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The selective acylation of indoles often requires sensitive and reactive acyl chloride derivatives. Here, we report a mild, efficient,

functional group tolerant, and highly chemoselective N-acylation of indoles using thioesters as a stable acyl source. A series of

indoleamides have been obtained with moderate to good yields. In addition, heterocycles, such as carbazole, can also be used as

nucleophiles in this reaction.

Introduction

Molecules containing N-acylindoles have attracted wide atten-
tion in the synthetic polymers and pharmaceutical industry
because of their unique structural, chemical, and biological
properties [1]. For example, indomethacin is a nonselective in-
hibitor of COX1 and COX2, which is used for treating fever,
pain and swelling [2]. Indole analog L-768242 exhibits
nanomolar potencies (Kj) with superior selectivity for the hCB2
receptor over the human central cannabinoid (hCB1) receptor
[3] (Figure 1).

Indole has multiple reactive sites, and chemoselective N- or
C-functionalization of indoles is a challenging and important
task [4,5]. Acylation of indoles frequently takes place at the C3

position because of the relatively strong electron cloud density.
As N-acylated indoles are a widespread motif in many pharma-
ceuticals and natural products [6-8], selective N-acylation of
indoles is very important. However, this process often requires
unstable and reactive acyl chloride, which results in a poor
functional group tolerance. Thus, developing a simple and effi-
cient method for the synthesis of N-acylindoles becomes much
attractive [9-12]. In 2009, Scheidt developed a dehydrogenative
approach using indoles and alcohols catalyzed by tetrapropyl-
ammonium perruthenate [13] (Scheme 1, Al). In 2012, Sarpong
successfully carried out chemoselective acylation of the
N(sp?)-H bond by using a catalytic amount of DBU for the
preparation of indoleamides [14] (Scheme 1, A2). Subse-
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Figure 1: Representative pharmaceuticals containing N-acylindole moieties.
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Scheme 1: A) Strategies for the synthesis of N-acylindoles; B) thioester as dicarbonylation reagent; C) recent work of our group; D) this work.

quently, Sundén reported an efficient chemoselective method
for the synthesis of indoleamide by oxidative organocatalytic
reaction of indole derivatives and conjugated aldehydes under
NHC catalysis [15] (Scheme 1, Al).

In 2019, Jiang and co-workers reported a dicarbonylation of
amine and aryl borates using a-ketothioester as a stable 1,2-
dicarbonyl reagent [16] (Scheme 1, B). Recently, we applied
S-methyl butanethioate in a Pd-catalyzed transthioetherification

or transthioesterification of aryl halides for the synthesis of
thioethers and thioesters [17] (Scheme 1, C). In addition, we
also used this reagent to trap alkylcopper(I) intermediates and
to form C-S bonds [18]. To the best of our knowledge,
thioesters have not been developed as indole N-amidation
reagent. Based on our continuous interest on thioesters, herein,
we report an efficient and chemoselective protocol for the
synthesis of indoleamide derivatives with thioesters as acyl

source.
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Results and Discussion

At the beginning of our studies, we selected 3-methyl-1H-
indole (1a) and S-methyl butanethioate (2a) as the model sub-
strates to establish this procedure. As shown in Table 1, differ-
ent bases were tried to improve the amidation reaction, and
CspCO3 was found the most suitable choice (Table 1, entry 1).
NaOr-Bu can also be used in this reaction and 82% yield could
be obtained. In addition, NaOH and K,CO3 were not suitable in
this procedure (Table 1, entries 3 and 4). Also the reaction did
not work in the absence of Cs,CO3 (Table 1, entry 5). Solvent
screening indicated that xylene was the best choice, and DMF,
THF, and MeOH were not suitable for this reaction (Table 1,
entries 7-9). When Cs,CO3 was reduced from 3.0 equiv to
2.0 equiv, 85% of the desired product could be obtained
(Table 1, entry 10). Subsequently, we conducted a temperature
optimization and 73% of the product was observed at 100 °C
(Table 1, entry 11).

Under the optimized reaction conditions, the scope of the reac-
tion by variation of indoles and thioesters was tested. As shown
in Scheme 2, a variety of functional groups, such as -OMe, -F
and -1, are tolerated providing the desired products with moder-
ate to excellent yields (Scheme 2, 3c—e). In addition, various
methyl thioesters could also participate in this reaction
smoothly (Scheme 2, 3g—r). Interestingly, S-methyl benzo-
thioate and S-methyl 4-methylbenzothioate could also take part
in this reaction and converted into the corresponding products
3s and 3t in 93% and 96% yield, respectively. Notably,

Table 1: Optimization of the reaction conditions@.
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carbazole could also be acylated with thioesters and 84% yield
of the desired product was obtained (Scheme 2, 3u).

With the established method for the N-acylation of indoles, a
2 mmol scale reaction was carried out. The reaction of
3-methyl-1H-indole (1a) and S-methyl butanethioate (2a)
proceeded smoothly and 1-(3-methyl-1H-indol-1-yl)butan-1-
one (3a) was obtained with 62% isolated yield (0.25 g,
Scheme 3). The results indicate that this N-acylation reaction of

indole has great potential in practical synthesis.

Some control experiments were conducted to explore the reac-
tion mechanism of this transformation (Scheme 4). When
S-methyl decanethioate (2i) was adopted without Cs,COj3, no
decomposition product was observed (Scheme 4, reaction 1).
When S-methyl decanethioate (2i) was treated under the
standard reaction conditions, 56% of 2i was recovered
(Scheme 4, reaction 2). Furthermore, without Cs,COj3, no
desired product could be obtained (Scheme 4, reaction 3). These
results indicate that CsoCO3 plays an important role in the
N-acylation process of indoles. The reaction of decanoic acid
and 3-methyl-1H-indole (1a) was also conducted under the
standard conditions, and no desired product was obtained, illus-
trating that 1-(3-methyl-1H-indol-1-yl)decan-1-one (3i) was not
transformed from decanoic acid (4) (Scheme 4, reaction 4).

A plausible reaction mechanism has been proposed based on the

results of the control experiments. As shown in Scheme 5, the

(0]
H
N o) Cs,CO3 (3.0 equiv) N)J\/\
+
7 MS/ xylene (2.0 mL) =
140 °C,12h
1a 2a 3a
Entry Variation from standard conditions Yield (%)°
1 none 97
2 NaOt-Bu instead of CsoCO3 82
3 NaOH instead of CsoCO3 trace
4 KoCOg3 instead of CsoCO3 trace
5 without Cs>CO3 NR¢
6 toluene instead of xylene 89
7 DMF instead of xylene 0
8 THF instead of xylene 0
9 MeOH instead of xylene 0
10 2.0 equiv CsoCO3 85
11 100 °C instead of 140 °C 73

aReaction conditions: 1a (0.2 mmol, 1.0 equiv), 2a (0.6 mmol, 3.0 equiv), Cs;CO3 (0.6 mmol, 3.0 equiv), xylene (2.0 mL), 140 °C, 12 h. PYield was
determined by GC using n-dodecane as the internal standard. °NR = no reaction.
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reaction starts with a base-promoted deprotonation of indole Fu nding

forming intermediate A. In the next step nucleophilic substitu-
tion between intermediate A and 2a occurs to give the desired
N-acylindole product and CsSCHj as byproduct [19-21]
(Scheme 5).

Conclusion

In conclusion, a chemoselective N-acylation of synthetically
valuable indoles has been developed by using thioesters as a
stable acyl source, a variety of N-acylated indoles could be ob-
tained efficiently. Beside indole, carbazole can also take part in

this reaction.
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