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The tight relationship between the gut and liver on embryological, anatomical and
physiological levels inspired the concept of a gut-liver axis as a central element in the
pathogenesis of gut-liver axis diseases. This axis refers to the reciprocal regulation
between these two organs causing an integrated system of immune homeostasis or
tolerance breakdown guided by the microbiota, the diet, genetic background, and
environmental factors. Continuous exposure of gut microbiome, various hormones,
drugs and toxins, or metabolites from the diet through the portal vein adapt the liver to
maintain its tolerogenic state. This is orchestrated by the combined effort of immune cells
network: behaving as a sinusoidal and biliary firewall, along with a regulatory network of
immune cells including, regulatory T cells and tolerogenic dendritic cells (DC). In addition,
downregulation of costimulatory molecules on hepatic sinusoids, hepatocytes and biliary
epithelial cells as well as regulating the bile acids chain also play a part in hepatic immune
homeostasis. Recent evidence also demonstrated the link between changes in the gut
microbiome and liver resident immune cells in the progression of cirrhosis and the tight
correlation among primary sclerosing cholangitis (PSC) and also checkpoint induced liver
and gut injury. In this review, we will summarize the most recent evidence of the
bidirectional relationship among the gut and the liver and how it contributes to liver
disease, focusing mainly on PSC and checkpoint induced hepatitis and colitis. We will also
focus on completed therapeutic options and on potential targets for future treatment
linking with immunology and describe the future direction of this research, taking
advantage of modern technologies.
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INTRODUCTION

The strategic anatomical localization and blood supply from the
portal vein links the liver and the gut tightly both anatomically
and functionally. A wide variety of commensal microorganisms,
microbial and food antigens, or xenobiotics, reach the liver
through the portal blood from the spleen and mesenteric veins,
exposing the liver to continuous immunogenic stimuli. As a
frontline organ facing the influx from gut mucosal barriers, the
liver continuously maintains the balance between immunity and
tolerance to maintain homeostatic state of human body.

On the other hand, molecules secreted by the liver in the bile
reach the gut, to configure a bidirectional crosstalk the so-called
gut-liver axis. Molecules that make up the bile salts can shape the
gut immune system and regulate the gut microflora (1–3).
Gut Microbiota
The gut microbiome has recently been found to be an active part
in the complex relationship between the liver and the gut (4). It is
composed of a wide collection of microorganisms, and the
dominant phyla are Firmicutes, Actinobacteria, Bacteroidetes,
Proteobacteria, Fusobacteria, and Verrucomicrobia, with the
Firmicutes and Bacteroidetes representing over 90% of the
flora (5). The composition of the gut microflora changes
during an individual’s lifespan (6, 7). After birth, the gut is
colonized by vertical transmission from the mother to the infant
and its maturation and composition is shaped by different
factors, such as the method of feeding, the mother’s diet or the
exposure to medications (e.g. antibiotics) (8–11). The
microbiome composition becomes more stable after the first
two years of life and is mostly characterized by Firmicutes and
Bacteroides (7).

The gut microbiome has been extensively investigated over
the last decade to dissect its physiological function and its
association with gut and liver diseases. Although many aspects
of the gut microbiome are yet to be clarified, it maintains stability
of the gut barrier and the maturation of the mucosal associated
immunology, and its primary function is the involvement of a
large number of metabolic processes (12–15).
ROLE OF BILE ACIDS IN GUT-LIVER AXIS

One metabolic process is the metabolism of the biliary acids
(BAs): the primary bile acids, namely the cholic acid and the
chenodeoxycholic acid, are synthesized and secreted in the bile
by the hepatocytes. The BAs are essential for the digestion of the
lipids and the fat-soluble vitamins. The metabolism of the BAs is
a paradigmatic example of the interaction between the gut and
the liver. Primary BAs recirculate in a highly efficient
enterohepatic circulation, and only around 10% of the secreted
BAs are newly synthesized by the hepatocytes. In fact, a fraction
of BAs are reabsorbed passively, whilst most of them are actively
reabsorbed through the apical sodium dependent ileal BA
transporter expressed by the enterocytes in the terminal ileum.
The bile acids bind farnesoid X receptor (FXR) in the enterocyte,
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promoting the transcription the fibroblast growth factor (FGF 19)
(16). FGF 19 binds FGF4 receptor and Klotho-beta, inhibiting the
bile acid synthesis (Figure 1). A small proportion of the primary
BAs, after reaching the colon, are deconjugated by the microflora
into the secondary BAs, lithocholic acid and deoxycholic acid. The
former is reabsorbed and after being conjugated in the liver is
secreted in the bile (16). An abundance of the deoxycholic-acid
affects themicrobiota compositionandhasbeenrelated toobesity in
non-alcoholic fatty liver disease (17). Thus, new treatment such as
obeticholic acid has been shown to be hopeful for NAFLD therapy.

They exert the metabolic effect upon the activation of nuclear
receptors (e.g. farnesoid X receptor, FXR) and G-protein coupled
bile salt receptor, TGR5. The activation of FXR has been shown
to improve glucose tolerance and insulin resistance in murine
models (18, 19). Upon their action on FXR, bile acids can
FIGURE 1 | Primary bile acids after being secreted from the hepatocytes into
the bile, are reabsorbed in the terminal ileum via the apical-sodium dependent
bile acid transporter. The increased intracellular concentration of BAs is
sensed via FXR and lead to the production of fibroblast growth factor 19 and
to its secretion into the portal circulation. FGF19 binds FGF4 on hepatocytes
surface and lead to the downregulation of Cyp7A1 and in turn inhibiting de-
novo primary bile salt synthesis.
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improve glucose metabolism after a meal. The stimulation of FXR
and in turn the induction of FGF19, reduce the plasma glucose and
induce glycogen synthesis (20). The FXR signaling also inhibits the
glucose-induced transcription of several genes involved in glycolysis
(21). The metabolic effects of bile acids extend to lipid synthesis.
FXR-/- mice show increased triglycerides both in liver and serum,
alongside cholesterol. FXR activation reduces hepatic lipogenesis,
increases the synthesis of apolipoprtein CII and A5 and inhibits
ApoA1 and ApoCIII, thereby promoting the reduction of serum
triglycerides activating lipoprotein lipase in very low-density
lipoprotein (VLDL) (22, 23). Finally, FXR stimulates fatty acid
oxidation inducing human peroxisome proliferator-activated
receptor a (PPARa) (24).

TGR5 activation increases basal metabolism and in turn
promotes energy expenditure. Secondary bile acids activate
TGR5 in brown adipose tissue in mice or in muscle in human,
increasing the basal energy consumption (25, 26). This metabolic
change prevents obesity and reduce insulin resistance in mice
(27). The effect on the glucose metabolism includes the induction
of the glucagon like peptide 1 secreted from enteroendocrine
L cells, an incretin secreted after the meal in order to regulate
insulin secretion (28).

Ultimately, the bile acids binding the farnesoid X receptor, in
the enterocyte promote the gut vascular barrier integrity,
preventing the translocation of pathogens in the portal
circulation (29). Agonist of both these receptors have been
proposed as treatment in liver diseases. Obeticholic acid an FXR
agonist, has been approved in 2016 as an add on treatment for
ursodeoxycholic acid non-responders in primary biliary
cholangitis. This medication has been shown to be effective in
reducing liver fibrosis (NASH fibrosis) in non-cirrhotic
patients (30).

Gut Barrier and Mucosal
Immune Response
The gut barrier is a functional unit which prevents bacterial
adhesion and controls paracellular trafficking. It is composed,
starting from the outer layer, by the gut microbiota, the mucus
layer which contains antimicrobial products (such as defensin)
and the secretory IgA, the epithelium which is both a physical
and immunological barrier and the gut associated lymphoid
tissue. A new entity has been recently discovered on the gut
defense line, the gut-vascular barrier, known as 4KDa large
which prevents the translocation of the bacteria from the gut
to the bloodstream (31). Its structure resembles the blood-brain
barrier, formed by the endothelial cells linked by tight junctions
in close contact with pericytes and fibroblast.

The disruption of the gut barrier alongside an overgrowth of
Gram negative bacteria has been linked to multiple liver diseases,
as NASH and alcoholic liver disease. Inflammatory mediators
such as interferon-gamma or toxic molecules like ethanol can
affect the functional integrity of the gut-barrier, causing a “leaky
gut” (32, 33). This setting would allow endotoxin, Gram negative
bacteria and lipopolysaccharide (LPS) to translocate to the portal
system and these inflammatory triggers are postulated to be
involved in the pathogenesis of chronic liver diseases.
Frontiers in Immunology | www.frontiersin.org 3
Hepatic Immunological Response
to Gut Permeability
The gut-barrier prevents the translocation of microbial antigen
into the portal circulation. Nonetheless, the small part of
microbial associated molecular patterns (MAMPs) (e.g., LPS,
peptidoglycan or lipoteichoic acid) which eludes the barrier and
reaches the liver parenchyma is detected and destroyed before
reaching the systemic circulation (34). This is carried out by
Kupffer cells which play a major role in the initial immune
response creating a sinusoidal firewall against circulating
pathogenetic material and bacterial derivatives from the
gastrointestinal tract (35). They are anchored to the sinusoidal
surface and their protoplasmic processes can insinuate in the
endothelial fenestrae to reach the Disse space.

This strategic position of the liver exposes them to a large
number of antigens coming from the portal bloodstream. In
physiological settings they promote tolerance, reducing the
recruitment and activation of T cells including regulatory T
cells (Tregs) which control effector T cells via suppression of
effector cells proliferation and their cytokine secretions (36, 37).
A protective barrier has been shown also on the biliary side and it
is represented by the Mucosal Associated Invariant T (MAIT)
cells (38). These unconventional T cells express a conserved TCR
alpha chain Va7.2-Ja33 and recognize vitamin B metabolites of
microbial origins via the MHC-related molecules 1 (39).
Intrahepatic MAIT cells have been localized in the portal area
around the bile tract. They have been found to interact with the
biliary epithelial cells to protect the biliary mucosa (40). Liver
retained MAIT cells express chemokine receptors CCR6 and
CXCR6 homing them close to the biliary epithelial cells (BECs)
which express and secrete CCL20 and CXCL16. Thus, when
exposed to bacterial products, MAITs degranulates, releasing
IFN-gamma upon MR1 stimulation to protect the biliary
epithelium (40–42).

The protective function of the gut and liver barriers and the
tolerogenic response of the liver are vital for a harmless
cooperation between the liver and the gut. The failure of the
gut barrier in preventing the translocation of microbe associated
molecular patterns (MAMPs) exposes the liver to an increased
volume of immune stimuli. Hepatic Kupffer cells, hepatic
sinusoidal endothelial cells (HSECs) and biliary epithelial cells
(BECs), recognize MAMPs via pattern recognition receptors
(PRRs) or nucleotide-binding oligomerization domain like
receptors (NLR) and in turn shape the immune liver milieu
toward an inflammatory status causing a liver injury and
eventually progression to fibrosis (43–45).

A “leaky gut”, alongside a reduction in LPS tolerance has been
theorized as a central player in chronic inflammation in liver
diseases (46). A typical example of this paradigm is the primary
sclerosing cholangitis (PSC). PSC is characterized by chronic
inflammation and fibrotic destruction of the biliary system. It is
frequently associated with inflammatory bowel disease,
particularly with ulcerative colitis (47). The extent of the gut
inflammation is associated with the grade of the intestine
permeability and, in turn, with the bacterial-derived endotoxin
in the portal circulation (48). We, hereby describe the
August 2021 | Volume 12 | Article 711217
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immunological cross-talk between the gut and the liver, focusingon
PSC compared with PBC and checkpoint induced hepatitis and
colitis with particular attention on completed therapeutic attempts.
CHECKPOINT INHIBITORS IN
GUT-LIVER AXIS

Checkpoint inhibitors (CPI) are currently used as standard of
care treatment for melanoma, non-small cell lung cancer,
urothelial malignancy, and prostate cancer. Therapies that target
coinhibitory receptors or immune checkpoints inhibitors, CTLA-4,
PD1, PDL-1, TIGIT, LAG-3 andTIM3are currently at the forefront
of treatment strategies for cancer. Immune checkpoint inhibitor
(ICI) therapy is rapidly developing and is positioned as a crucial
treatment within the field of oncology. Although these therapies
have improved survival rates of patients carrying various tumors
(49, 50), ICIs are also associated with immune-related adverse
events and reflect their unique mechanisms of action. These
adverse events are known to cause severe colitis and liver injury.

Immune checkpoint blockade with mono-clonal antibodies
(mAbs) targeting programmed cell death protein 1 (PD-1)
provides long-term clinical benefits to nearly 40% of patients
with advanced melanoma (51–54). It is now recognized that ICIs
are frequently associated with luminal gastrointestinal side effects
such as diarrhea and enterocolitis and hepatic complications
such as hepatitis.
PROTOTYPE DISEASE OF GUT-LIVER
AXIS: PRIMARY SCLEROSING
CHOLANGITIS

PSC, a chronic, progressive biliary disease associated with
inflammatory bowel disease (IBD), is one of the best examples
of immune mediated liver disease related to gut-liver axis.
Currently there is neither curative therapy (55) or treatment to
slow the progression of PSC to advanced liver disease (56).
Genetic studies have shown that HLA class II alleles associated
with ulcerative colitis (UC) are different from those found in
patients with PSC and patients with PSC and inflammatory
bowel diseases (IBD) (57).

While the pathogenesis of PSC has not been fully elucidated,
one hypothesis involves the migration of gut mucosal memory
lymphocytes to the liver which then causes focal inflammation
and fibrosis within the large and/or small bile ducts (58, 59).
Current available standard medical therapy only includes
ursodeoxycholic acid (UDCA) which does not benefit the
overall survival. Liver transplantation remains the only curative
therapy in PSC (60, 61). 60-80% of PSC patients have coexistent
IBD (62). The phenotype of IBD in PSC has particular
characteristics, such as involvement of the entire colon with
right-sided dominance, ileal inflammation, and relative rectal
sparing. It has been suggested that the IBD associated with PSC is
its own distinct entity separate from Ulcerative colitis (UC) or
Crohn’s disease (CD) alone (63).
Frontiers in Immunology | www.frontiersin.org 4
Sufficient epithelial barrier function aswell as innate and adaptive
immune regulation is required for a lifelong balanced response to
dietary antigens as well as for commensal and pathogenic organisms
which can infect the small and large intestine. If the immune
regulation fails because of changes in environment and lifestyle,
the accumulation of common genetic susceptibility variants, chronic
intestinal inflammation can arise. Inflammatory bowel disease (IBD)
encompasses Crohn’s disease (CD) and ulcerative colitis (UC). IBD
is characterized by chronic relapsing disease activity of acute flares
and intervals of remission (64, 65).

One hypothesis to explain the co-occurrence of IBD and PSC
due to the interaction between the gut and the liver is known as
‘the aberrant gut homing lymphocyte hypothesis’ (58). This
hypothesis describes an aberrant expression of gut homing
molecules such as CCL25 and MadCAM-1 in PSC liver, leading
to homing of CCR9 and a4b7 expressing gut-primed CD8
memory T-cells into the liver. In patients with PSC-IBD, there is
a recurrence of PSC following transplantation if small bowel or
colon is still intact (66). This would explain the mechanism for T
cell trafficking between the gut towards the liver supporting the
important mechanism of liver-gut immune axis in these diseases
(67). Current standard of care treatment for IBD not only includes
immunosuppressive medication and biologic therapies such as
anti-TNF therapies (infliximab), a4b7 blockade (Vedolizumab) is
now routinely used for IBD patients to prevent mucosal T cell
homing (68). Sequencing of the TCRb repertoire data
demonstrated that memory T cells of common clonal origin
were detected in paired gut and liver samples of patients with
PSC-IBD. This suggests that memory T cells driven by shared
antigens are present in the gut and liver of PSC-IBD patients (69).
Therefore, therapeutical targeting memory T cell recruitment in
PSC-IBD with Vedolizumab is a beneficial therapy.

‘PSC microbiota’ or the ‘leaky gut’ theory implies that the
pathogenic gut microbiota crosses through the inflamed gut wall
into the portal circulation, and then into the biliary tree, leading to
PSC (70). We currently have fecal microbiome treatment for IBD
patients and this will be extended to PSC patients in the near future.
PRIMARY BILIARY CHOLANGITIS:
IS THERE A GUT-LIVER LINK?

Primary biliary cholangitis (PBC) is a chronic autoimmune
cholestatic liver disease. The immune damage targets the small
and medium intrahepatic biliary ducts, causing a progressive
damage which eventually leads to fibrosis and cirrhosis (71). The
PBC pathogenesis is still enigmatic and the current hypothesis is
that environmental factors (e.g. infections) can start the process
in individuals with a genetic predisposition (72).

A damage in the gut barrier in PBC has been hypothesized as
a pathogenetic factor. The higher permeability of the small
intestine shown in PBC (73, 74), might be at the basis of the
increased LPS levels observed in PBC patients compared with
healthy controls (75). Intriguingly, long-standing exposure to
bacterial antigens causes the development of PBC-like histological
August 2021 | Volume 12 | Article 711217
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features in BALB/c mice (76). Altogether these evidences suggest a
failure in gut barrier in PBC patients.

The interest around this pathogenic angle has recently
increased as well as the effort to investigate the microbiome in
PBC (77–79). Microbiome alpha diversity is reduced in PBC and it
shows a distinct beta diversity compared with healthy controls due
to the increased of the genera Streptococcus, Lactobacillus, and
Bifidobacterium (80). The interplay between bile acids metabolism
and microbiome in PBC has been nicely elucidated by Chen and
colleagues. They showed how the BA composition in serum and
feces significantly differ in UDCA-naïve PBC patients compared
with healthy controls. PBC BA pool was associated with a
decreased conversion of conjugated and unconjugated, and
primary to secondary BAs. These results suggest an impaired
microbial BA metabolism. This effect appears to be related with
the severity of the disease, as the BA abnormality correlates
positively with the disease stage (77). The first line of treatment
in PBC is ursodeoxicholic acid (UDCA) which seems, to have a
role in restoring the gut microbiome in PBC patients (80).
Frontiers in Immunology | www.frontiersin.org 5
INFLAMMATORY BOWEL
DISEASE AND PSC

Chemokines and chemokine receptors crosstalk are essential in
gut-liver immune traffic. Lymphocyte recruitment to the gut
from the circulation involves a range of chemokines and
adhesion molecules. Chemokine CCL25 aids in the trans-
endothelial migration of gut-homing T-cells, so enhanced
expression will promote infiltration of T cells. Expression of
CCL25 is normally confined to the epithelium and mucosal
vessels in the small intestine (81), where it interacts with gut-
homing B and T cells expressing its receptor, CCR9 (Figure 2).
In the inflamed liver there have been reporting’s of strong
expression of CCL25 on the hepatic vessels (47). Although
CCL25 is largely absent from the non-inflamed human colon,
expression is markedly upregulated in colitis and correlates with
inflammatory activity (84). CCL25 expression in the colon is
associated with high frequencies of CCR9+ tissue-infiltrating
effector T-cells in patients with colitis. Thus, CCR9 and CCL25
August 2021 | Volume 12 | Article 711217
FIGURE 2 | Overview of the gut-liver axis homing of cells in primary sclerosing cholangitis (PSC). (A) Dendritic cells recognize pathogens penetrating the mucosal barrier and
subsequently migrate to the mesenteric lymph node to present their antigens to naïve T cells (82). These naive T cells are imprinted with the gut-homing integrin a4b7 and
chemokine receptor CCR9 via the transformation of retinol into retinoic acid. (B) The gut-primed T cells recirculate into the gut bind onto the endothelium of the blood vessels
via interactions between MAdCAM-1 and a4b7, CCL25 and CCR9. (C) CCR10 expressing Tregs and gut-primed memory T cells expressing a4b7 and CCR9 migrate from the
gut to the liver via the portal vein. These concepts are applied in PSC to develop new therapies such as Vedolizumab. Chemokine CXCL12 is thought to play a role in
maintaining CCR9+ lymphocytes around the bile ducts (83).
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interactions drive the recruitment of mucosal effector cells in the
gut as well as the liver in patients with ulcerative colitis (84).
Once an antigen is recognized by gut dendritic cells, they imprint
naïve T cells with gut specific chemokine receptor CCR9 and
integrin, a4b7 (85). These primed T cells subsequently migrate
back to liver (47, 83, 86). Deamination of methylamine by
vascular adhesion protein-1 (VAP-1) - semicarbazide sensitive
amine oxidase found in the human liver – induces the expression
of function MAsCAM-1 in hepatic endothelial cells and intact
human liver tissue ex-vivo. This is associated with increased
adhesion of lymphocytes from patients with PSC to hepatic
vessels (87). It has been reported that there is an aberrant
expression of the gut-specific molecules MAdCAM-1 and
CCL25 in human PSC livers (47, 59, 88). This correlates with
a4b7+CCR9+effector memory T-cells which constitute
approximately 20% of the liver-infiltrating lymphocytes in PSC
patients (47). This would explain the recurrence of PSC after
liver transplantation in patients with intact inflamed colon.

Due to MAdCAM-1 expression by portal endothelium coupled
with the presence of chemokine CCL28 and integrin a1b7 around
the bile ducts, the inflammatory trigger in PSC originates in the
portal area e.g. in the bile ducts, thereby provoking cholangitis and
not hepatitis (89). Krijger et al. demonstrated the expression of
CCL28 in PSC liver (89). CCL28 is also upregulated in the
epithelium of the colon during inflammation, subsequently
attracting T and B cells expressing CCR10 (90). Studies using
flow-based adhesion assays demonstrate CCL28 is able to trigger
a4b7-dependent lymphocyte arrest (83). In addition, VCAM-1
expression by cholangiocytes promotes the survival of intrahepatic
a4b7 expressing effector T lymphocytes subsequently contributing
to the persistent inflammation (91).

To translate our knowledge of discovery science to clinics,
several compounds have been developed to tackle and block the
migration of gut-homing mucosal lymphocytes to treat patients
with IBD and PSC. These compounds block a4b7 (vedolizumab,
abrilumab), integrin b7 (etrolizumab), and MAdCAM-1
(ontamalimab). Although studies have focused predominantly
on the treatment of IBD with these compounds, their potential to
block trafficking to the liver suggests they could also be a future
treatment option for PSC-IBD and also for inflamed bowel even
after liver transplantation (92, 93).
TRANSLATING IMMUNOLOGY TO
THERAPY: VEDOLIZUMAB IN PSC
AND IBD

Vedolizumab is a humanized monoclonal antibody that binds
specifically to the a4b7 integrin, a mediator of gastrointestinal
inflammation (94, 95). Blocking a4b7 on memory T-helper
lymphocytes by vedolizumab inhibits the adhesion of cells to
MAdCAM-1 which is expressed on inflamed portal vein
endothelium in patients with IBD and PSC. The inhibition of this
interaction prevents the transmigration of gut-homing memory T
cells across the vascular endothelium leading to reduction in
inflammation (96, 97). Safety and efficacy of vedolizumab has
been demonstrated in large-scale GEMINI clinical trials in both
Frontiers in Immunology | www.frontiersin.org 6
Crohn’s disease (CD) and ulcerative colitis (UC). Clinical remission
rates of 39% and 42% was achieved with vedolizumab in both CD
and UK respectively, and this effect was maintained for a year (98,
99). This led to the approval of vedolizumab by the UK Food and
Drug Administration (FDA) and EuropeanMedical Agency (EMA)
in 2014 to treat CD and UC. Studies since its approval have proven
its efficacy [e.g., the VERSIFY study (100)] and the efficacy of early
versus late use in CD [LOVE-CD trial (101)]. Cohort studies have
also demonstrated improved disease control, corticosteroid sparing
and a decline in concomitant drugs, with a significant proportion of
patients remaining on vedolizumab by the end of the observation
period (102).

Several studies have suggested that the gut-homing pathways
that vedolizumab targets is implicated in the pathophysiology of
PSC (47, 59, 103). Therefore, vedolizumab may play a role in
reducing lymphocyte infiltration in PSC and thereby in reducing
hepatic and biliary inflammation. However, there have been
varied findings on the efficacy of vedolizumab in PSC.
Researchers have shown that vedolizumab therapy did not
significantly improve markers of biliary inflammation (104,
105), however, vedolizumab can induce clinical remission in
rheumatologic extraintestinal manifestations of IBD (106).
Patients with more aggressive disease, such as the presence of
cirrhosis and potentially those with a raised ALP at baseline, were
more likely to respond (107).
MANIPULATING GUT MICROBIOME WITH
VANCOMYCIN IN PSC

The microbiota plays an important role in the pathogenesis and
the progression of PSC. This concept was applied recently to treat
patients with PSC. Antibiotics, such as vancomycin, was utilized in
clinical trials to modify intestinal microbiota flora. Trial data
demonstrated that vancomycin could improve liver biochemistry
in PSC patients (108). This evidence suggested that disease
progression in PSC can be modified by antibiotic therapies.

Vancomycin is a glycopeptide antibiotic with bactericidal
activity against Gram positive bacteria (109) which includes
various Clostridium spp. known to be primarily involved with
the dihydroxylation of primary bile acids, into the secondary bile
acids present in the distal small intestine and colon (110, 111).
Secondary bile acids are highly hydrophobic and toxic, and
increased concentrations in the liver have been linked to
inflammation, cholestasis and carcinogenesis (112). Therefore,
vancomycin could influence bile acid metabolism. A meta-
analysis study by Shah et al. exploring the effects of antibiotics
vancomycin and metronidazole in PSC patients demonstrated
that overall antibiotic therapy significantly improved primary
outcome measure alkaline phosphatase enzyme level. The use of
vancomycin in patients with PSC have not only biochemical
benefits but also cholangiography and histological improvements
to PSC and decreased intestinal inflammation of the IBD on
colonic biopsies (113). Multiple studies have reported similar
results in both adults and children with PSC (108, 114–116)
supporting that modification of intestinal microbiota has
beneficial effects by changing gut-liver immune dynamics.
August 2021 | Volume 12 | Article 711217
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POTENTIAL ROLE OF REGULATORY
T CELL THERAPY IN PSC

Tregs are crucial to maintain control of the magnitude of
immune responses to self-antigens and to limit tissue damage
caused by immune activation in response to these antigens (117).
The immune-regulatory function is impaired in autoimmune or
inflammatory diseases. Thus, Treg therapy in PSC is worth
exploring as a potentially curative therapy. IL-2 infusion
therapy to expand Tregs in vivo has been investigated in
mouse models of cholangitis reporting a 5-fold increase in
hepatic Tregs, and cells are localized around the inflamed
portal tracts. The increase in Tregs subsequently resulted in
reduction of pro-inflammatory IL-17 cytokines and increase in
anti-inflammatory IL-10 production by hepatic lymphocytes.
Low dose IL-2 infusion therapies have been carried out in
human autoimmune diseases (118) and a majority of findings
resulted in a decrease in disease severity. Although this has not
yet been trialed in autoimmune liver diseases, the current mouse
and human data suggest IL-2 infusion alone may not be enough
to decrease the disease severity but should be considered in
combination with Treg infusion therapies.

Thus, vendolizumab, vanomycin and Treg therapy are the
current in-trial strategies with described benefits in aspects of the
gut-liver injury related to PSC and IBD. However, further trials
are needed to prove their beneficial effects in a high percentage of
patients. However, not all patients respond to a particular
treatment and therefore it is important that we have a variety
of treatments to have the best possible chance to help every
patient. Therefore, it is also important that we continue to
explore new therapies as well as progressing those that are
currently looking promising in the trail phases.
IMMUNE MEDIATED GUT-LIVER INJURY:
CHECKPOINT INHIBITOR INDUCED
COLITIS AND HEPATITIS

Checkpoint Inhibitors Induced Hepatitis
It is not uncommon that checkpoint inhibitors lead to untoward
immune mediated injury including hepatitis and colitis. In a
study looking at 414 patients undergoing treatment with CPI, 28
(6.8%) were diagnosed with immune related hepatitis (119). The
rate of severe acute hepatitis was similar in patients treated with
anti-CTLA-4 and patients treated with anti-PD1/PD-L1. Immune
related hepatitis is one of the highest occurring adverse event
associated with immunotherapy, especially when anti-CTLA-4
and anti-PD1/PD-L1 are prescribed as a combination therapy
(120, 121). Immunological changes resulting from CPI drugs may
contribute to the immune related hepatitis. Peripheral CD8 T cells
in CPI induced hepatitis showed elevated activation/cytotoxicity
and is associated with peripheral monocyte activation (122). CD8
T cells/macrophage were also shown to aggregate in CPI induced
hepatitis patients shown using immunohistochemistry staining.
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Check Point Inhibitors Induced Colitis
Check point inhibitors can lead to colitis as an adverse effect.
Recent summary work on colitis suggested that most cancer
patients were treated with CTLA-4 inhibitors, followed by PD-1
inhibitors, or combination therapy. A study on a total of 226
patients with CPI-induced colitis suggested that these patients
were treated with steroids (oral or intravenous). Because CPI
induced injury is an immune mediated event, it responds to
immunosuppressive therapy and biologic treatment which
targets the immune pathway. Of these, 61% responded to
steroids alone whilst 47% required further treatment with anti-
TNF, infliximab. 94% of patients treated with infliximab had
resolution of colitis. 8 patients were treated with vedolizumab
after steroid failure and all of these patients had resolution (123).
Thus, global immunosuppression with steroid, manipulating TNF
and blocking a4b7 on memory T-helper lymphocytes are current
approach of treatment is these cases. Excitingly, new research
focuses on understanding the role of modifying microbiome in the
gut and also to enhance the regulatory arm of the immune system
to treat CPI induced colitis and hepatitis (Figure 3).
Potential of Fecal Microbiome Therapy
CPI-Induced Colitis and Hepatitis
Microbiome-targeted therapies manipulate the gut micro flora
and can be considered in several categories, namely probiotics,
synbiotic, antibiotics and fecal microbiome therapy (FMT).
Probiotics are defined as a culture of living microorganisms
which could have health benefits for the human if consumed in
adequate amounts (124). Synbiotics are a combination of
probiotics and prebiotics, in which prebiotics are composed of
fermentable dietary fibers that stimulate the growth and survival
of probiotics (124). Vancomycin is a typical example of antibiotic
which change gut flora.

FMT is a procedure in which stool is collected from a healthy
donor and transferred to a patient, via a range of delivery routes
including colonoscopy, nasogastric tube, and enema (125). The
gut microbiome is a major regulator of responses to anti-PD-1
(126–128). In mice, composition of the gut microbiomemodulates
therapeutic activity and anti-PD-1 and anti-programmed death-
ligand 1(PD-L1), and administration of FMT promotes anti-PD-1
efficacy in melanoma bearing mice (129–131). A single FMT
administered colonoscopically together with PD-1 blockade
successfully colonized the gut of patients and reprogrammed the
tumor microenvironment to overcome primary resistance to anti-
PD-1 in a subset of patients with advanced melanoma (132).

The STOP-COLITIS trial (lead by University of Birmingham)
is currently ongoing for FMT therapy in non-CPI colitis and the
data is encouraging. A recent study applying FMT to treat 2 cases
of CPI-colitis demonstrated that it is effective in a subset of
patients. Although both patients received stool from the same
donor, they experienced contrasting treatment responses. One
patient had a high level of activation (as measured by co-
expression of HLA-DR and CD38) on CD4, CD8 and MAIT
cell subsets as well as high Ki-67 and low expression of Bcl-2
before FMT treatment. Post FMT, there was reduced expression
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of HLA-DR and CD38 and lower expression of Ki-67 with high/
homeostatic levels of Bcl-2 and an increased proportion of Tregs
(133). Thus, actual mechanism and predictor of FMT treatment
still requires further investigations.

In the context of liver disease and FMT application, the gut
microbiota has been implicated as a central factor in the
pathophysiology of PSC. Commensal microbiota and its
metabolites protect against biliary injury (134). PSC patients
not only display a characteristic microbial signature but also have
inflammatory bowel disease, thereby suggesting that
manipulation of the gut microbiota could potentially influence
the disease process in PSC. Thus, FMT therapy to treat gut-liver
disease such as PSC is a new and upcoming therapeutic option.
One pilot study conducted by Allegretti et al. demonstrated the
safety of FMT in 10 patients with PSC, they also suggested that
the subsequent increases in bacterial diversity and engraftment
may correlate with an improvement in Alkaline phosphatase
enzyme among patients with PSC (135).
FUTURE DIRECTIONS

Understanding the immunological link between the gut and the
liver is essential for the success of curative therapies to treat related
diseases. Current treatment for IBD patients is hampered by side
effects such as myelotoxicity, sepsis, or reactivation of opportunistic
infections. To date, there is no treatment in PSC. In addition, only
global immune suppression with steroids is generally applied for
checkpoint induced hepatitis and colitis in Oncology arena. Thus,
dissecting immune pathway is crucial in targeted and organ-
specific personalized therapy based on pathogenic mechanisms.
New technology including single cell genomic, proteomic,
metabolomic, microbiome (Multi-OMICs) profile of patients will
guide us to apply treatment as a stratified medicine approach with
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reduced side effects. FMT therapy currently seems to be the most
promising but future studies with substaintial patient numbers are
needed to confirm that this is a beneficial treatment. For this to be
an effective and curative therapy, exploring the tissue resident cell
gene, protein and functional signatures and understanding their
microenvironment is an absolute requisite. Application of modern
techniques such as single cell RNA sequencing, adaptive cells
clonotype and spatial gene signature expression of gut-liver
immune mediated diseases would guide us to achieve a
personalized medicine approach in future.
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FIGURE 3 | Anti-cancer treatment disrupts self-tolerance leading to colitis and hepatitis, current research is focusing on microbiome therapy and Treg therapy to
combat these diseases. Treg therapy aims to switch the balance from the effector cells arm to the Treg arm. Microbiome therapy via fecal microbial transplantation
aims to modulate the microbiome by direct interaction or competition leading to host immunity modulation.
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