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Abstract

Background

Myalgic encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) is a multi-system illness

characterised by a diverse range of debilitating symptoms including autonomic and cogni-

tive dysfunction. The pathomechanism remains elusive, however, neurological and cogni-

tive aberrations are consistently described. This systematic review is the first to collect and

appraise the literature related to the structural and functional neurological changes in ME/

CFS patients as measured by neuroimaging techniques and to investigate how these

changes may influence onset, symptom presentation and severity of the illness.

Methods

A systematic search of databases Pubmed, Embase, MEDLINE (via EBSCOhost) and Web

of Science (via Clarivate Analytics) was performed for articles dating between December

1994 and August 2019. Included publications report on neurological differences in ME/CFS

patients compared with healthy controls identified using neuroimaging techniques such as

magnetic resonance imaging, positron emission tomography and electroencephalography.

Article selection was further refined based on specific inclusion and exclusion criteria. A

quality assessment of included publications was completed using the Joanna Briggs Insti-

tute checklist.

Results

A total of 55 studies were included in this review. All papers assessed neurological or cogni-

tive differences in adult ME/CFS patients compared with healthy controls using neuroimag-

ing techniques. The outcomes from the articles include changes in gray and white matter

volumes, cerebral blood flow, brain structure, sleep, EEG activity, functional connectivity
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and cognitive function. Secondary measures including symptom severity were also reported

in most studies.

Conclusions

The results suggest widespread disruption of the autonomic nervous system network includ-

ing morphological changes, white matter abnormalities and aberrations in functional con-

nectivity. However, these findings are not consistent across studies and the origins of these

anomalies remain unknown. Future studies are required confirm the potential neurological

contribution to the pathology of ME/CFS.

Background

Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) is a complex spectrum dis-

order that affects 0.2–2.6% of the global population [1,2]. ME/CFS patients present with an

array of symptoms including cognitive, autonomic and neuroimmune disturbances, endocrine

dysfunction, in addition to impaired cellular energy metabolism and ion transport [3]. The

aetiology and pathomechanism underlying ME/CFS remains elusive [4]. Moreover, there are

no accepted targeted treatment regimens or diagnostic tests available [5]. Diagnosis is instead

achieved through the application of symptom-specific case criteria when all other explanatory

clinical causes have been excluded [6–8].

There are three criteria widely used to define ME/CFS patients: Fukuda (1994), Canadian

Consensus Criteria (2003) (CCC) and the International Consensus Criteria (2011) (ICC) [6–

8]. The Fukuda criteria, published by the Center of Disease Control and Prevention (CDC)

places emphasis on persistent fatigue that is unrelieved by rest in combination with at least

four out of a potential eight additional symptoms, including but not limited to joint pain,

throat soreness and impaired memory function [6]. The CCC and ICC built upon the Fukuda

criteria and included important hallmark symptoms including post-exertional malaise, immu-

nological and neurological symptoms that were not accounted for in the original Fukuda defi-

nition [7,8]. Although there is no consensus on the pathomechanism of ME/CFS, it has been

classified as a neurological disease by the World Health Organization since 1969 as autonomic

and cognitive dysfunction are key underlying features of this illness [9].

The nervous system is a tightly integrated network of nerves and specialised neuronal cells

that orchestrates many critical physiological functions including motor, sensory and cognitive

processing [10]. Evidence of disruption to this network is a consistent feature of ME/CFS that

has been assessed through various neuroimaging techniques [11–48]. Neuroimaging studies

involving the use of tools including but not limited to magnetic resonance imaging (MRI),

positron emission tomography (PET) and electroencephalography (EEG) have enabled

advancements in the detection of structural and functional abnormalities in ME/CFS and

other neurological diseases.

The primary aim of this systematic review was to collect and appraise the literature related

to the structural and functional neurological changes in ME/CFS patients as measured by

imaging techniques. Secondary to this, how neurological changes may influence onset, symp-

tom presentation and severity of the illness was also investigated. Cognitive impairment, sleep

and energy wave impairments, functional connectivity (FC), gray and white matter (WM)

changes and cerebral blood flow in adult ME/CFS patients compared with healthy controls

(HCs) form the major focal points of this review. This research serves as a platform to evaluate
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the usefulness of these imaging processes in characterising ME/CFS that may translate into a

potential future diagnostic tool and targets for pharmacotherapeutic intervention.

Literature search

This review was conducted in accordance with the Cochrane reviews and Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Fig 1). Relevant litera-

ture was retrieved through databases Pubmed, Embase, MEDLINE (via EBSCOhost) and Web

of Science (via Clarivate Analytics). A systematic search on these databases of full- text and

Medical Subject Headings (MeSH) terms “Syndrome, Chronic Fatigue” along with “Functional

Neuroimaging” or “Diagnostic Imaging” or “Tomography, X-Ray Computed” or “Magnetic

Resonance Imaging” or “Magnetic Resonance Spectroscopy” or “Magnetoencephalography” or

“Positron-Emission Tomography” or “Tomography, Emission-Computed, Single-Photon” or

“Electroencephalography” (S1 File) was performed between December 1994 and August 2019.

Search terms were combined using Boolean operators ‘OR’ to expand the search for all expres-

sions of cases and ‘AND’ to specify cases containing Syndrome, Chronic Fatigue in conjunction

with the listed neuroimaging terms. Two literature searches were completed for this systematic

review on separate occasions by two authors using the same search method. The primary

search was conducted on the 19th of August 2019 by RM and the 2nd search was conducted on

the 12th of September 2019 by SDP using the same methodological approach. Reference list

checking and citation searching was completed, and no additional papers were selected.

Searching for unpublished literature was not performed. No additional papers were identified

in the final search or through alternative databases such as Griffith University institute library

or Google Scholar.

Inclusion and exclusion criteria

Studies that contained two or more key search terms in the abstract or title and adhered to the

following inclusion criteria were selected for review: (i) published in 1994 or later; (ii) con-

ducted in human adults aged 18 years or over; (iii) written in English and available as full text;

(iv) were journal articles reporting on original research; (v) diagnosis of ME/CFS used the fol-

lowing case criteria: Fukuda (1994), CCC (2003), ICC (2011) or the Institute of Medicine

(IOM) diagnostic criteria (2015); (vi) all studies investigated neurological changes in ME/CFS

patients using neuroimaging techniques compared to HCs.

Articles were excluded from this review if they did not include at least two key search terms

in the abstract or title or if they adhered to any of the following exclusion criteria: (i) written

prior to the establishment of the Fukuda definition in 1994; (ii) conducted in human partici-

pants that were under 18; (iii) not written in English or not available as full text; (iv) were stud-

ies reporting on non-original data including: duplicate studies, case reports or review articles;

(v) use of alternative case criteria than those aforementioned; (vi) studies were not relevant to

the scope of this review. Publications were also excluded if the ME/CFS cohort was compared

with another patient group (e.g., fibromyalgia, or depression or chronic fatigue etc.) and not

compared with HC. All interventional studies were excluded.

Selection of studies

The open-source reference management tool Zotero was used to screen, sort and store the

retrieved articles from all databases. Screening involved reviewing and selecting articles based

on eligibility and exclusion criteria. Publications were selected independently by two different

authors using the same protocol to ensure the validity of the search. After selection of all
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Fig 1. PRISMA flow diagram of literature search for included studies in this review of neuroimaging and ME/CFS.

https://doi.org/10.1371/journal.pone.0232475.g001
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papers included in this review, the relevance of these papers was reassessed by other co-

authors.

Data extraction

Following the selection of papers relevant data was extracted including (i) study design; (ii) diag-

nostic criteria used; (iii) sample size; (iv) method of analysis/ neuroimaging technique used.

Quality assessment

All publications included in this systematic review were evaluated for quality and bias using the

Joanna Briggs Institute (JBI) Checklist (S2 File). Quality assessment was completed by two

authors (RM and SDP) on separate occasions. Each checklist item assesses the following: (1)

group matching, (2) source population, (3) criteria, (4) method of exposure, (5) assessment of

exposure, (6) identification of confounding variables, (7) management of confounding variables,

(8) measurement of outcomes, (9) exposure period selection, (10) statistical analysis. Items 4, 5

and 9 were excluded in selected papers as these items are specific for intervention studies.

Results

Across all databases, Pubmed (184), Embase (578), MEDLINE (250) and Web of Science

(343), a total of 1355 papers were identified using the selected search terms. Following removal

of all duplicates and application of all exclusion and inclusion criteria the total number of arti-

cles was refined to 55. The selection process as conducted according to the PRISMA guidelines

has been outlined in Fig 1. All papers assessed neurological differences in adult ME/CFS

patients compared to HCs using neuroimaging techniques.

Participant and study characteristics

Participant and study characteristics are presented in (S3 and S4 Files). Out of the 55 articles

included in this review, 52 were observational case-control studies [11–18,49–51] and three

(6.25%) were observational twin studies. The mean number of ME/CFS patients and HCs

included across all studies were 22.9 and 19.3 respectively. Females made up the largest pro-

portion of participants. There were only 10 studies which reported race, where majority of the

participants were Caucasian [12,19,21,26,27,37,41,47,48,52]. Mean age across all studies was

40.9 years for ME/CFS patients and 39.07 years for HCs. Only 16 out of 55 papers reported a

value for body mass index (BMI) or weight [11,12,17–19,35,37,38,41,43,53–55]. In all twin

studies, levels of zygosity were assessed and ascertained at 99.9% [12,21,27]. 47 of the 55 identi-

fied papers included participants that fulfilled the requirements of being diagnosed with the

Fukuda criteria [12,14,16–19,21–28,30,31,34–41,43–61]. Three of the papers used the more

stringent CCC criteria to classify ME/CFS patients [15,29,42]. The remaining five research

papers used either of the two aforementioned criteria [11,13,20,33,62]. No papers utilised the

IOM diagnostic criteria. For ME/CFS patients, mean illness duration was 9.68 years.

There were four different neuroimaging techniques used to assess neural changes in ME/

CFS compared with HCs. Out of the 55 studies: 16 studies utilised MRI [11,13–15,20,31–

36,43,53,58,62,63], 17 used functional MRI (fMRI) [16,18,21–24,26,34,40–43,45,49,49–51],

five used PET scans [17,25,28,30,44] and 11 used EEG [12,27,29,38,39,46–48,54,55]. The

remaining studies used magnetic resonance spectrometry (MRS) [19,52,59,60,64,65]. The arti-

cles reported on multiple outcomes including brain structure, cerebral blood flow (CBF), gray

and WM volumes, sleep and EEG, and FC. Key findings of each of the included studies have

been described in (S5 File).
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Literature reporting changes in cerebral blood flow

Of the included studies, six investigated changes in cerebral blood flow (CBF) in ME/CFS

patients compared with HCs [20,21,49,51,62]. Two of the studies reported significantly lower

CBF in ME/CFS patients compared with HC [19,62]. A study that utilised arterial spin label-

ling (ASL) saw less regional (rCBF) in the left cingulate cortex and right lingual gyrus in ME/

CFS patients [19]. This study also reported higher ventricular lactate in ME/CFS patients cor-

related with several measures of physical health and disability using MRS [19]. Another ASL

MRI study saw a significantly less global CBF in nine of the 11 patients studied, however the

remaining two ME/CFS patients showed greater CBF relative to HCs which did not reach sig-

nificance [49]. Another study showed that there were significantly higher CBF levels when pro-

vided with a Paced Auditory Serial Addition Test (PASAT) cognitive task, this then decreased

after three minutes. ME/CFS patients had significantly lower rCBF in superior temporal gyri

(STG), precuneus and fusiform gyrus during recovery compared to HCs [20]. A single-photon

emission computed tomography (SPECT) twin study found that there were no significant dif-

ferences in rCBF values between a healthy twin and a twin discordant for ME/CFS [21]. In an

ASL study no group differences were found in CBF or heart rate variability (HRV), however,

there was an inverse correlation between CBF, HRV and fatigue symptoms [51].

An ASL study investigated orthostatic intolerance (OI) in ME/CFS patients compared with

HCs. Severity of OI symptoms was associated with lower intracranial compliance (change in vol-

ume per unit change in pressure), and higher intracranial perfusion. There were no significant

differences in intracranial compliance or perfusion between ME/CFS patients and HCs [53].

Literature reporting changes in brain structure and function

One of the most frequently reported structural or functional differences occurred in the cingu-

late region. This feature was described in 15 studies [18,19,22–30,44,50,57,62]. A PET study

reported a 199% greater binding potential of 1C-R-PK11195, which shows neuroinflamma-

tion, in the cingulate region of ME/CFS patients compared with HCs. There was also a signifi-

cantly greater binding potential in the hippocampus, amygdala, thalamus, midbrain and pons

of patients compared with HC. For the cingulate region and the thalamus, this difference posi-

tively correlated with pain scores while the binding potential in the hippocampus correlated

with the depression score [25]. Another PET study found that there was significantly less [11C]

(+) MCN5652, a radiotracer used to detect serotonin transporters (5-HTT), in the anterior

cingulate of ME/CFS patients indicating a smaller density of 5-HTT [28]. There were also

reports of higher FC between the posterior cingulate cortex and the dorsal anterior cingulate

cortex in female ME/CFS patients that had strong positive association with the Chalder Fatigue

Scale score [24]. This finding was corroborated by two other studies, one using the same

method and another using ASL [16,62]. When fatigue was induced in ME/CFS patients, a

BOLD fMRI study found a significantly higher activation of the posterior cingulate gyrus,

occipito-parietal cortex and para-hippocampal gyrus in ME/CFS patients compared with HCs,

while dorsolateral and dorsomedial prefrontal cortex activation were lower. In a fluorodeoxy-

glucose (FDG)-PET study 12 patients showed bilateral hypometabolism of glucose in the cin-

gulate gyrus and adjacent mesial cortical areas compared to HCs while two patients showed

hypometabolism in the cuneus/ precuneus [44]. In ME/CFS patients, a significantly higher

perfusion of the anterior cingulate region and less perfusion elsewhere was exhibited in an

investigation using SPECT [26].

Disruption of hippocampus function was described in six studies [16,22,25,27,50,58]. Sig-

nificant differences in current source density was found in the parahippocampal gyrus in ME/

CFS patients compared with HCs [27]; this includes higher EEG delta power. Significantly
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reduced FC was also reported in the left parahippocampal gyrus of ME/CFS patients [16].

When dynamic FC (dFC) was assessed it was also found that it was reduced between the hip-

pocampus and right superior parietal lobe in ME/CFS patients and this correlated with task-

related fatigue [50]. BOLD fMRI studies found that para-hippocampal gyrus activation was

higher in patient groups during a fatigue inducing task [23]. Significantly reduced serotonin

receptors were detected using PET in the hippocampus of ME/CFS patients compared with

HC [17]. The ligand 1C-(R)-PK11195 was increased in the hippocampus of ME/CFS patients

signifying increased neuroinflammation and this correlated with depression scores [25]. Sig-

nificantly lower gray matter volume (GMV) was also detected in the posterior division of the

left parahippocampal gyrus in ME/CFS patients compared with HCs [58].

T1 weighted spin echo (T1wSE) and T2 weighted spin echo (T2wSE) studies found signifi-

cant increases in T1wSE, which responds to myelin levels in WM, in prefrontal WM (13) and

sensorimotor WM [15]. One of these studies also reported significant abnormal autonomic

correlations in the brainstem vasomotor centre, midbrain reticular formation and hypothala-

mus which were interpreted to result from impaired connections between them [14]. The

other study showed a strong link between brainstem GMV and pulse pressure in ME/CFS

patients compared with HCs [11].

While performing the valsalva maneuver ME/CFS patients that test positive or negative for a

temporomandibular disorder (TMD) and HCs all show activation of the superior and inferior

frontal gyri, the left and right putamen and thalamus, and the insular cortex. Compared with

those who screened negative for the TMDs and HCs, ME/CFS patients that have an accompa-

nying TMD showed greater activity in the left insular cortex and left caudate nucleus [61].

There were eight papers in total that discussed GMV in ME/CFS patients compared with

HCs [15,32–35,42,57,58]. A reduction in GMV was described in four articles [32,33,57,58]. A

voxel-based morphometric (VBM) study reported a significant decrease in GMV within the

bilateral prefrontal cortex in ME/CFS patients that correlated with pain severity [32]. Another

study using the same method also showed a significant decrease in GMV in regions including

the occipital lobes, right angular gyrus and the posterior division of the left parahippocampal

gyrus in ME/CFS patients compared with HCs [58]. Two other studies linked the reduction

of GMV in ME/CFS patients to a decrease in physical activity ability using VBM [36] and

reduced GMV in the contralateral regions to ME/CFS symptom scores using longitudinal

MRI [33]. The remaining two studies found no regional or global differences in GMV [35,42].

Nine papers mentioned significant WM changes in ME/CFS patients compared to HCs

[11,14,15,31,33,34,42,58]. Four of the articles described a decrease in WM volume (WMV). A

T1w and T2w MRI study found that WMV is decreased in the mid-brain of ME/CFS patients

compared with HCs [11]. This finding was also consistent in two other studies using the same

method [13,42], one which correlated this decrease with prolonged fatigue duration [13,42].

Another study that used phase-contrast, quantitative flow MRI reported significantly lower

WMV in the pons and right temporal lobe in ME/CFS patients compared with HCs [34]. ME/

CFS patients were also found to have significantly decreased WMV in the occipital lobes, the

left inferior fronto-occipital fasciculus and adjacent areas [33,58]. Evidence of bilateral WM

atrophy in ME/CFS patients has been reported and this was accompanied by an increase in

cortical thickness in both arcuate end points, the middle temporal and precentral gyri, and the

occipital lobe [31].

Literature reporting changes in brain metabolites

Six studies investigated changes in brain metabolites this includes: N-acetylaspartate, choline

and creatine [19,52,59,60,64,65]. Two studies reported an increase of choline- containing
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compounds respective to creatine or unsuppressed water peaks [59,60]. One study found that

higher temperatures in the right insula, putamen, frontal cortex, thalamus and cerebellum

were associated with elevated lactate/ creatine ratios [65]

Ventricular lactate levels were assessed in three studies [19,52,64]. All studies reported sig-

nificantly greater levels of ventricular lactate in ME/CFS patients compared to HCs [19,52,64].

One study associated this difference in ventricular lactate to an increase mental fatigue [52].

Another study reported a negative correlation between ventricular lactate levels and physical

health and disability scores [19].

Literature reporting changes in sleep quality

Sleep was investigated in three of the 48 studies. One of the studies found that ME/CFS

patients had significantly reduced EEG alpha power, theta, sigma and beta spectral power dur-

ing stage 2, slow wave sleep and rapid eye movement (REM) while delta power was reduced

during slow wave sleep and then elevated during stage 1 and REM when compared to HCs

[37]. Another study found that ME/CFS patients had lower occipital and central ultra-slow

(US) delta power and higher occipital theta and alpha power compared with HCs. ME/CFS

patients were also found to have significantly impaired subjective sleep quality compared with

HCs [55]. A twin study found that there were no significant polysomnographic differences in

REM latency, delta, fast frequency beta or alpha power between the ME/CFS twin and healthy

twin [12].

An MRI study investigated structural differences that were associated with unrefreshing

sleep in patient groups compared to HCs. Using the Pittsburgh Sleep Quality Index (PSQI),

sleep quality of ME/CFS patients was significantly correlated with MRI signal intensities in the

medial prefrontal cortex [42].

Literature reporting changes in electrical activity

Nine articles discussed significant changes in energy waves using EEG [12,27,29,37,38,46–

48,55]. These articles include the three previously mentioned papers that discussed EEG

electrical activity in relation to sleep [12,37,55]. In addition to this, one article reported that

increased ultra-slow (US) delta waves was approximately one fifth lower in ME/CFS groups

compared with HCs. Theta, alpha, sigma and beta waves did not significantly differ between

groups [38]. A twin study that used EEG Low-resolution electromagnetic tomography analysis

(LORETA) found that there was significantly higher delta power in the left uncus and parahip-

pocampal gyrus and higher theta power in the cingulate cortex and right superior frontal gyrus

in the ME/CFS monozygotic twin compared with the healthy twin [27]. A study using the same

method of analysis, LORETA also found hypoconnectivity in the delta, alpha and alpha-2 bands

in patient groups compared to their respective HCs [29]. In another investigation small world-

ness, defined by the level of integration and clustering of neural networks, in the delta band was

found to be significantly lower in ME/CFS patients compared with HCs [47]. Furthermore, one

study detected lower beta 2 level current density in the somatomotor cortex, superior parietal

lobe and medially in the precuneus and posterior cingulate of ME/CFS patients during a resting

condition quantitative EEG (qEEG). The same study also found greater current density of delta

frequency bands in ME/CFS patients compared with HCs [48]. A brain electrical mapping

(BEAM) EEG study found that there were significantly elevated levels of delta, theta and alpha 1

waves in the right frontal and left occipital regions [46]. When requested to complete word

finding and dot localisation cognitive tasks, significant differences in EEG source activity in the

left frontal-temporal- parietal regions in ME/CFS patients were compared with HCs. Patients
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were able to be successfully characterised at 83% by alpha band data when completing a cogni-

tive task [39].

Literature reporting changes in functional connectivity

Seven studies investigated changes in FC in ME/CFS patients compared with HCs

[16,24,29,47,50,62]. In an ASL study, patients showed significant differences in FC relative to

HCs. These differences include higher FC between regions including the bilateral superior

frontal gyrus, anterior cingulate cortex (ACC), precuneus, and right angular gyrus to right

postcentral gyrus, supplementary motor area, posterior cingulate gyrus and thalamus [16].

These differences strongly correlated with overall clinical fatigue. An ASL fMRI study showed

both differences in static FC (sFC) and dynamic FC (dFC) [50]. This finding also linked dis-

rupted FC with fatigue scores and has been corroborated by two other articles included in

this review [24,62]. Another study using eLORETA EEG found hypoconnectivity in the delta,

alpha and alpha-2 frequency bands in patient groups compared with HCs. Resting state con-

nectivity deficits were also described in the occipital, parietal, posterior temporal and posterior

cingulate in the ME/CFS cohort. A positive correlation between cognitive impairment and dis-

rupted connectivity in the central executive network (CEN), salience network (SN) and default

mode network (DMN) was also described in ME/CFS patients [29]. Another study using the

same technique, found that there was significantly lower delta small-worldness in ME/CFS

patients which was negatively correlated with neurocognitive impairment scores [47]. To sup-

port this, at resting state FC between the medial prefrontal cortex and inferior parietal lobules

were weaker in the ME/CFS cohort, however, when performing a stroop task the FC was

found to be significantly more complex [63].

Literature reporting changes in cognitive function

There were 14 studies that reported on significant neurological findings in association with

cognitive function in ME/CFS patients compared with HCs. A SPECT study reported that

ME/CFS patient performance on the PASAT task was equivalent to HCs, however, activation

of the anterior cingulate was much greater during the task [26]. In another study, when pro-

vided with a fatiguing task, there was no significant difference in responsiveness in task

dependent regions in ME/CFS patients compared with HCs, however, patients had reduced

response in the auditory cortices while controls had a constant response [45]. Using ASL

reported higher fatigue levels in both ME/CFS patients and HCs using PASAT which was

accompanied by increased CBF which then progressively decreased after three minutes. Dur-

ing recovery, when compared with HCs, ME/CFS patients exhibited a significant decrease in

rCBF in the superior temporal gyri (STG), precuneus and fusiform gyrus [20]. Another study

reported a significant increase in the activation of occipito-parietal cortex, posterior cingulate

gyrus and para-hippocampal gyrus in ME/CFS patients compared with HCs following being

subjected to a fatigue inducing task [23]. This same investigation reported a significant

decrease in activation of dorsolateral and dorsomedial prefrontal cortex in ME/CFS patients

relative to HCs. These findings were reversed in an anxiety-provoking situation [23]. A fMRI

study using n-back tasks to measure working memory function found that the memory net-

works were activated, and performance levels were high in both ME/CFS patients and HCs.

ME/CFS patients, however, had significantly reduced activation in the dorsolateral, prefrontal

and parietal cortices and increased activation in the medial prefrontal regions including the

anterior cingulate compared with HCs during 1-back condition. During the 2- and 3- back

conditions ME/CFS patients also had significantly stronger large clusters in the right inferior/

medial temporal cortex. This activation was dependent on task load [22]. A BOLD study
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found that ME/CFS patients had more extensive use of the working system network when pro-

vided with an audio processing task [40]. A later study saw that there were no differences in

mental fatigue and brain activity in simple auditory monitoring tasks in both groups, however,

there were marked differences in these in the cerebellar, temporal, cingulate and frontal

regions in ME/CFS patients when requested to complete a working memory task [18]. This

difference was evident following the control of baseline fatigue levels. Using the same tech-

nique, it was found that ME/CFS patients recruit a wider region of cortical and subcortical

regions and had significantly lower SampEns characteristic of lower information capacity.

One EEG P300 study found that there was lower performance by ME/CFS patients in digit

symbol and finger tapping task (FTT) compared with HCs [54]. There was no significant

difference in performance in auditory verbal learning test (AVLT) nor digit span tasks.

In a rapid event-related fMRI, while similar neural networks were activated including the

dorsal anterior cingulate cortex in both groups, the ventral anterior cingulate cortex was active

in error trials in HCs, however, this was not activated in ME/CFS patients. Performance in

ME/CFS patients was also significantly slower compared with HCs [57]. A BOLD fMRI study

found that there was increased complexity in the posterior cingulate cortex in the default

mode network in both resting state and during a stroop task. FC between the medial prefrontal

cortex and inferior parietal lobules were significantly weaker in the resting state and more

complex in the ME/CFS group during the task.

An fMRI study reported a significant decrease in activation of the right caudate and right glo-

bus pallidus in ME/CFS patients compared with HCs when subjects performed a gambling task.

This correlated with an increase in mental fatigue, general fatigue and reduced activity [41].

When requested to perform a physical effort task, ME/CFS patients were found to have a

reduced feedback related activity in the dorsolateral, prefrontal cortex proportional to state-

related fatigue and prior beliefs about task performance ability compared to HCs.

Literature reporting changes in secondary outcomes

Secondary outcomes were investigated in 43 out of 55 studies [11,13,14,16–33,35,36,38,41–

48,50,51,54,57,58,62]. Secondary outcomes are presented in (S6 File). These outcomes

included: quality of life (QoL), sleep, pain and fatigue scores. These were measured using a

variety of different tools including Hospital Anxiety and Depression Scale (HADS), bell score,

36-Item short form survey (SF-36), multidimensional fatigue inventory (MFI), clinical inter-

view schedule- revised (CIS-R) and visual analogue scale (VAS). Almost all studies found

depression, anxiety, pain and fatigue scores were significantly higher in ME/CFS patients com-

pared with HCs while physical function was higher in HCs. Cognitive impairment and mental

fatigue were also measured and found to be greater in ME/CFS patients compared with their

respective HCs in all cases where assessed.

Quality assessment

To assess each article’s quality and bias the JBI checklist was used (S7 File). The most com-

monly addressed item was item eight where 55 (100%) of the studies’ outcomes were assessed

in a standard, valid and reliable way [11–51,53–58,62]. Item six and seven followed where 49

(89.1%) of the studies were able to effectively identify confounding factors and mitigate them

[11–45,47,48,50,51,53–55,57]. This was either achieved through inclusion or exclusion criteria,

restrictions to certain classes of medications, caffeine or alcohol, and statistical adjustments. 48

(87.3%) studies addressed item one where they utilised methods to appropriately match ME/

CFS patients and HCs [11–14,16–27,29,31,34–46,48,50,51,53–58,62]. This was most commonly

achieved through age and sex-matching as well as weight and handedness- matching. Item two
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was the least addressed checklist item by all included studies with only 20 out of 55 studies

(36.4%) reporting source population information [12,18,21–24,26,27,29,30,32,34,37,41,45–

47,53,62]. All twin studies were able to effectively adhere to this item through the condition

that twins needed to be reared together [12,21,27]. While all papers included case-criteria defi-

nition used to select patients as assessed by item three, details on HC criteria were omitted or

unclear in 11(20%) of the cases [17,28–30,32,36,47,49,55]. Item four, five and nine related to

whether the exposure was measured in a standard and valid way, whether how it was measured

was consistent across participants and HCs and if the exposure period was sufficient to show

an effect. While these items were not applicable to all cases, the articles that did have an expo-

sure were consistently administered across both case and control groups 100% of the time.

The exposure period was sufficient to in all cases (100%) [17,18,20–23,25–28,30,34,40,41,43–

45,50,57]. In most of the cases (20 out of 21), standard and valid measures for exposures was

adhered to [12,17,18,20–23,25–28,30,34,40,41,43–45,50,57]. Thirty four articles (61.8%)

included appropriate statistical analysis, this is inclusive of normalisation of datasets where

necessary and adjusting for multiple comparisons [11,13,14,17–19,22–24,27–34,36,39,41–

43,45,48,53,55,57,58].

Discussion

Although there is no consensus on the pathomechanism of ME/CFS, neurological and cogni-

tive dysfunction are key underlying features of this illness. The primary aim of this systematic

review was to collect and appraise the literature related to the structural and functional neuro-

logical changes in ME/CFS patients as measured by neuroimaging techniques.

The mean age across all studies was 40.9 years for ME/CFS patients and 39.1 years for HCs.

When considering the average illness duration of patients which was 9.68 years, this is consis-

tent with epidemiological data that reports that onset of ME/CFS predominantly occurs

around 29–35 years [66]. A greater proportion of participants included in this analysis were

female (3:1, female: male), this was due to the preponderance of women who have ME/CFS

[67]. Some studies [12,16,24,35,36,38,39,50,51,54,57,62] only selected females due to availabil-

ity and to control for morphological and physiological differences in the brain and associated

structures between sexes when pooling data [62]. These include differences in GM density and

volume. For studies that did not appropriately sex-match their participants, this was a major

shortcoming of their study as they could not account or adjust for these significant differences

between sexes [62].

From the 55 studies, 14 handedness-matched the participants, this involves grouping

patients on the basis of being right-handed, left-handed or ambidextrous. This was a conserva-

tive approach to account for potential atypical lateralisation and other implications handed-

ness has on brain structure and function. In a VBM study of 465 healthy adult brains they

found minimal effect of handedness on symmetry [68]. This is supported by a review article

that assessed the effect of handedness on the findings from numerous different neuroimaging

techniques [69]. Therefore, handedness matching may not be a necessary consideration for

future imaging studies.

In 14 studies, participants were weight or BMI matched. This was an effective measure to

reduce the impact weight differences may have on neurological morphology and function;

including, GMV and functional activation and/ or connectivity. As physical exercise also con-

tributes to these differences, three studies (6.25%) recruited only sedentary controls [18,21,53].

Recruitment of only sedentary HCs to control for the effect of exercise on brain morphology

and function is an important consideration for future studies. Three of the included papers

were monozygotic twin studies [12,21,27]. Each twin pair shared at least 99.9% zygosity and
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comprised of a healthy twin and one discordant for ME/CFS [12,21,27]. The inclusion of an

unaffected twin as a HC is effective in limiting the impact of genetic differences on brain mor-

phology [12,21,27,70]. As the included studies had twins that were reared together, this might

also effectively control for differences in environmental exposures [12,21,27]. There may be a

limitation to using twin studies as ME/CFS has a significant genetic component and the effect

this may have on the twin without a current diagnosis of ME/CFS is not known [71].

Out of the 55 papers, 43 relied on the Fukuda criteria to classify ME/CFS patients. With the

requirement of only four key symptoms for a diagnosis, this criterion has been criticised for

being too broad [6]. In addition to this, there is considerable overlap of key symptoms with

other non- ME/CFS illnesses. Due to this potential overlap, the inclusion of additional patient

characteristic information such as infection onset is also an important consideration for future

studies. CCC and ICC-defined patients are a more homogenous subset of patients [7,8]. Across

these studies there were only a small proportion of patients that fell under CCC and no patients

included that were defined by ICC or IOM criteria [11,13,15,20,29,33,42,62]. This may be due

to the lack of availability of participants that fall under these more refined CCC, ICC or IOM

criteria. As Fukuda patients are a more heterogeneous subset of patients, this may explain the

variability seen both within and between the studies. Inclusion of the Fukuda criteria was a

limitation of our search strategy, however, due to this criteria being still abundantly used in

research and clinical practice, limiting our search to not include papers that relied on the

Fukuda criteria would drastically reduce the availability of appropriate papers in this field [72].

All these studies use standard clinical procedures to assess different aspects of neurocogni-

tive function. While magnetoencephalography articles were searched, based on inclusion and

exclusion criteria none of them were included in this review. Across all studies, no two used

the exact same method or came to the same findings.

With the studies that investigated CBF in ME/CFS patients relative to controls there were a

variety of results documented. This includes higher CBF volume reported in patients as well as

no significant differences when compared to HCs. CBF values are sensitive to many parame-

ters including exercise, cardiovascular health and blood pressure. OI is a symptom observed in

a subset of ME/CFS and this also has been found to influence CBF levels [53,73]. However, it

should be noted that the presence of OI was not consistently documented in these studies.

Based on these results it is evident that CBF is an inconsistent correlate of ME/CFS.

The available literature shows conflicting evidence regarding changes in GMV in ME/CFS

patients compared with HCs. A study conducted by de Lange et al reported lower levels of GM

in ME/CFS patients [34,36]. These findings, however, were unable to be replicated when con-

ducted in a larger representative sample [34–36]. This follow-up study by Van der Schaaf et al
[34] instead found no regional change in GMV in ME/CFS patients compared with HCs, a

finding also corroborated by Shan et al and Barnden et al. [74]. In contrast, Finkelmeyer et al
reported an increase in GMV in ME/CFS females compared with HCs. As with rCBF, GMV

changes are sensitive to a plethora of interferential factors including chronic pain, stress, age,

physical activity and insomnia [74]. As these features are variable, it is difficult to control for

them and draw appropriate conclusions on GM volumes in ME/CFS patients.

WM changes including WMV [11, 13,14,15] and WM atrophy [31] were reported

[11,14,15,31,33,34,42,58]. Bilateral WM atrophy accompanied by increased cortical thickness

in both arcuate end points, the middle temporal and precentral gyri and the occipital lobe was

described by Zeineh et al [31]. Four studies reported a decrease in WMV in ME/CFS patients

in regions including the mid-brain, pons, right temporal lobe, occipital lobes and left IFOF

[13,33,34,58]. Depression and anxiety often co-exist with ME/CFS and these disorders have

been found to have disrupted WM architecture. A study conducted by Barnden et al [13] pro-

posed that MRI differences in ME/CFS exist independent of the influence of these conditions.
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This article predicts that impaired brainstem nerve conduction is a result of depleted brain-

stem myelin. Impaired brainstem conduction can consequently lead to disrupted sensory,

motor and cognitive function [75] and could explain multiple symptoms observed in ME/CFS

patients including autonomic dysfunction, impaired cognition and sleep disturbance [11,13].

A more recent article by Barnden et al. [15] supported this case and suggested that this may be

due to an upregulation of myelin in the sensorimotor cortex which was a potential compensa-

tory mechanism to maintain brainstem-sensorimotor connectivity.

Inflammation of the midbrain along with cingulate, thalamus, amygdala, pons and hippo-

campus was reported by Nakatomi et al. [25]. While the underlying cause of the neuroin-

flammation in ME/CFS is unknown, overactivity of neurons resulting in the production of

proinflammatory cytokines, reactive oxygen species and nitrogen species was proposed as a

potential mechanism [25]. Shungu et al. [19] found that ventricular lactate and cortical GSH

were inversely correlated. As they detected an increase of ventricular lactate in ME/CFS

patients, depleted GSH was also observed. It was suggested that this was an indicator of

redox dysregulation and increased oxidative stress [19]. This finding was supported by two

other studies [52,64]. Studies that investigated this may be potentially due to Miller et al.
[41] who described neuroinflammation as a potential mechanism underlying impaired neu-

rotransmission in the basal ganglia. These features strongly suggest a neuroimmune process

underlying ME/CFS pathology.

The most common morphological changes occurred within the cortical regions. The corti-

cal regions are important for higher order processing and includes the cingulate cortex [76].

The cingulate region has broad roles in emotional, cognitive and error processing [77].

Changes in the cingulate cortex have also been associated with cognitive disruption, and this

was observed in three of the included studies. Disruptions to working memory was also a con-

sistent feature shown across studies that investigated cognitive ability in ME/CFS patients

compared with HCs.

The cingulate cortex has strong reciprocal connections to the orbitofrontal cortex, the basal

ganglia and the insula. The basal ganglia have important roles in reward-processing. Dysfunc-

tion of the basal ganglia has also been implicated in ME/CFS [41]. A fMRI study by Miller

et al. [41] found that when performing a monetary gambling task, the right caudate and right

globus pallidus were found to have significantly less activation in ME/CFS patient groups com-

pared with HCs. The decreased activation detected in the right globus pallidus correlated with

increased mental fatigue, general fatigue and reduced activity [41].

Disruption of the hippocampus was also observed in six studies. In the study conducted by

Nakatomi et al. [25] they found that the binding potential of 1C-(R)-PK11195, a marker for

neuroinflammation, in the hippocampus correlated with depression scores in ME/CFS

patients. Significantly reduced serotonin receptors were also detected in ME/CFS particularly

in the hippocampus. Depression is a comorbidity prevalently seen in patient groups as shown

in the secondary measures and has been strongly associated with changes in this structure

[78]. While the role of the hippocampus in ME/CFS pathology is not fully understood this

indicates the importance of controlling for these comorbidities either statistically or through

more stringent criteria.

Due to having strict inclusion and exclusion criteria on the basis of Cochrane guidelines,

one paper, Kimura et al (2019) that was within the scope of the review, was excluded on the

basis of not containing two key words in the abstract and title. This paper identified micro-

structural changes in ME/CFS using the MRI technique diffusional kurtosis imaging and neur-

ite orientation dispersion and density imaging. A feature found in ME/CFS patients compared

to HCs was that there was significantly lower mean kurtosis in the right superior longitudinal

fasciculus. This pathway is involved in processes such as emotion, language, attention and

PLOS ONE A systematic review of myalgic encephalomyelitis/ chronic fatigue syndrome and neuroimaging

PLOS ONE | https://doi.org/10.1371/journal.pone.0232475 April 30, 2020 13 / 20

https://doi.org/10.1371/journal.pone.0232475


memory and could be altered in ME/CFS patients, the study, however, is limited by sample

size and the contribution of potential gender bias [79].

Disrupted FC was consistently reported in all six papers that conducted a FC analysis. The

central executive CEN, SN and DMN are the most referred to intrinsic connectivity network

relating to ME/CFS pathology. These networks are highly interconnected and disruptions to

all three networks were correlated to cognitive dysfunction in ME/CFS patients. Abnormalities

in the absence of a task were reported for all three and can provide insight into performance

deficits with cognitive tasks [62].

Sleep disturbances have been described in ME/CFS patients, this is inclusive of: changes in

sleep efficiency, unrefreshing sleep and sleep fragmentation [37,55]. A common trend found

within these studies is that objective sleep measures did not correlate with subjective reports

provided by ME/CFS patients. It was proposed that this difference may have arisen from a

misperception. Shan et al. [42] found that there were brain structural differences in the medial

prefrontal cortex that were associated with unrefreshing sleep, suggesting that there are struc-

tural impairments related to the subjective measure of impaired sleep quality. There were

numerous more sleep studies investigating ME/CFS, however these are not covered in the

scope of this review. Sleep specific—phenotypes and their association with ME/CFS patients

still has not been determined.

Multiple differences in EEG activity have been reported. Decreased ultra-slow delta power

in ME/CFS patients has also been reported [38]. These US delta power results suggest that

there may be impairment at the level of cell membrane potential oscillations or neural recruit-

ment. This shows the importance of going beyond conventional EEG bands [38]. BEAM iden-

tified significant differences in delta, theta and alpha 1 in the right frontal and left occipital

regions between ME/CFS patients and HCs. This all suggests reduced activity in ME/CFS

patients. The findings also indicate a decrease in overall complexity suggestive of relatively

inhibitory state in brain function [46].

Due to functional impairment observed in the autonomic nervous system (ANS) of ME/

CFS patients, the system may undergo progressive changes to adjust and compensate for this

impairment. Numerous potential examples of ANS compensatory mechanisms were present

across the studies; this includes, midbrain changes in nerve conduction resulting in down-

stream adaptation of the same circuits and upregulation of myelin in ME/CFS patients com-

pared with HCs. Increases in FC in patient groups in response to disrupted FC elsewhere is

another possible example of compensation [50,80]. Shan et al [33] also described neural plas-

ticity through a longitudinal MRI study by assessing changes in left IFOF WM volumes over

six years in patients compared to respective controls. While the effect of plasticity on the ner-

vous system and ME/CFS is not well understood, longitudinal studies may be an important

consideration for future studies in contrast to cross-sectional studies to better describe ME/

CFS specific changes.

The search for definitive cerebral signatures for ME/CFS remains difficult. The lack of

reproducibility of the studies and low sample size also contribute to the inability to arrive at a

consensus regarding potential neurological markers for ME/CFS. There are, however, consis-

tent examples of altered brain health, e.g. an increase in neuroinflammation suggestive of a

neuroimmune mechanism and reduced functional efficiency.

Quality assessment

Quality levels were variable across the included studies in this review. All studies utilised stan-

dard measures for clinical evaluation of neurological changes including MRI, fMRI, PET and

EEG. While all papers included selection criteria for ME/CFS patients, criteria for HCs were
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often omitted or not considered. Studies that applied two or more forms of patient-control

matching, of which one had to be sex-matching, were deemed as successfully addressing item

1: whether the groups were comparable other than the presence of disease in cases or the

absence of disease in HCs. This is due to the structural and physiological neurological differ-

ences between males and females, as well as discrepancies caused by weight and age. A large

proportion of the studies identified potential confounding variables and control measures; this

includes sex-, weight and age- matching, exclusion of certain medication classes, restriction of

caffeine and alcohol as well as statistical adjustments for confounding factors such as anxiety

and depression. The least addressed criterion was item two. This criterion assesses whether

patient and HC groups were appropriately matched with regards to socio-demographic char-

acteristics. This level of detail was only included in 39.6% of the studies in this review. One lim-

itation of this quality assessment is that while quality measurement is on a spectrum level, the

responses to these checklist questions provided could only be addressed at a categorical level,

thus possibly introducing inter-reviewer bias. Recommendations for future studies in this field

include independently analysing data from both sexes, referencing patient socio-demograph-

ics, providing additional information including comorbidities and medications.

Future directions

Validation of these findings reported in this review with larger sample sizes is necessary. Since

the publication of many of these articles, the Fukuda definition is used less prominently in clin-

ical and research practice. Emerging research will utilise the CCC, ICC and the IOM criteria

more frequently. This change will allow for standardise patient cohorts to be analysed. Addi-

tionally, advancing technologies will also improve this area of research including the introduc-

tion of 7T MRI which offers improved spatial and contrast resolution; this may assist in

discerning these findings. Use of machine learning tools such as ensembles will also revolution-

ise this field particularly in improving robustness, reducing error and allow recognition of

imaging signatures at a single individual level [81].

Conclusion

This is the first systematic review that collected and appraised available literature relating to

these neurological changes in ME/CFS patients as measured by neuroimaging techniques.

Although there is a lack of agreement on the origins of this illness, ME/CFS patients exhibit

widespread autonomic disruption inclusive of morphological changes, WM abnormalities and

aberrations in FC. These characteristics were, however, not consistent across the studies and

further research is required to understand neurological involvement in ME/CFS pathology.
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