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1  | INTRODUC TION

Understanding how landscape alteration will influence species dis-
tributions and connectivity is the cornerstone to development of 
successful conservation, restoration, and management strategies 
(Bolliger, Le Lay, & Holderegger, 2010; Fahrig, 1997). Fragmentation 
and transformation of natural habitats may change dispersal and 
colonization potential (Kool, Moilanen, & Treml, 2012). If gene flow 
is disrupted, increased genetic differentiation (GD) and reduced 

genetic variation may impact patterns of spatial genetic structure 
(hereafter SGS) over time (Epperson, 2003). As the field of landscape 
genetics progresses, it is becoming increasingly clear incorporating 
landscape features, by assigning resistance values to habitat charac-
teristics, into predictive models (i.e., landscape resistance models) 
to describe GD is vital to understand which factors impede or fa-
cilitate functional connectivity (Spear, Balkenhol, Fortin, McRae, & 
Scribner, 2010; Storfer, Murphy, Spear, Holderegger, & Waits, 2010). 
However, further inference about the effects of specific biological 
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Abstract
Landscape genetic studies typically focus on the evolutionary processes that give 
rise to spatial patterns that are quantified at a single point in time. Although land-
scape change is widely recognized as a strong driver of microevolutionary processes, 
few landscape genetic studies have directly evaluated the change in spatial genetic 
structure (SGS) over time with concurrent changes in landscape pattern. We introduce 
a novel approach to analyze landscape genetic data through time. We demonstrate 
this approach using genotyped samples (n = 569) from a large black bear (Ursus ameri-
canus) population in Michigan (USA) that were harvested during 3 years (2002, 2006, 
and 2010). We identified areas that were consistently occupied over this 9-year 
period and quantified temporal variation in SGS. Then, we evaluated alternative 
hypotheses about effects of changes in landscape features (e.g., deforestation or 
crop conversion) on fine-scale SGS among years using spatial autoregressive mode-
ling and model selection. Relative measures of landscape change such as magnitude 
of landscape change (i.e., number of patches changing from suitable to unsuitable 
states or vice versa), and during later periods, measures of fragmentation (i.e., patch 
aggregation and cohesion) were associated with change in SGS. Our results stress the 
importance of conducting time series studies for the conservation and management 
of wildlife inhabiting rapidly changing landscapes.
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and ecological processes that shape SGS is often limited because 
sampling is typically conducted at a single point in time (Goetze, 
Andrews, Peijnenburg, Portner, & Norton, 2015). These “snapshots” 
of data only measure populations in their current state (Anderson 
et al., 2010; Martensen, Saura, & Fortin, 2017; Schwartz, Luikart, 
& Waples, 2007). Therefore, inferences can be problematic when 
studying long-lived and iteroparous species such as black bears 
(Ursus americanus) that are sensitive to landscape features (i.e., land 
cover) that are expected to undergo future modification (Cushman, 
McKelvey, Hayden, & Schwartz, 2006; Cushman, Wasserman, 
Landguth, & Shirk, 2013). Thus, incorporating a time series approach 
becomes necessary to make inferences about how a species re-
sponds to landscape or environmental change (Sun & Hedgecock, 
2017).

Time series data are increasingly being applied to understand 
biological processes, most notably in the field of ecology and pop-
ulation genetics (Lindenmayer et al., 2012; Schwartz et al., 2007). 
A number of empirical studies have used temporal genetic data to 
contrast historical and contemporary genetic diversity (Wandeler, 
Hoeck, & Keller, 2007). Similarly, there has been increasing interest 
to include genetic monitoring as an important component of man-
agement programs (De Barba et al., 2010; Rudnick, Katzner, Bragin, 
Rhodes, & Dewoody, 2005; Steele et al., 2013). Assessments of 
changes in genetic diversity provide a means to evaluate trends in 
connectivity, to infer demographic histories of populations, and to 
gauge loss of genetic diversity (Schwartz et al., 2007). However, im-
plementing such studies is challenging because sampling the same 
population(s) at regular intervals is difficult despite the potential 
value for conservation and management.

There is increased interest in examining how landscape config-
uration assessed at different times has influenced contemporary 
SGS (Landguth et al., 2010; Pavlacky, Goldizen, Prentis, Nicholls, & 
Lowe, 2009; Zellmer & Knowles, 2009). Yet, few if any, landscape 
genetic studies have applied a time series approach using multiple 
genetic and landscape data sets collected at the same time points. 
Such studies are limited in part by the rarity of multiple samples 
of the same population from different time points, but are further 
impeded by the necessity of obtaining complementary time series 
landscape data. Despite these challenges, time series landscape ge-
netic studies are valuable as natural ecosystems are spatially het-
erogeneous and landscape composition/configurations can change 
over time, sometimes drastically so, due to natural and anthropo-
genic factors (Bolliger et al., 2010; Spear et al., 2010). Furthermore, 
there may be a discord between the time genetic processes occur 
(over generations) and the landscape change that reflect contem-
porary landscape effects (Anderson et al., 2010). Explicitly adding 
a temporal component in landscape genetics analyses may provide 
valuable additional resolution on directional trends in gene flow 
(Martensen et al., 2017; Wagner & Fortin, 2013). By quantifying 
concurrent changes in SGS and landscape structure over time, we 
only improve the long-term predictive power of the effects of on-
going or future landscape change on genetic connectivity (Zellmer 
& Knowles, 2009).

In this study, we propose a novel approach to quantify changes in 
SGS through time and relate those changes to underlying landscape 
change for a population of American black bears in the Northern 
Lower Peninsula (NLP) of Michigan, USA. The NLP black bear pop-
ulation is bounded to the south by expansive areas of unsuitable 
human-dominated urban and agricultural landscapes. The popula-
tion therefore experiences little to no emigration and immigration. 
The NLP black bears provide a unique opportunity to apply time 
series analyses in a landscape context. Indeed, we capitalized on 
harvest samples acquired over a large extent and long-term data 
spanning a 9-year period. The NLP bear population is subjected to 
intensive annual harvest (13%–29% of the population is harvested 
annually, Michigan Department of Natural Resources) indicating the 
potential for rapid population turnover, and therefore rapid genetic 
change.

Black bears are affected by forest loss and Michigan’s NLP is 
a heterogeneous landscape that has experienced past and current 
landscape change (primarily deforestation and agricultural conver-
sion). Hence, we used remotely-sensed land cover data (Coastal 
Change Analysis Program, CCAP; https://www.coast.noaa.gov/
digitalcoast) that are publicly available every 5 years (2001, 2006, 
and 2011) for the whole of the NLP during the period over which our 
genetic samples were collected.

Using a times series approach in a landscape genetic framework, 
we (i) develop a set of landscape resistance models that incorporate 
a suite of resistance surfaces representing alternative hypotheses 
concerning the associations between interindividual genetic dis-
tance and landscape resistance distance; (ii) identify and compare 
the best performing landscape resistance models among years; (iii) 
evaluate whether local SGS patterns changed over time; and (iv) 
quantify landscape change and use spatial autoregressive model 
selection to test for associations between changes in SGS and land-
scape change.

2  | METHODS AND MATERIAL S

2.1 | Study area

Our study area covers the northern two-thirds of the lower penin-
sula of Michigan (47,739 km2) (Figure 1). The NLP is a fragmented 
mosaic of different land cover and land-use types including devel-
opment, agriculture, upland nonforested openings, northern hard-
wood and mixed hardwood, oak, aspen, pine, forested wetland, 
and nonforested wetland. The NLP experiences ongoing landscape 
alteration primarily due to forestry practices and crop conversion 
resulting in many small fragmented patches of land cover change 
(Figure 2). Bear sampling occurred during fall harvest (September–
October) of 2002 (n = 263), 2006 (n = 385), and 2010 (n = 336). 
Annually, MDNR requires all harvested bears to be registered at 
hunter check stations. During registration, a premolar tooth is 
extracted for aging and DNA extraction (Coy & Garshelis, 1992). 
Hunters report the bear’s harvest location and sex. Locations 
of bear harvest samples were recorded as township, range, and 

https://www.coast.noaa.gov/digitalcoast
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section, which were then georeferenced to the section centroid and 
converted into UTM coordinates.

2.2 | Defining temporal sampling locations

To remove potential sampling error that can arise from differences 
in dispersion and extent of sampling in opportunistically collected 
annual harvest samples, we identified areas that were consistently 
occupied in both space and time. First, for each year (2002, 2006, 
and 2010), we created Voronoi polygons for all samples within a 
year. Voronoi polygons are created by partitioning the study site 
with n sampling points into convex polygons, in which a polygon 
contains only one sampling point and every location in a given 
polygon is closer to its generating sampling point than any other 
point (Longley, Goodchild, Maguire, & Rhind, 2010). We then 
overlaid the three annual Voronoi polygons and used spatial–tem-
poral analysis of moving polygons in ArcGIS 10.1 to define areas 
where the three polygon layers overlapped and contained at least 
one bear from each year (Figure S1). We defined these as “areas 
of consistent sampling” (Figure S2) over the entire (2002–2010) 
sampling period. Voronoi polygons are used as a way to ensure 
that throughout the years that subareas (here Voronoi polygons) 

contain enough samples so that comparisons from 1 year to an-
other is possible. Hence, the Voronoi polygons are not used to 
estimated/mapped density but rather to delineate subareas such 
that changes are attributed to more or less the local conditions 
that the bears were exposed to. Samples within the overlap area of 
consistent sampling (2002, n = 204; 2006, n = 199; 2010, n = 166) 
were used in all downstream population and landscape genetic 
analyses.

2.3 | Microsatellite genotyping

We extracted DNA from bear teeth using Qiagen DNEasy Tissue 
Kits (Qiagen Inc., Valencia, CA, USA) following manufacturer pro-
tocols. We quantified DNA using a Nanodrop spectrophotometer 
(Thermo Scientific, Waltham, MA, USA) and diluted samples to a 
20 ng/μl working concentration. We used PCR to amplify 12 vari-
able microsatellite loci including: G10X, G10L, G10D, G10B, G10M 
(PCR annealing temperature TA = 58°C; Paetkau, Calvert, Stirling, 
& Strobeck, 1995) UarMU59, UarMU50 (TA = 58°C; Taberlet et al., 

F IGURE  1 Study area in the Northern Lower Peninsula of 
Michigan (NLP) showing areas (n = 141) of consistent sampling 
for black bear harvested during 2002, 2006, and 2010 (n = 569), 
interstate-75 (I-75) and major rivers

F IGURE  2 Extent and configuration of forested land lost (gray) 
over the sampling period from (a) 2001–2006, (b) 2006–2010, and 
(c) 2002–2010

(a)

(c)

(b)
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1997), ABB1, ABB4 (TA = 54°C; Wu, Zhang, & Wei, 2010), UT29, 
UT35, and UT38 (TA = 54°C; Shih, Huang, Li, Hwang, & Lee, 2009). 
We amplified DNA according to conditions outlined in Moore, 
Draheim, Etter, Winterstein, and Scribner (2014). Amplified prod-
ucts were sized on 6.5% denaturing acrylamide gels for electropho-
resis and visualized on a LI-COR 4200 Global IR2 System (LI-COR 
Inc., Lincoln, NE, USA). All alleles were scored independently by 
two experienced laboratory personnel using SAGA genotyping 
software (LI-COR Inc.). To assess genotyping error, 10% of samples 
were randomly selected and genotyped twice to yield a genotyping 
error rate of <2%.

We used program MICRO-CHECKER (Van Oosterhout, 
Hutchinson, Wills, & Shipley, 2004) to test for the presence of 
null alleles and allelic dropout. We tested for deviations from 
Hardy–Weinberg equilibrium based on exact tests χ2 using pro-
gram GENEPOP (Version 3.1d; Raymond & Rousset, 1995) and 
used sequential Bonferroni tests to correct for multiple compari-
sons (Rice, 1989). We used Bonferroni corrections (Goudet, 1995, 
2001) to test for linkage disequilibrium (evaluated by permutation 
tests, based on 660,000 randomizations) in program FSTAT 2.93. 
We quantified microsatellite genetic diversity using mean number 
of alleles (A), observed heterozygosity (HO), and expected hetero-
zygosity (HE) over all loci, using program GenAlEx (v. 6.0, Peakall 
& Smouse, 2006). We estimated inter-individual GD, by calculat-
ing the ratio proportion of shared alleles (Dps, GD = (1 − Dps); 
Bowcock et al., 1994) for each pairwise combination of individuals 
using GenAlEx v. 6.0 (Peakall & Smouse, 2006). Dps is a commonly 
used individual-based genetic distance measure in landscape ge-
netic studies and has been shown to accurately reflect SGS and 
connectivity at small spatial scales (Murphy, Dezzani, Pilliod, & 
Storfer, 2010).

2.4 | Landscape genetic analysis: isolation by 
distance versus isolation by resistance

We characterized land cover for the three sampling periods using 
NOAA CCAP Land Cover digital coverage maps, derived from Landsat 
TM imagery for 2001, 2006, and 2011. To test for isolation by resist-
ance (IBR; to determine how functional connectivity was influenced 
by landscape features), we generated resistance surfaces for each 
temporal land cover data set using Spatial Analyst in ArcGIS 10.1. 
We weighted each land cover class according to positive or negative 
associations with black bear presence based on habitat suitability in-
dices (HSI) developed independently from telemetry data by Carter, 
Brown, Etter, and Visser (2010). Landscape resistance surfaces were 
based on three features (roads, rivers, and land cover) that have pre-
viously been reported to influence habitat selection by black bears 
in the NLP (Carter et al., 2010). Models included resistance surfaces 
using a land cover classification from CCAP Land Cover datasets 
(resolution = 150 m, 25 classes). We reclassified datasets into seven 
land cover classifications according to bear habitat suitability (HSI; 
cost = 1–100, least to most resistant to bear movement): mixed de-
ciduous forest (MF = 1), forested wetland (FW = 1), evergreen for-
est (EF = 10), nonforested upland (NFU = 20), agriculture (AG = 50), 
nonforested wetland (NFW = 100), and developed (DEV = 100). We 
also included major rivers (10) and roads weighted based on traffic 
patterns (Interstate-75 = 100; state roads = 50; all other roads = 10), 
because they represent putative physical barriers to dispersal. In ad-
dition, we created a distance only landscape with a raster surface 
value of 1 bounded by the same spatial extent as all other resist-
ance surfaces to reflect isolation by distance (IBD). Based on those 
predictors, we evaluated 11 landscape hypotheses of IBR (Table 1). 
Using the sum function of raster algebra in Spatial Analyst ArcGIS 

Mantel and partial Mantel 
test

2002 2006 2010

r p r p r p

Isolation by distance .123 .013 .101 .034 .106 .020

Resistance models

State roads (STR) −.060 .990 −.027 .672 −.033 .714

Interstate 75 (I75) −.089 .986 −.013 .566 −.031 .738

All roads −.043 .806 −.039 .184 −.037 .801

Rivers −.051 .858 −.009 .509 .098 .037

Roads + Rivers −.049 .858 −.032 .752 −.004 .440

Land cover (LC)

LC cover only .008 .390 .214 .005 .097 .031

LC + Roads .008 .361 .143 .011 .082 .041

LC + Rivers .019 .219 .192 .005 .101 .027

LC + Roads + Rivers .011 .257 .159 .009 .081 .035

LC + STR .002 .316 .159 .009 .088 .041

LC + I75 .026 .200 .187 .005 .104 .026

STR, State Roads; I75, Interstate-75; LC, Land cover.

TABLE  1 Mantel (isolation by distance 
only; IBD) and partial Mantel correlations 
(r) between spatial and genetic pairwise 
distances among individual black bears in 
the NLP for 2002, 2006, and 2010. Bold 
indicates competitive models based on 
causal modeling
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10.1, we combined land cover with roads, rivers, and roads + riv-
ers. Resistance distances can be sensitive to the range of relative 
weights assigned to land cover types. Thus, we performed a sen-
sitivity analysis similar to Draheim, Moore, Etter, Winterstein, and 
Scribner (2016) using large-scale and small-scale resistance weights 
(i.e., large scale = 1, 10, 20, 50, 100, and small scale = 0.1, 1, 2, 5, 10) 
and found resistance distances were not sensitive to the scale of 
land cover resistance weights.

We calculated pairwise resistance distances using CIRCUITSCAPE 
3.5 (McRae, 2006). CIRCUITSCAPE incorporates circuit theory 
to quantify the total landscape resistance between individuals via 
multiple potential paths of least resistance (McRae & Beier, 2007). 
We used Mantel (Mantel, 1967) and partial Mantel tests (Smouse, 
Long, & Sokal, 1986) to correlate genetic and geographic/resistance 
distances. Legendre and Fortin (2010) noted that Mantel and par-
tial Mantel testing is an appropriate framework when hypotheses 
are explicitly defined in terms of distances, and are appropriate for 
individual-based analyses. The significance of the Mantel and partial 
Mantel correlations was evaluated by permutation tests, based on 
10,000 randomizations. The top candidate model corresponded to 
the largest partial Mantel r values. Next, to eliminate the potential 
of high Type I error and spurious correlations, we compared a set 
of competitive IBR models (models with correlation values close 
to the top model) against each other rather than the null model of 
IBD. Due to the inherent risk of false positives using Mantel tests, 
we used an additional analytical framework proposed by Cushman 
et al. (2013) that is based on the relative support of each candidate 
model to separate the true resistance model from a range of erro-
neous alternative resistance models. The relative support for each 
model was based on the difference in the partial Mantel correlation 
after partialling out the resistance distance of the other model. The 
model with significant and positive relative support values for all 
comparisons was considered the best candidate model (Cushman 
et al., 2006, 2013).

2.5 | Landscape–genetic change analysis

2.5.1 | Defining landscape change

To quantify the land cover change among time periods, we used the 
math algebra function in Spatial Analyst ArcGIS 10.1 to calculate the 
net difference in resistance surface weight from above reclassified 
annual (2001, 2006, and 2011) CCAP resistance surfaces (resolu-
tion 150 m) to reflect change in resistance to black bear movement 
among time periods. A raster cell with no change in resistance cost 
was assigned a value of 0, and all other raster cells ranged from −99 
to 99. The value and sign (positive or negative) of the raster cell de-
pends on the type of land cover change that occurred from time 1 
to time 2 (positive = decreased cost or gain of habitat; negative = in-
creased resistance cost or loss of habitat). For example, if a raster 
cell at time 1 changed from deciduous forest (low resistance cost to 
bear movement = 1) to a less suitable habitat of nonforest (higher 
cost to movement = 20) at time 2, the cell was assigned a landscape 

change value of −19. Conversely, if a raster cell changed from nonfor-
est to a more suitable habitat like deciduous forest, it was assigned a 
landscape change value of 19. Correspondingly, if a raster cell in the 
first scenario changed from deciduous forest (low resistance cost of 
bear movement = 1) to development (highest resistance cost of bear 
movement = 100) rather than nonforest, it was assigned a landscape 
change value of −99, representing the strongest loss of habitat and 
impediment of movement. Thus, we define land cover change as any 
change (positive or negative) in a resistance value from time 1 to 
time 2.

We then overlaid a sampling grid of 2.6 km2 cells (representing 
the approximate area of a section and minimum distance among sam-
pling points) over the land cover change layers. We described land-
scape change in terms of proportion a sampling grid cell (i.e., 2.6 km2) 
of deciduous forest and/or mixed forest loss (DMFL). The landscape 
metrics calculated using program FRAGSTATS (McGarigal, Cushman, 
Neel, & Ene, 2002); definitions of variables and data sources are 
listed in Table S1) assessed the relative magnitude of change (i.e., 
NP, PLAND, FL, and DMFL) and change in landscape configuration 
change (i.e., AI, COH, NNDIST). However, genetic structure can have 
a substantial time lag in its response to changes in gene flow result-
ing from a barrier. Furthermore, we also calculated the distance to 
landscape features that may act as a putative barrier to functional 
connectivity: (i) distance to major human population center (i.e., city 
or town; HPDIST); (ii) distance to major road (RDDIST); (iii) distance 
to major river (RVDIST).

In addition, using ArcGIS 10.1 we calculated the cumulative de-
gree of landscape change (DEG) within each 2.6 km2 sampling cell 
and between neighboring sampling cells (NDEG) that describes the 
level of landscape change (e.g., forest to development = −99 vs. for-
est to nonforest land = −19) to test for relative sensitivity of genetic 
change based on landscape change type within sampling grid cell 
and of those neighboring a sampling grid cell, respectively. Also, be-
cause deforestation is the predominant type of landscape change, 
we also described landscape change in terms of proportion of area 
within a sampling grid cell with forest loss (FL).

2.5.2 | Defining genetic change

Individual-based landscape genetic analyses are often limited to 
link-based methods. These type of analyses relate pairwise genetic 
distance between individuals to their landscape distance in which 
hypotheses are explicitly defined in terms of distances. However, to 
move beyond link-based methods we must transform individual-based 
pairwise genetic distances into a single Y vector. Landscape genetic 
neighborhood-based approaches can use information from pairwise 
links (genetic distances) to create a node-based data structure to relate 
GD patterns to local landscape predictors (James, Coltman, Murray, 
Hamelin, & Sperling, 2011; Wagner & Fortin, 2013). Here we introduce 
a novel analytical framework to test whether SGS changed over time. 
We generated our response variable by producing spatial genetic data 
layers using the Genetic Landscapes Toolbox (Vandergast, Perry, Lugo, 
& Hathaway, 2011) in ArcGIS 10.1. This tool constructs a Delaunay 
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triangulation network (Figure 3) between individual locations. At the 
geographic coordinates of the midpoint of the connecting edges of 
the network, the program assigns user inputted genetic distance value 
(i.e., Dps). Then, using Inverse Distance Weighting (power = 2, vari-
able search radius with 12 points), we created an interpolated genetic 
landscape surface in which each raster cell is weighted by GD among 
sample locations (Vandergast et al., 2013). To avoid extrapolating be-
yond the original collection locations, genetic surfaces were clipped to 
the spatial extent of collection locations. Visual inspection of the three 
annual genetic surfaces indicated SGS patterns changed between 
sampling periods. To identify areas where GD may have strengthened 

or weakened, we calculated the difference in GD estimates among 
two time periods (i.e., GD at time 1–GD at time 2) using the math 
algebra function in Spatial Analyst ArcGIS 10.1. We generated two 4-
year and one 8-year genetic change surface(s) by subtracting the later 
GD estimate from the earlier GD estimate (4 years = GD2002–GD2006, 
GD2006–GD2010; 8 years = GD2002–GD2010). Positive values indicate 
local SGS weakened over time, whereas negative values indicate SGS 
strengthened over time. We then overlaid the same sampling grid of 
2.6 km2 cells used to quantify the 12 landscape metrics and quantified 
our response variable “cumulative genetic change” (GC) by averaging 
the cumulative difference of GD among years that fell within a sam-
pling grid cell.

2.5.3 | Spatial modeling analyses

We compared multiple spatial autoregressive lag models to de-
termine whether landscape change was associated with genetic 
change. These models are linear regressions that account for spatial 
nonindependence in the response variable (genetic change) layer 
with an additional spatial lag term as an explanatory variable and 
parameter estimation assessed by Maximum Likelihood Estimation 
(Ward & Gleditsch, 2008). Models without significant regression 
coefficients (p < .05) were discarded. Because of the inherent rela-
tionships between landscape change magnitude metrics NP, PLAND, 
DEG, FL, and DMFL (Table 2), we performed five univariate analy-
ses with each of these explanatory variables and compared them 
using Akaike’s information criterion (AIC) (Burnham & Anderson, 
2002; Johnson & Omland, 2004), where Akaike weights represent 
the probability that a model is the best of the set (Ward & Gleditsch, 
2008). The best landscape change magnitude metric of the single 
regression models was then used in multiple regression analyses. 
All tests were performed in the spdep package in R v. 3.0.1 (R Core 
Team, 2013).

3  | RESULTS

3.1 | Population genetic structure

After accounting for spatial differences in sampling among years, 
we retained 569 individuals within areas continuously occupied 
for subsequent landscape genetic analyses (2002, n = 204; 2006, 
n = 199; 2010, n = 166). We did not find evidence for null alleles or 
allelic dropout. We detected significant departures from HWE for 
Uar50 in 2002; G10X, G10D, G10B, Uar50, and UT29 in 2006; and 
G10M in 2010. However, no loci were found to deviate significantly 
from Hardy–Weinberg or linkage disequilibrium across all time peri-
ods (Table S2), so all 12 loci were retained for further analyses. For 
all loci, expected heterozygosity ranged from 0.62 to 0.94, number 
of alleles per locus ranged from 6 to 28, and genetic diversity was 
similar among years (Table S2). Inter-individual genetic distances 
were correlated with Euclidean geographic distances for all sam-
pling years (2002, r = .123, p = .013, 2006, r = .101, p = .034; 2010, 
r = .106, p = .020; Table 1; Figure S3).

F IGURE  3 Delaunay triangulation network between individual 
locations for (a) 2002, (b) 2006, and (c) 2010 used to create genetic 
surfaces. Red triangles represent sample locations. Blue circles 
represent midpoints between sampling locations in which genetic 
differentiation was interpolated

(a)

(b)

(c)
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3.2 | Isolation by resistance testing

Landscape genetic analyses revealed discrepancies in landscape re-
sistance model performance among years. Statistically significant 
landscape resistance models (p < .05) were only identified in 2006 
and 2010 after partialling out the effects of geographic distance 
(Table 1). The best-supported models differed among years. For 
2006, the best-supported model included land cover only (LC) based 
on the highest partial Mantel correlation (r = .214, p = .005; Table 1) 
and relative support. In contrast, the best-supported resistance 
model for 2010 included land cover and interstate-75 (I-75) as a bar-
rier (partial Mantel, r = .104, p = .026; Table 1); however, causal mod-
eling revealed this model was not significant (p > .05) after partialling 
out three competing models. Therefore, we are unable to conclude 
which single model is the best-supported model for 2010. Equally 
well supported were three alternative models: (i) LC only (r = .097, 
p = .031) (ii); LC + rivers (r = .101, p = .027); and (iii) LC + state roads 
(STR) (r = .088, p = .041; Table 1). All competitive models included 
land cover, confirming that land cover is important for black bear 
connectivity in the NLP. In addition, landscape genetic analyses 
were not sensitive to magnitude of land cover cost values (data not 
shown).

3.3 | Genetic change and landscape change

The cumulative genetic change surfaces show areas of increased 
and decreased GD over the study area (Figure 4) indicating local 
SGS has changed over time. “Landscape change magnitude” 

univariate modeling predicting genetic change revealed the number 
of landscape change patches (NP) within a sampling unit was the 
most supported model for all temporal comparisons (2002–2006, 
wAIC = 0.49; 2006–2010, wAIC = 0.65; 2002–2010, wAIC = 0.30; 
Table 2; Figure 4). Therefore, NP was used in multiple regression 
analyses. Multivariate models with significant (p < .05) coefficients 
are presented in Table 3. All temporal comparisons indicated that 
genetic change was significantly influenced by habitat alteration 
calculated as the number of landscape change patches (NP; Table 3; 
Figure 4). However, for all comparisons that included 2010, genetic 
change was better predicted by inclusion of landscape change heter-
ogeneity (Table 3). The best model for 2002–2010 included NP and 
extent of heterogeneity calculated as aggregation (AI; wAIC = 1.0). 
Similarly, the most probable model in the 2006–2010 comparison 
included NP, AI, and an additional heterogeneity variable cohesion 
(COH; wAIC = 0.95 Table 3).

4  | DISCUSSION

The field of landscape genetics can advance beyond character-
izing static landscape pattern–genetic process relationships 
(Balkenhol et al., 2009). Incorporating landscape change and 
quantifying the effects of change on SGS over time is vital to im-
prove understanding of anthropogenic impacts on functional con-
nectivity (Bolliger et al., 2010; Segelbacher et al., 2010; Storfer 
et al., 2010). Our study illustrates the advantages of joint use of 
time series genetic and landscape data when using established 

Model (GC ∼) Intercept Coeff. Z-value ρ AIC ΔAIC wAIC

2002–2006

βNP 0.353 −.011 −2.634 .955 17,442 0 0.49

βPLAND 0.212 −.045 −1.125 .955 17,448 6 0.03

βDEG 0.194 −.112 −0.734 .955 17,448 6 0.02

ΒDMFL 0.255 −.398 −2.595 .955 17,443 1 0.43

βFL 0.213 −.052 −1.266 .955 17,447 5 0.03

2006–2010

βNP −0.613 .010 2.806 .872 18,667 0 0.65

βPLAND −0.470 .092 2.132 .872 18,670 3 0.12

βDEG −0.229 .188 0.792 .871 18,674 7 0.02

ΒDMFL −0.454 .200 2.249 .871 18,670 3 0.15

βFL −0.412 .091 1.789 .872 18,672 5 0.06

2002–2010

βNP 0.007 .011 0.539 .959 16,535 0 0.30

βPLAND 0.128 −.025 −1.185 .959 16,536 1 0.23

βDEG 0.111 −.098 −0.883 .959 16,537 2 0.17

ΒDMFL 0.103 −.039 −0.776 .959 16,537 2 0.16

βFL 0.131 −.032 −1.354 .959 16,537 2 0.14

Coefficients (Coeff) and their corresponding Z-values refer to genetic change layer coefficients, 
whereas ρ is the spatial lag coefficient. All values of ρ were significant (p < .01). AIC, ΔAIC, and 
weighted (w)AIC values are reported. The best model is in boldface type.

TABLE  2 Most supported univariate 
spatial regression models to predict black 
bear genetic change using landscape 
variables that characterize the relative 
magnitude of landscape change in the 
Northern Lower Peninsula, Michigan, 
USA. Abbreviations are as described in 
Table S1
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landscape genetics methods. Using a long-term genetic data set 
and land cover imagery covering an analogous time period, we 
found disparities in landscape resistance models during different 
“snapshots” of time (Table 1). Our results show that if landscape 
does not appear to be an important component shaping func-
tional connectivity at one time point, it does not mean that attrib-
utes will not become important over relatively short time scales 
in changing landscapes. Our findings have broad implications for 
conservation and management, and speak to the importance of 
collecting long-term data.

Black bears in Michigan’s NLP exhibit an IBD pattern of gene flow, 
commonly documented in black bears (Costello, Creel, Kalinowski, 
Vu, & Quigley, 2008; Moore et al., 2014; Rogers, 1977, 1987; 
Schwartz & Franzmann, 1992). Indeed, strong IBD is consistent with 
studies on bears and other wide-ranging carnivores (Brown, Hull, 
Updike, Fain, & Ernest, 2009; Paetkau, Waits, Clarkson, Craighead, 
& Strobeck, 1997; Rueness, Jorde, et al., 2003; Rueness, Stenseth, 
et al., 2003). However, we found isolation by landscape resistance 
was more strongly supported than IBD in 2006 and 2010. Land 
cover was the landscape factor most strongly correlated with inter-
individual genetic distance in black bears in the NLP after partial-
ling out geographic distance (Table 1). In contrast, roads and rivers 
alone did not appear to influence genetic distance. However, the 
model that only included rivers was significantly correlated with 
GD in 2010. Our results are consistent with a previous study that 
performed similar landscape genetic analyses on NLP black bears 
sampled during 2006 but used a much larger sample size (n = 365) 

and spatial distribution (Draheim, 2015). The influence of land cover 
is not surprising as land cover is fundamentally tied to resources 
such as food availability and forest cover for security and resting 
(Amstrup & Beecham, 1976; Davis, Weir, Hamilton, & Deal, 2006; 
Noyce & Garshelis, 2011; Rogers, 1977). Carter et al. (2010) found 
a negative association between bear location and small and medium 
roads in the NLP black bear population based on radiotelemetry lo-
cations from 1991 to 2000 for 20 males and 35 females. However, 
our results suggest roads do not unduly influence functional connec-
tivity. Indeed, while previous landscape genetic studies have found 
roads as a limiting factor to gene flow in black bears, the relative 
influence of roads varies among populations (Cushman et al., 2006; 
Short Bull et al., 2011), and in some cases, roads may serve to facili-
tate rather than impede bear movement (Balkenhol & Waits, 2009).

The cumulative effects of landscape alteration over increasing 
lengths of time explain the differences in relative effects of land-
scape features on SGS in NLP black bears. We found significant 
effects of landscape change on changes in levels of GD (Tables 2 
and 3). However, the amount of variation explained in models that 
included variables associated with habitat heterogeneity were the 
best predictors of genetic change for temporal comparisons that 
included 2010 (Table 3). This discrepancy among years reflects an 
increasing amount of habitat fragmentation due to deforestation 
over the 9-year sampling period. Currently, the NLP is a patchy land-
scape with areas of deciduous, mixed, and coniferous forest frag-
mented by areas of intensive agriculture or human development. If 
current patterns of human land-use continue, the remaining forested 
areas could undergo further modification in the near future (Public 
Service Consultants 2001). Based on our landscape change raster 
layers, approximately 1.3% of black bear habitat is lost every 5 years 
(2002–2006 = 0.9%, 2006–2010 = 1.6%; Figure 2). On the whole, 

F IGURE  4 Distribution of (a) the cumulative difference in 
genetic differentiation (from spatial interpolated genetic surfaces) 
within a grid cell for all temporal comparisons (2002–2006, 
2006–2010, 2002–2010) and (b) number of landscape change 
patches within a grid cell (2.6 km2). For landscape change maps, red 
indicates a large number of patches of change and blue indicates 
a low number of patches of change. For genetic change maps, red 
indicates an increase in genetic differentiation (GD) from time 
one (T1) to time two (T2) and blue indicates a decrease in genetic 
differentiation from T1 to T2

(a)

(b)

TABLE  3 Most supported multiple spatial autoregression 
models to predict black bear genetic change using landscape 
metrics that characterize the relative magnitude or configuration of 
landscape change in the Northern Lower Peninsula, Michigan, USA. 
Abbreviations are as described in Table S1

Model (GC ∼) ρ AIC ΔAIC wAIC

2002–2006

βNP .955 16,245

2002–2010

βNP + βAI .934 16,533 0 1

βNP .959 16,537 4 0

2006–2010

βNP + βAI + βCOH .900 16,683 0 0.95

βNP + βAI .951 16,689 6 0.05

βNP .872 16,886 203 0

βAI + βCOH .945 16,899 216 0

βAI .945 17,001 318 0

ρ is the spatial lag coefficient. All values of ρ were significant (p < .01). 
AIC, ΔAIC, and weighted (w)AIC values are reported. The best model is 
in boldface type.
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this habitat loss may not seem extensive; however, the effects of 
habitat loss can be amplified by concurrent fragmentation (Fahrig, 
1997) resulting in an increase in dispersed, complex habitat patches.

Lack of an association between land cover and SGS in bears 
during 2002 (Table 1) could indicate the degree of land cover het-
erogeneity present in 2002 was insufficient to cause a response. 
However, stochastic processes such as sampling variance among 
years or genetic drift may be contributing factors as well. Our re-
sult is consistent with a study in the Rocky Mountains of the United 
States that evaluated the influence of forest cover on black bear gene 
flow based on 12 landscapes that varied in degree of fragmenta-
tion. Short Bull et al. (2011) found higher correlations between land 
cover and black bear gene flow in landscapes where forest cover 
was highly fragmented compared to landscapes of contiguous for-
est. Yet, the absence of a landscape effect on 2002 SGS may reflect 
a time lag between when landscape change occurs and when SGS 
response to landscape change becomes evident (Anderson et al., 
2010; Epps & Keyghobadi, 2015). However, when dispersal rates and 
distances are large, as exhibited in the NLP black bear population 
(Draheim, 2015; Draheim et al., 2016; Moore et al., 2014), shorter 
or no time lags are expected (Epps & Keyghobadi, 2015). Also, leg-
acy effects of historical landscape processes may be reduced using 
genetic markers with higher mutations rates (i.e., microsatellites) 
that reach mutation–drift equilibrium quickly and genetic measures 
that respond rapidly to changes in connectivity (e.g., Dps) (Anderson 
et al., 2010). A number of simulation studies have found landscape 
effects on SGS could be detected with relatively short time spans 
(Cushman & Landguth, 2010; Landguth et al., 2010; Murphy, Evans, 
Cushman, & Storfer, 2008).

Field sampling of wildlife populations can never be conducted 
exhaustively nor can spatial coverage be completely replicated 
during every time period. Thus, stochastic sampling processes, es-
pecially in populations where density varies across the landscape, 
can never really be removed from empirical data sets. Harvest data 
are opportunistically collected, meaning locations will inevitably 
vary among temporal periods and may be predisposed to erroneous 
inferences across years (Schwartz & McKelvey, 2009). In our study 
system, bear harvest samples do show consistent regional density 
and distribution patterns among years (Draheim, Lopez, Winterstein, 
Etter, & Scribner, 2015). We additionally controlled for spatial sam-
pling heterogeneity among years by only including areas where 
bears were consistently harvested over time. We acknowledge that 
reducing our sample size in this way may reduce statistical power 
and add sampling noise, but we weighed the benefit of increased 
sample size against increased spatial sampling bias. Regardless, our 
samples sizes after accounting for spatial heterogeneity are respect-
able (n = 166–204). Also, Graves et al. (2012) showed that samples 
located at different locations within a home range did not affect the 
genetic–landscape relationship, we used a comparable approach and 
assumption here in this study.

There can be a disconnect between what is statistical vs. bio-
logically significant. Thus, we tried to account for this in our study. 
First, we based landscape resistance weights on field data from 

radiotelemetry. Second, we performed a sensitivity analyses on our 
resistance weights to ensure landscape genetic results were not un-
duly influenced by the scale of resistance values. Lastly, due to the 
inherent risk of false positives using Mantel and partial Mantel tests, 
we implemented an analytical framework proposed by Cushman 
et al. (2013) that is based on the relative support of each candidate 
model to separate the true resistance model from a range of errone-
ous alternative resistance models.

Our finding of genetic change between periods within localized 
areas over a 9-year sampling period (Figure 4) was unexpected, due 
to the longevity and generation time (NLP black bear population 
generation time = 6.53 years, Waples et al., in press) of black bears. 
Black bears in the NLP may be experiencing rapid rates of popula-
tion turnover and subsequent local population fluctuations due to 
intensive annual harvest (~13%–29% of the population harvested 
annually between 2002 and 2010, MDNR unpublished data). The 
juxtaposition of areas of increased and decreased GD over the study 
area (Figure 4) could reflect these local population fluctuations. The 
observed patchy distribution of “hot” and “cold” areas of genetic 
change shown in Figure 4 could be attributed in part to the type of 
landscape change occurring. Although deforestation is the predom-
inant source of landscape change, there are patches of forest regen-
eration on the landscape that may facilitate gene flow.

We are unsure as to how genetic drift, which is likely occurring, 
contributed to our results. If genetic drift was the dominant force 
contributing to temporal variation in SGS of NLP black bears, we 
would predict little evidence for IBD/resistance or associations be-
tween genetic and landscape change, which is inconsistent with our 
results. Furthermore, in an graph theory framework, Draheim et al. 
(2016) found black bears in the NLP exhibit asymmetric gene flow 
based on areas of high and low net flux indicating source–sink dy-
namics (Pulliam, 1988). Therefore, if gene flow is mediated by use of 
corridors among source and sink areas and corridors are disrupted 
due to landscape change, local SGS is expected to change. Further 
investigations, for example, using local harvest abundance or other 
proxies for bear density (e.g., Moore et al., 2014), are needed to ad-
dress this question.

While our time series approach may be broadly applicable across 
a range of taxa, the approach needs to be parameterized based on 
specific life history and landscape characteristics of the species or 
population of interest. Our findings, while supported in Michigan 
black bears in the NLP, should be evaluated empirically for other spe-
cies and locales. For example, we would predict similar genetic/land-
scape change results based on the degree of concordance between 
our results and previous landscape genetic studies of black bears in 
the Rocky Mountains (Short Bull et al., 2011). However, there are a 
number of possible factors that could confound results in another 
bear population. For example, the NLP is an isolated population; 
thus, we could assume changes in SGS were not due to immigration 
or emigration. Also, it is important that the rate of landscape change 
be sufficient to influence SGS over relatively short time intervals.

To our knowledge, our study provides the first time series land-
scape genetic analyses performed across multiple generations of the 
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same population. Here we have shown the importance of time se-
ries data to test for consistencies in landscape–genetic relationships  
over time. Our ability to relate gene flow to landscape features is 
largely dependent on the temporal scale of sampling. Our finding 
that genetic change is associated with landscape change highlights 
the synergistic effects of habitat loss and fragmentation on black 
bear gene flow. Our data enable managers to target regions or hab-
itat types that are important for maintaining connectivity across 
anthropogenically altered habitats and assess the impacts of future 
landscape change.
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