EPI) sequences
were used to acquire functional images. EPI parameters were as
follows: repetition time (TR) = 2,000 ms; echo time (TE) = 35 ms;
flip angle = 90◦, 31 ascending slices, thickness = 3.7 mm.

Data Processing
The SPM12 software toolbox1 and Matlab 2015b were used
for the analysis of fMRI data and for the creation of the
DCMs. All coordinates are reported in standard Montreal
Neurological Institute (MNI) space and were labeled using the
Anatomical Automatic Labeling (AAL) toolbox in SPM12 (Brett
et al., 2002; Tzourio-Mazoyer et al., 2002). Successful ‘‘go’’
trials were regarded as those in which the participant selected
the appropriate button following the waiting period. Successful
‘‘stop’’ and ‘‘switch’’ trials were regarded as those in which the
participant withheld appropriate responses until the subsequent
signals appeared.

We divided the trials into several components (Figure 2).
All trials of the present study remained ‘‘uncertain’’ at the

1http://www.fil.ion.ucl.ac.uk/spm/

initial stage. When the initial character (‘‘X’’ or ‘‘O’’) appeared,
participants were required to withhold their planned responses
and wait for any possible upcoming cue to avoid an incorrect
response. Thus, the proactive inhibitory component appeared at
the beginning of all trials. The action component was involved
when participants figured out the ‘‘go’’ trial and pressed the
corresponding button. For both ‘‘stop’’ and ‘‘switch’’ trials,
participants needed to cancel the planned action that resulted
in reactive inhibitory component. The difference is in ‘‘switch’’
trial, participants needed to press the alternative button, which
led to subsequent action component. Based on the above reasons,
the components in the ‘‘go’’ trials included proactive inhibitory
component and an action component. The ‘‘stop’’ trials were
subdivided into a proactive and a reactive component, and
the ‘‘switch’’ trials consisted of a proactive, a reactive, and an
action component.

Based on this approach, reactive inhibition was analyzed
by comparing the successful ‘‘switch’’ trials to successful ‘‘go’’
trials. We did not apply the classical comparison that used
for race model between successful ‘‘stop’’ trials (proactive
inhibitory component + reactive inhibitory component) and
successful ‘‘go’’ trials (proactive inhibitory component + action
component) because the result cannot be explained by isolated
reactive inhibitory component. Proactive inhibition was isolated
by the conjunction of all successful trials (‘‘go,’’ ‘‘stop,’’
‘‘switch’’). We used a general linear model for first-level event-
related analysis in each participant. Events (successful ‘‘go,’’
successful ‘‘stop,’’ successful ‘‘switch’’) were modeled after

FIGURE 2 | Experimental paradigm used in this study. During each trial, the fixation cross was replaced by the initial character (“X” or “O”) for 1,500 ms. Participants
were required to press “1” on the button-box if the stimulus was “X” and “2” if “O” appeared unless the background color change. If the background color changed
to blue, participants need to switch their response to press “3.” If the background color change to red, participants were instructed to withhold their response
regardless of the current initial character. The duration between the appearance of initial character and the change of background color is 500 ms. Thus, participants
were required to withhold their planned response and wait for any possible upcoming cue to avoid an incorrect response when the initial character (“X” or “O”)
appeared. Participants had to totally abort the responses that were already in progress if the background changed to red or switch their response to press “3” if the
background changed to blue.
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a duration of 0.5 s from trial onset. A second-level SPM
analysis used contrasts from the first level with one-sample
tests to investigate the group-level activation. A peak-level false
discovery rate (FDR) at p < 0.05 was applied to correct for
multiple comparisons.

Dynamic Causal Modeling for Comparing
Proactive and Reactive Modulation
We used DCM12 (Friston et al., 2003) for the analysis of
effective connectivity between the prior selected set of brain
regions. fMRI-based DCM is a deterministic model of neural
dynamics that describes how neural activity and interactions
generate the hemodynamic BOLD response. The effective
connectivity between brain regions or nodes was estimated
by three matrices: the endogenous connectivity between nodes
(A matrix), the modulation effects on the connection during
the special experimental conditions (B matrix), and the driving
inputs that influence the connectivity to other nodes (C matrix).
If there were connections modulated by other regions (nonlinear
connectivity effects), the parameters were modeled as an
additional matrix (D matrix).

We defined MNI coordinates of the ROIs for DCM analysis
that met all of the following criteria: (1) the coordinate of
the spherical ROIs should show significant activations in both
proactive and reactive contrasts with a cluster-based FDR at
p < 0.05 in the second-level SPM analysis; and (2) the regions
have been reported to be involved in behavioral control in
previous research. We constructed 70 DCM models on four
regions: the right IFG (x = 48, y = 16, z = 30), the left SMA
(x = −6, y = −10, z = 50), the STN (x = −10, y = −14, z = −6),
and the M1 (x = −30, y = −12, z = 66).

The set of 70 DCM models was divided into two groups:
a linear and a nonlinear group. Each group was divided into
several sub-groups based on the location of the proactive
modulatory input (IFG to SMA, SMA to IFG, IFG to STN,
SMA to STN) and the connectivity between the IFG and the
SMA (bidirectional, unidirectional, no connection; Figure 3).
Average self-connections were applied to all nodes. The STN was
connected with the IFG and the SMA directly or indirectly.

The nodes, which receive driving input, are the regions
in the model that first experience the neural changes caused
by the manipulations of the experimental conditions. The
modulatory inputs, which represent the specific experimental
factor, realize the modulation by influencing the intrinsic
connections in the network (Penny et al., 2004). Thus,
the experimental conditions we chose as modulatory inputs
should include the specific experimental factor and avoid
the other factors that may drive the network activity in
different modulatory effects. Both experimental conditions, that
is, ‘‘stop’’ and ‘‘switch’’ trials, include the reactive inhibitory
component, and for this reason, we selected all ‘‘go’’ trials
(correct ‘‘go,’’ incorrect ‘‘go’’) as proactivemodulators to separate
proactive from reactive modulation. We considered the frontal
regions (IFG and SMA) as nodes receiving driving inputs
across all models. The modulatory inputs include proactive
modulatory inputs and reactive modulatory inputs. We applied
the modulatory inputs in the fronto-STN connections (IFG

FIGURE 3 | Structure of the DCM families tested for proactive and reactive
inhibition. Red arrows represent the location associated with the proactive
modulatory input. Dotted arrows represent the nonlinear modulation. The
different numbers represent the different locations related to the reactive
modulatory input. DCM, dynamic causal modeling; M1, primary motor cortex;
IFG, inferior frontal gyrus; DLPFC, dorsolateral prefrontal cortex; STN,
subthalamic nucleus; SMA, supplementary motor area.

to SMA, SMA to IFG, IFG to STN, SMA to STN). All
trials (‘‘go,’’ ‘‘stop,’’ ‘‘switch’’) were chosen as driving inputs,
which represent the extrinsic influences on the IFG-SMA-STN-
M1 network. To separate proactive from reactive modulation,
we selected all ‘‘go’’ trials (correct ‘‘go,’’ incorrect ‘‘go’’) as
proactive modulator. The reactive modulator was acquired
by selecting ‘‘stop’’ and ‘‘switch’’ trials in which participants
provided appropriate responses following the appearance of
the signal.

We defined group peak coordinates from the second-level
group analysis of proactive and reactive contrasts, combined with
the AAL atlas implemented in the SPM toolbox. All trials were
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used for extracting the first eigenvariate of the BOLD time series
for STN and M1, and the conjunction contrast of proactive and
reactivemodulators for IFG and SMA. All first eigenvariates were
adjusted for the F-test of effects of interest. To extract the time
series from the ROIs for each participant, we combined the local
maximum close to the group peak and extracted the eigenvariate
from a 5-mm sphere.

RESULTS

Behavioral Data
There were significant differences in mean RTs between ‘‘go’’
trials (mean ± SD, 963 ± 74 ms, range: 836–1092 ms) and
‘‘switch’’ trials (mean ± SD, 1,120± 87 ms, range: 948–1,350 ms;
p< 0.0001). For ‘‘go, ’’ ‘‘stop, ’’ and ‘‘switch’’ trials, mean accuracy
was 0.890 (SD: 0.117) and 0.853 (SD: 0.165), respectively. The
mean SSRT was 454 ms (range: 304–737 ms, SD: 96 ms).

Group-Level Activations
Activity associated with proactive inhibition obtained by the
conjunction of all successful ‘‘go,’’ ‘‘stop’’ and ‘‘switch’’ trials,
was significant in the visual cortex, dorsolateral prefrontal
cortex (DLPFC), caudate, SMA, IFG, STN and M1 of both
hemisphere (Figure 4A; Supplementary Table 1). As for the
reactive inhibition, we found activation in the right IFG, the left
SMA, left M1, as well as bilateral activation of STN (Figure 4B;
Supplementary Table 2). Because the volume of STN is about
240 mm3 in humans that means the activation of STN is only
eight voxels (Hardman et al., 2002; Hamani et al., 2004), we chose
the coordinate of the STN described in Forstmann et al. (2012) as
a reference to confirm the STN activated significantly.

DCM Network Analysis for Comparing
Proactive and Reactive Modulation
We investigated 70 DCMs representing the alternative
hypotheses of modulatory effects from proactive and reactive
inhibition. BMS with fixed-effect analysis (FFX) provided
strong evidence for one model being optimal, above all other
models (Figure 5).

Two parameters were measured in the BMS to compare the
optimal architecture of the models: relative log-evidence and
posterior probability. The former corresponds to the balance
between accuracy and complexity of the model, while the latter
represents the probability that the specific model provides the
best explanation for all participants.

DCM estimates the observed BOLD responses andmodels the
effects of neuro-vascular processes and spectral noise at different
levels. The parameters represent the rate of change in activity in
one region that influences the activity in another region, and the
effective connectivity was thus expressed in Hz.

The average connectivity between two regions represents how
rapidly activity (per second) in one region influences the activity
in another region (Friston et al., 2003; Penny et al., 2004; Almgren
et al., 2018). A positive value represents an excitatory influence
from the source region on another region, while a negative value
represents an inhibitory influence. Likewise, modulatory effects

FIGURE 4 | Activated brain regions associated with (A) proactive inhibition
and (B) reactive inhibition during the stop-signal functional magnetic
resonance imaging (fMRI) experiment. Group-level statistical maps were
calculated (A) as conjunction of all successful “go,” “stop” and “switch” trials
for proactive inhibition and (B) as a contrast between successful “switch”
trials and successful “go” trials for reactive inhibition. The results were
thresholded at peak-level false discovery rate (FDR)-corrected significance of
p < 0.05.

on a region or connection indicate an increase or decrease in
average activity or connectivity.

In this optimal nonlinear model, the right IFG modulates
the connection between the left SMA and the left STN, and
the connection from the IFG to the SMA is modulated by
both proactive (modulation effect = 0.8622 HZ) and reactive
modulatory inputs (modulation effect = 0.8404 HZ). The results
indicate that when people ‘‘prepare to cancel’’ and then ‘‘cancel’’
a planned response successfully, both proactive and reactive
modulation influence on the effective connection from the IFG
to the SMA. The IFG inhibits the activity in the SMA, and the
decreased activity in the SMA influences the subsequent areas via
a causal relationship and then increases the excitatory influence
of the STN on the M1.

DCM Network Analysis for Proactive
Inhibition
To further investigate the possible brain circuits involved in
the implementation of behavioral control including proactive
and reactive inhibitory processes, we added extra regions to
the DCM models for proactive inhibition. The regions of
interests were selected based on the same criteria as the previous
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FIGURE 5 | (A) Log evidence and (B) model posterior probability to compare DCM model families, and (C) the most possible model selected based on Bayesian
model selection (BMS) denoting connectivity coefficients for the comparison between proactive and reactive modulatory inputs. The connections in red represent
increased excitatory connectivity, while blue connections represent decreased inhibitory connectivity. The dotted lines represent the driving inputs.

DCM models, i.e., (1) these regions should show significant
activation in proactive contrasts with a cluster-based FDR at
p < 0.05 in the second-level SPM analysis; and (2) the regions
have been reported to be involved in behavioral control in
previous research. We constructed 13 DCM models including
four ROIs: the right IFG, the DLPFC (x = 44, y = 20, z = 36),
the left SMA, and the caudate (x = −16, y = −30, z = 24). As
previous results showed that the modulatory effects were related
to the connection from the IFG to the SMA, this modulatory
effect should be a direct or indirect effect from other effective
connections that end in the IFG.

We limited our model for proactive inhibition to the four
regions based on the following reasons: (1) the previous studies
suggested the top-down control for proactive inhibitory control
(Jaffard et al., 2007, 2008; Criaud et al., 2012). Based on the
result from the DCM network analysis for comparing proactive
and reactive modulation, it revealed that the modulatory effects
happened on the effective connectivity from IFG to SMA. Thus,
it is reasonable to believe that the proactive modulation would
not firstly act on the downstream connections that causally

follows the effective connection from IFG to SMA; and (2) the
increasing number of nodes in DCM will lead to over much
numbers of free parameters that require exponentially increasing
computational time. Furthermore, the conditional dependencies
among these parameters will also enhance that influence the
reliability of explanation for DCM model (Daunizeau et al.,
2011). Based on these reasons, we think our model with four
regions DLPFC-caudate-IFG-SMA is sufficient to investigate the
proactive modulation.

Since converging evidence indicates that the prefrontal areas
project to the STN, in the DCM analysis of proactive inhibition,
the DLPFC-IFG-SMA-caudate is the minimum and effective set
required to test hypotheses. We have found reactive modulatory
effects on effective connection from IFG to SMA in the
previous step, so there are two possibilities for the ‘‘real’’ neural
underpinning of reactivemodulation: (1) the IFG-SMA is the real
effective connectivity that is modulated by reactive inhibition;
and (2) the real effective connectivity is the other connectivity in
prefrontal-STN network. The modulatory effect was transferred
to the effective connectivity IFG to SMA and observed in the
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FIGURE 6 | Structure of the DCM families tested for proactive inhibition. The
yellow arrows show the direction of loops that represent indirect modulation
from other effective connections that end in the IFG. The different numbers
represent the different locations related to the proactive modulatory input.
DCM, dynamic causal modeling; M1, primary motor cortex; IFG, inferior
frontal gyrus; DLPFC, dorsolateral prefrontal cortex; STN, subthalamic
nucleus; SMA, supplementary motor area.

IFG-SMA-STN-M1 DCM model. Based on the result from
whole brain contrast related to reactive inhibition, there are
no other activations in frontal areas involved in inhibitory
control and prefrontal-STN connections, which means no other
effective connectivity responds to reactive inhibition, so the
IFG-SMA is the real effective connectivity that modulated by
reactive inhibition.

The set of 13 DCM models was divided into three groups
based on whether the DLPFC receives driving inputs (driving
inputs were applied to DLPFC + SMA, IFG + SMA, and
DLPFC + IFG + SMA). The location of proactive modulatory
inputs varied in the bidirectional connections in the DLPFC-
IFG-SMA-caudate network, and locations were chosen
based on the requirement that the indirect modulatory
effects from other effective connections should end in the
IFG. Average self-connections were applied to all nodes.
The interconnectivities between nodes are bidirectional
(Figure 6). We considered the frontal regions (DLPFC and
SMA, IFG and SMA, DLPFC/IFG/SMA) as nodes receiving
driving inputs across all models. The modulatory inputs
are only proactive inputs. We applied modulatory inputs to
the effective connections in the DLPFC-caudate-IFG-SMA
network (IFG-DLPFC, DLPFC-IFG, IFG-SMA, DLPFC-caudate,
caudate-IFG).

We extracted the first eigenvariate of the BOLD time series
from two regions of interests, the DLPFC and the caudate. All
time series were adjusted for the F-test of effects of interest.
To extract the time series from the ROIs for each participant,
we combined the local maximum close to the group peak and
extracted the eigenvariate from a 5-mm sphere.

The results of BMS (FFX) indicated that there was one model
that was superior to all other models (Figure 7). In this model,
the connection from the caudate to the IFG was associated
with the proactive modulation (modulation effect = 0.7851). The
results indicate that when people prepare for a possible upcoming
stop-signal, the caudate increases its excitatory influence on
the IFG, which leads to an inhibitory influence of the IFG
on the SMA.

DISCUSSION

In the present study, we used fMRI data acquired during a
stop-signal paradigm task to identify the cortical and subcortical
areas involved in proactive and reactive inhibitory processes.
To evaluate the modulatory effects of proactive and reactive
inhibition on the effective connections between these areas, we
first conducted a DCM analysis where 70 DCM models were
compared. The results indicate that the increasing activity in
effective connectivity from the left SMA to the left STN was
modulated by the right IFG, and the decreasing activity in
effective connectivity from the right IFG to the left SMA was
modulated by both proactive and reactivemodulatory effects.We
further investigated an alternative hypothesis with 13 additional
DCM models in which the causal connection from/to the right
DLPFC and the left caudate were considered for proactive
inhibition. The results of the additional DCMmodel comparison
show that the increased activity of the effective connection from
the left caudate to the right IFG was modulated by proactive
modulatory control, which resulted in the inhibitory effects in the
connections from the right IFG to the left SMA in the comparison
between proactive and reactive inhibitory control.

The fronto-basal ganglia pathways have been proposed to
support motor control via hyperdirect and indirect pathways.
Previous studies suggested that the right IFG and left SMA are
critical regions in inhibitory control (Aron et al., 2004; Chambers
et al., 2006; Aron et al., 2014). However, it is still difficult to assign
a very specific role to most of these regions during the execution
of complex cognitive functions (Mirabella, 2014; Hampshire,
2015). For example, some studies revealed that the right IFG
acts as a monitor of unexpected stimuli (Corbetta and Shulman,
2002), and others show that it is involved in the suppression of
memories (Benoit and Anderson, 2012).

A significant overlap was reported in the brain systems
underlying proactive and reactive inhibition via modified stop
signal task or extra information about the probability of
the occurrence of stop signals, and showed that the right
IFG, the pre-SMA/SMA, and part of the basal ganglia circuit
(striatum) are involved in both proactive and reactive inhibition
(Chikazoe et al., 2009a; Swann et al., 2012; Aron et al.,
2014). Furthermore, the recent research reveals that the neural
network involved in goal-directed cognitive control is very
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FIGURE 7 | (A) Log evidence and (B) model posterior probability to compare DCM model families, and (C) the most possible model selected based on BMS
denoting connectivity coefficients for the DCMs with proactive modulatory inputs. The connections in red represent increased excitatory connectivity, and blue
connections represent decreased inhibitory connectivity. Red dotted lines represent the driving inputs.

extensive. The multi-step decision process model proposed
that many areas such as the DLPFC, PMd, and M1 are
also involved in goal-directed behavior (Kenner et al., 2010;
Mirabella, 2014). However, previous studies were unable to
determine the interactions that exist between these regions or
to describe how the brain can ‘‘identify’’ the different kinds of
inhibitory control.

We used DCMs to demonstrate which connections in the
common network contribute to proactive and reactive inhibitory
control. The DCMs also provided us with information regarding
the directions and excitatory or inhibitory modulatory effects of
these connections. Our results reveal that the effective connection
from the IFG to the SMA is associated with both proactive
and reactive modulatory effects, which is in line with previous
neurophysiology and neuroimaging evidence showing that the
IFG is connected with the SMA. Our results further show that
in the most likely model, both proactive and reactive inhibition
decreased the excitatory influence from the IFG to the SMA and
inhibited the activity of M1.

The results of our further investigation of proactive inhibition
show that the neural underpinning of proactivemodulation is the
effective connection from the right DLPFC via the left caudate
to the right IFG, while the subsequent effect of transmission
is reflected in the effective connection from the IFG to the
SMA in a common network. The brain thus uses the DLPFC-
caudate-IFG-SMA-STN-M1 pathway to implement proactive
modulation. These results support the prior hypothesis that
basal ganglia circuits are involved in proactive and reactive
inhibition, which suggested that a hyperdirect pathway that
allows for faster behavioral control than the direct and indirect
pathways, by bypassing the striatum, is involved in reactive
inhibition. The indirect pathway is functionally similar to the
hyperdirect pathway but transfers themodulatory effects through
the striatum.

Our present study also provides new evidence for the
functions of the right IFG. Although previous studies have
extensively investigated the role of the right IFG in response
inhibition, findings remain controversial. It remains, for
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example, unclear whether the right IFG is associated with
modulatory inhibition or with the more general detection of
salient or task-relevant cues. Furthermore, the right IFG is
considered to expedite inhibition processes via the pathway from
the pre-SMA/SMA to subcortical regions, based on findings
from neuroimaging and transcranial magnetic stimulation
studies (Aron et al., 2003; Chambers et al., 2006). However,
electrophysiological studies have indicated that activity in the
pre-SMA/SMA can precede activity in the IFG during response
inhibition (Swann et al., 2012). Our results indicate that the
right IFG acts as a driving input during reactive inhibition,
supporting the notion that this region plays a key role in
detecting task-relevant cues. These results, therefore, suggest
that the IFG is related to attentional switching. These results
are consistent with previous findings showing that right-IFG
activity was higher when infrequent stimuli were detected,
indicating that this region does not belong to a unique
network involved in inhibitory control (Hampshire et al., 2010;
Erika-Florence et al., 2014).

Our study furthermore provides evidence for the functions of
the right DLPFC. Comparative studies involving both humans
and non-human primates have concluded that the PFC is a
crucial neural substrate of cognitive control (Servan-Schreiber
et al., 1996; Assad et al., 1998; Cohen et al., 1999; Jahfari et al.,
2012; Smittenaar et al., 2013). Recent studies have also revealed
that the DLPFC plays a central role in the maintenance of goals
and rules for action (Watanabe, 1990, 1992; Asaad et al., 2000).
Additional studies have demonstrated that the DLPFC monitors
environmental cues to develop appropriate response strategies
(Ragozzino, 2007; Hikosaka and Isoda, 2010). These findings are
consistent with our result that the DLPFC acts as a driving input
during proactive inhibition.

Previous tract-tracing studies in monkeys and diffusion
tensor imaging studies in humans have indicated that the
DLPFC is connected with the caudate (Parent, 1990; Parent
and Hazrati, 1995; Lehéricy et al., 2004), and that the DLPFC-
caudate circuit is involved in selective inhibition via the indirect
pathway (Mink, 1996; Jahfari et al., 2011). Previous animal,
clinical, and neuroimaging studies have provided extensive
evidence that the caudate was involved in the selection
of appropriate response based on the assessment of the
outcomes, and the studies of patients with impairments in
the caudate nucleus also showed the deficit in goal-directed
tasks (Hazrati and Parent, 1992; Cai et al., 2011; Bryden
et al., 2012; Majid et al., 2013). Our results indicate that the
left caudate is related to modulatory input, consistent with
the findings of previous studies reporting that the caudate
nucleus contributes to behavior through the selection of
appropriate sub-goals.

In the current study, we used fMRI to investigate inhibitory
behavior. The limited temporal resolution of fMRI may result
in limited scope in the DCM analysis. Therefore, multiple
methods such as electroencephalography (EEG) or ECoG, which
have better temporal resolution, need to be considered in
future research. Further, we had to exclude participants with
excessive head movement, and the reduced number of effective
participants might have caused us to miss some regions with
significant activations.

CONCLUSION

We show that the effective connection from the IFG to the
SMA is associated with reactive inhibition, while the effective
connection from the caudate to the IFG is associated with
proactive inhibition. The indirect DLPFC-caudate-IFG-SMA-
STN-M1 pathway is involved in the implementation of proactive
modulation, while the hyperdirect pathway that bypasses the
striatum contributes to reactive inhibition. The function of the
IFG is more related to attention control, and the caudate more
likely acts as a ‘‘gate’’ between proactive and reactive inhibition.
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