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ABSTRACT Fusarium proliferatum is a widely distributed fungal pathogen associ-
ated with more than 26 crop species important in global food security. Its strong
mycotoxigenic capability with potential impacts on human and animal health is well
recognized. In this work, we report the draft genome sequence of F. proliferatum
strain ITEM 2341, originally isolated from date palm, providing a platform for further
comparative and functional genomic investigations.

Fusarium proliferatum is an emerging fungal pathogen belonging to the F. fujikuroi
species complex within the Fusarium genus. The F. fujikuroi complex contains an

estimated 50 species (1). F. proliferatum is widely distributed and associated with econom-
ically important crops such as rice, maize, sugarcane, date palm, onion, and tomato (2). F.
proliferatum is able to cause different types of diseases, such as dieback, wilt, and rot, at
different stages of the crop affecting various parts. F. proliferatum can also colonize diverse
types of host plants, including maize and orchids, without displaying visible symptoms (3,
4). In addition to its direct impact on crop production, F. proliferatum is well recognized to
produce high levels of mycotoxins, such as fumonisins, which are secondary metabolites
known to be carcinogenic (4, 5). F. proliferatum ITEM 2341 was originally isolated in 1998
from the roots of date palm (Phoenix dactylifera) in Buraydah (Al-Qassim, Saudi Arabia;
http://server.ispa.cnr.it/ITEM/Collection/).

The F. proliferatum strain ITEM 2341 was grown in potato dextrose broth for 5 days
at 20°C. The mycelium was harvested using sterile muslin cheesecloth, air dried at room
temperature for 15 min, and ground into a fine powder in liquid nitrogen with a sterile
pestle and mortar. Genomic DNA was extracted from the mycelial powder using the
GenElute plant genomic DNA miniprep kit (product number G2N350-1KT; Sigma, UK).
The genome of F. proliferatum ITEM 2341 was sequenced using a combination of
paired-end and mate pair libraries with the Illumina MiSeq platform using the service
provider at the University of Cambridge, United Kingdom. Paired-end and mate pair
libraries were prepared using the Illumina TruSeq PCR-free kit and the Illumina Nextera
mate pair kit, respectively. The average length of DNA fragments used was 550 bp for
paired-end sequencing and 2.5 to 4 kb for mate pair sequencing. The numbers of reads
generated from the paired-end and mate pair libraries were 6,182,938 and 11,135,290,
respectively. At 300 bases per read length, the total number of bases generated was
�5.08 billion. FastQC version 0.11.5 was used to check the quality of the reads, and
low-quality bases with a Phred score of less than Q20 as well as adaptor sequences
were filtered using the BBDuk plugin within Geneious version 9.1.5. The curated reads
were assembled using SPAdes version 3.5.0 (6), providing an approximate coverage of
111�.

The nuclear genome of F. proliferatum strain ITEM 2341 was assembled in 104
scaffolds with a total assembly size of 45.50 Mb (48.29% GC content). The genome
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assembly included the following parameters: an N50 value of 1,822,579 bp, an L50 value
of 9, and a maximum scaffold size of 3,489,699 bases. Genome assembly quality
assessment using BUSCO version 3.0.2 (7) with the Sordariomyceta data set (3,725
genes) showed the presence of 3,691 genes (99.1% gene content). The nuclear genome
was annotated using the MAKER2 pipeline (8), and 14,379 protein-coding gene models
were predicted. SignalP version 4.1 (9) analysis revealed 1,488 secreted proteins
(10.35% of the predicted proteome). All software used for the assembly and analysis of
the genome was set at default parameters.

The genome sequence of F. proliferatum ITEM 2341 represents a useful platform for
further comparative genomic analysis of the adaptive divergence in this emerging
pathogen (10–12).

Data availability. The whole-genome shotgun project has been deposited in

DDBJ/ENA/GenBank under the accession number PKMI00000000 (BioSample number
SAMN08122925; BioProject number PRJNA420865; NCBI Sequence Read Archive [SRA]
accession numbers SRX4488677 and SRX4488678 [raw reads]) and released for access
by the research community. The version described in this paper is PKMI01000000.
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