

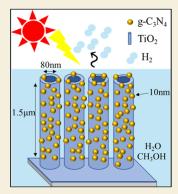
pubs.acs.org/materialsau

s licensed under CC BV NC ND 4 0 @ 10 S

CVD Grown Sub 10 nm Size g-C₃N₄ Particle-Decorated TiO₂ Nanotube Array Composites for Enhanced Photocatalytic H₂ Production

Kosei Ito,* Sho Yoneyama, Shusuke Yoneyama, Paul Fons, and Kei Noda*

Cite This: ACS Mater. Au 2025, 5, 299-307


ACCESS I

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: TiO_2 nanotube arrays (NTA) have attracted much attention among photocatalysts because of their large specific surface area and easy surface transfer of excited electrons, and in recent years, attempts have been made to further improve their properties by forming Z-schemes when they are composited with other photocatalysts. However, as the spacing within and between nanotubes is only a few nanometers, the formation of heterojunctions is extremely difficult when TiO_2 –NTA is composited with other photocatalytic materials with larger grain sizes. Creating nanoparticle photocatalysts with dimensions smaller than those of the nanotube system is thus required to effectively form heterojunctions. We have constructed an original vacuum chemical vapor deposition (CVD) system with fine temperature control, an attribute that we believe is necessary for the preparation of small nanoparticles. Using this system, it is possible to greatly reduce the polymerization rate of melamine, the precursor of the carbon nitride (g- C_3N_4) photocatalyst, which offers the benefits of increased reduction power and a metal-free composition. As a result, g- C_3N_4 small nanoparticles with particle sizes of about 10 nm were

successfully prepared, and heterojunctions could be formed even inside TiO_2 -NTA. The fabricated TiO_2 -NTA/g-C₃N₄ composite structure exhibited significantly improved redox power and photocatalytic hydrogen production compared to TiO_2 -NTA and g-C₃N₄ alone. In addition, while the hydrogen production rates for TiO_2 -NTA and g-C₃N₄ were almost constant, TiO_2 -NTA/g-C₃N₄ showed a rapid increase in the hydrogen production rate after a certain period of light irradiation, which was presumably caused by oxygen desorption from g-C₃N₄. The results of this study provide a method for supporting small nanoparticle materials on nanotube substrates and their importance in improving photocatalytic properties, and will also make a significant contribution not only to the field of photocatalysis but also to other fields requiring small nanoparticle materials.

KEYWORDS: TiO2 nanotube arrays, carbon nitride, chemical vapor deposition, small nanoparticles, photocatalyst

1. INTRODUCTION

Titanium dioxide (TiO₂) photocatalysis has been studied by many researchers since it was reported by Honda et al. in 1972. Among TiO₂ photocatalysts, TiO₂ nanotube arrays (NTA) have attracted much attention because of their large specific surface area and easy surface transfer of excited electrons (Figure 1a). In addition, NTA is a substrate material and can be used for a wide range of practical applications. Recently, attempts to improve the performance of TiO₂-NTA have been carried out by combining TiO₂-NTA with other materials to enhance both the reduction power and spatial separation of electron-hole pairs, which have been weak points of TiO₂-NTA.^{3,4} This form of composite photocatalysts with enhanced oxidation and reduction power is widely known as Z-scheme photocatalysts, and the key to an efficient Z-scheme system is the formation of appropriate heterojunctions. Photocatalysts with strong reducing power, such as Cu₂O,⁵ CdS,⁶ and g-C₃N₄,⁷ have been investigated in combination with TiO₂-NTA. In this study, we attempted to complex g-C₃N₄ (which can be synthesized semipermanently, inexpensively, and easily) with TiO₂-NTA.

Initially, TiO_2 –NTA was heated with melamine (a precursor of g-C₃N₄) in the same crucible. After growth, a g-C₃N₄ film was found to have covered the TiO_2 –NTA, as shown in Figure 1b. The experiment was then carried out again with a large reduction in the amount of melamine in the crucible, but a heterogeneous composite was synthesized with a thin film and large g-C₃N₄ particles on top of the TiO_2 –NTA (Figure 1c). This is not favorable for the formation of heterojunctions, which are key to Z-scheme photocatalysis and have been found to be a common problem in other previous studies. One way to overcome these problems is to thermally dissociate the g-C₃N₄ powder into small nanoparticles and support the small nanoparticles on TiO_2 –NTA. However, the thermal dissoci-

Received: August 16, 2024
Revised: November 6, 2024
Accepted: November 25, 2024
Published: December 9, 2024

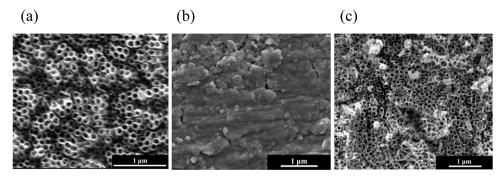


Figure 1. (a) SEM image of the as-grown TiO_2 -NTA. (b) The SEM image of TiO_2 -NTA/g- C_3N_4 synthesized by heating melamine (2 g) and TiO_2 -NTA in the same crucible. (c) The SEM image of TiO_2 -NTA/g- C_3N_4 synthesized by heating melamine (0.1 g) and TiO_2 -NTA in the same crucible.

ation process leads to defects and amorphization of the original $g\text{-}C_3N_4$ material. In addition, physical vapor deposition is undesirable because it weakens the adhesion of the film to the substrate.

To solve the above problems, it is essential to create pure small nanoparticles of g-C₃N₄, which can enter into nanotube apertures of several tens of nanometers in diameter; it is desirable to combine them using a simple deposition method. Thus, we focused on chemical vapor deposition (CVD) apparatus. The main role of the CVD apparatus is to deposit films on devices. In fact, in previous research using a CVD apparatus to combine g-C₃N₄ with $\rm TiO_2-NTA$, a g-C₃N₄ film was coated onto $\rm TiO_2-NTA$. In this work, to combine g-C₃N₄ in the form of small nanoparticles with $\rm TiO_2-NTA$, we constructed an original CVD apparatus (Figure 2) that

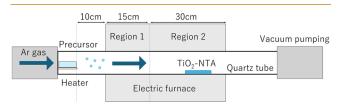


Figure 2. Schematic diagram of the original CVD system.

incorporated the following two new features. The first is that the temperature can be adjusted by heaters in regions 1 and 2, allowing the precursor (melamine) to be heated rather than the target material being reheated. This makes it possible to intentionally manipulate the thermal polymerization process from melamine to g-C₃N₄, thus allowing for chemical complexation with TiO2-NTA during the thermal polymerization process, preventing the formation of nitrogen defects or amorphization, controlling particle size during transport to the substrate, and overall simplification of the synthesis process. The second feature is that deposition is usually carried out at atmospheric pressure, but our system is evacuated to a pressure of 40–133 Pa. The resulting increase in mean-free path enables ultrasmall state particles to penetrate into the nanotubes because it suppresses polymerization caused by collisions of gas molecules during vapor transport. Furthermore, if the number of particles adsorbed on TiO2-NTA can be controlled, excessive thermal polymerization after adsorption can be prevented and the g-C₃N₄ can be deposited as particles rather than films. Also, the low-pressure conditions aid in the formation of highly pure particles and facilitate the formation of heterojunctions with TiO_2 -NTA.

In this article, we first present the conditions for the synthesis of g-C₃N₄ small nanoparticles from melamine using the modified CVD system. Next, observations of the interface between ${\rm TiO_2-NTA}$ and ${\rm g-C_3N_4}$ small nanoparticles are discussed. Finally, the function of the combined ${\rm TiO_2-NTA}/{\rm g-C_3N_4}$ as a Z-scheme photocatalyst is evaluated by the redox power and photocatalytic H₂ production. Although the current study demonstrates how to composite small nanoparticle photocatalysts into nanotubular substrate photocatalysts and their importance in improving photocatalytic properties, the results of this study are expected to contribute more broadly to not only the field of photocatalysis but also to other fields that require small nanoparticles.

2. EXPERIMENTAL METHODS

2.1. Materials and Reagents

In this study, the following chemicals and reagents were purchased and used without any further purification: ethylene glycol ($C_2H_6O_2$, Nacalai Tesque; >99.5%), ammonium fluoride (NH_4F , Nacalai Tesque; >98%), titanium foil (Ti, Japan Metal Service; >99.5%), 2-propanol (C_3H_8O , Nacalai Tesque; >99.7%), melamine ($C_3H_6N_6$, Tokyo Chemical Industry; >98%), terephthalic acid (TA, $C_8H_6O_4$, Nacalai Tesque; >98%), sodium hydroxide (NaOH, Nacalai Tesque; 5 M), 5,5-dimethyl-1-pyrroline-N-oxide (DMPO, C6H11NO, Tokyo Chemical Industry; >97%), and methanol (CH $_3$ OH, Nacalai Tesque; >99.5%).

2.2. Preparation of TiO₂-NTA by the Anodic Oxidation Method¹¹

The electrolyte was prepared by stirring ethylene glycol (100 mL), ammonium fluoride (0.559 g), and H_2O (11 mL) for 30 min. Next, the anode (titanium foil, 2.5 cm \times 3.0 cm) and cathode (platinum foil) were immersed in the prepared electrolyte and a 40 V DC was applied for 1.5 h at room temperature. After application, the samples were immersed in 2-propanol for 30 min for washing. Finally, the washed sample was annealed at 400 $^{\circ}\text{C}$ for 1 h, followed by annealing at 500 $^{\circ}\text{C}$ for 3 h for crystallization.

2.3. Support of g-C₃N₄ Small Nanoparticles on TiO₂-NTA Using CVD

First, melamine (2.0 g) was added to a quartz cell (12.5 mm \times 12.5 mm \times 45 mm) mounted on a heater in the CVD apparatus, and a TiO2–NTA substrate was placed in region 2. Next, the pressure in the CVD apparatus was lowered to about 40–133 Pa and a 1.5 CCM Ar gas flow was established. Finally, the melamine was heated to 300 °C. 300 °C is the temperature at which melamine begins to sublimate in the thermal polymerization process. The heating ramp time was set to 20 min and held for 10 min. The heating conditions for g-C₃N₄ deposition in the tube furnace were set to have a variable temperature in region 1 and a constant temperature of 500 °C in region 2. Region 2 was set to 500 °C because the thermal polymerization temperature

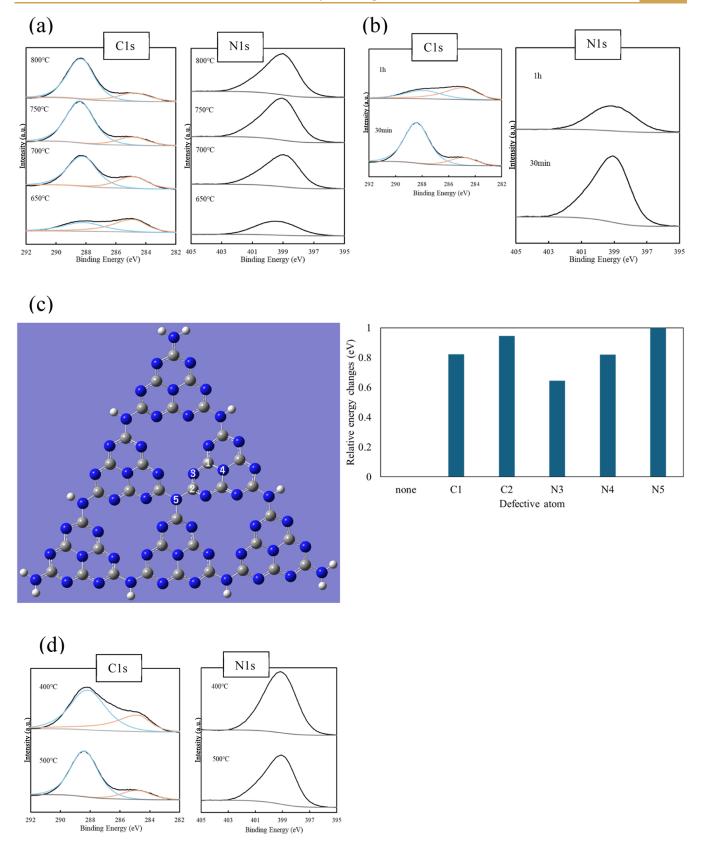


Figure 3. (a) XPS spectra of g- C_3N_4 deposited on a TiO_2 -NTA substrate for different region 1 temperatures of the CVD apparatus. (b) XPS spectra of g- C_3N_4 deposited on a TiO_2 -NTA substrate at different holding times when the region 1 temperature of the CVD apparatus was set to 750 °C. (c) Model of the g- C_3N_4 structure optimized by quantum chemical calculations and simulated defect formation free energy changes for each carbon or nitrogen atom. (The calculation conditions are described in the Supporting Information). (d) XPS spectra of g- C_3N_4 deposited on TiO_2 -NTA substrates for different temperatures in region 2 of the CVD apparatus.

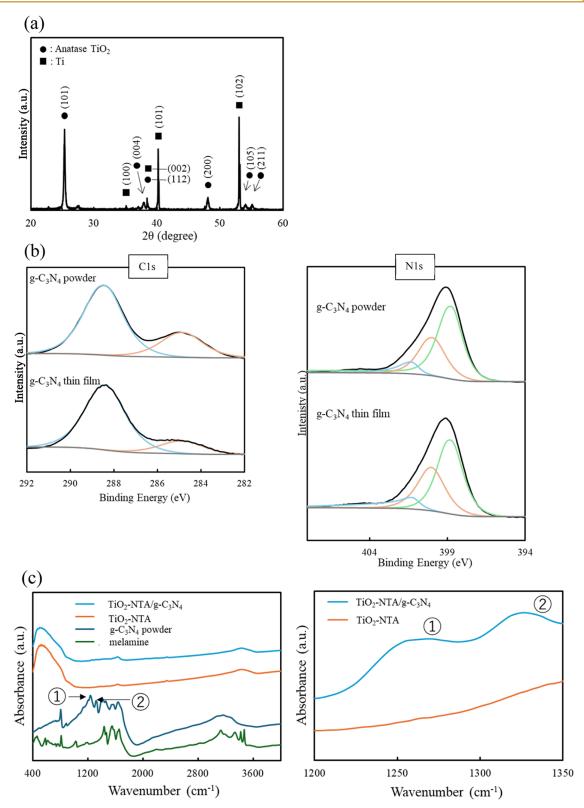


Figure 4. (a) XRD spectrum of TiO_2 -NTA/g- C_3N_4 . (b) XPS spectra of TiO_2 -NTA/g- C_3N_4 prepared under optimal conditions and g- C_3N_4 prepared by the simple heating of powder. (c) FT-IR spectra of melamine, g- C_3N_4 powder, TiO_2 -NTA, and TiO_2 -NTA/g- C_3N_4 , and a magnified view of the 1200-1350 nm⁻¹ wavenumber region.

of g-C $_3$ N $_4$ is generally 500 °C and the stability limit of TiO $_2$ –NTA is 500 °C. The heating ramp times for regions 1 and 2 were set to be 30 min for heating followed by 30 min of constant temperature. The heating of the region 1 heater was initiated when the temperature in region 2 reached 500 °C.

2.4. Equipment Used for Materials Characterization

The morphology of the samples was investigated by using a scanning electron microscope (SEM, JSM-7600F, JEOL). Fine structure observation for ${\rm TiO_2-NTA/g\text{-}C_3N_4}$ was carried out using a transmission electron microscope (TEM) (Tecnai Osiris, FEI).

Chemical state and bonding information were obtained using X-ray photoelectron spectroscopy (XPS, JPS-9010TR, JEOL) with Mg K α radiation and Fourier transform infrared spectroscopy (FT-IR) (ALPHA, Bruker). The crystal structure was investigated by using an X-ray diffractometer (XRD, D8 ADVANCE, Bruker) with Cu–K α radiation. To explore the detailed energy band structure, diffusereflectance ultraviolet-visible (UV-vis) absorption spectra were monitored by using a UV-vis-near-infrared (UV-vis-NIR) spectrophotometer (UV-3600Plus, Shimadzu). In addition, the flat band (FB) potential was determined by Mott-Schottky analysis with an electrochemical impedance analyzer (VersaSTAT3, AMETEK). For electrochemical impedance (EI) measurements, a 0.5 M Na₂SO₄ aqueous solution was employed as a liquid electrolyte, and Ag/AgCl and platinum wires were used as reference and counter electrodes, respectively. The light source was a xenon lamp (MAX-303, Asahi Spectra, $300 \le \lambda \le 600$ nm, 500 W/cm^2).

2.5. Photocatalyst Experiment

The oxidation potential of the photocatalytic material was evaluated from a qualitative assessment based on the amount of OH radicals produced using photoluminescence measurements (PL). First, 100 mL of pure water, 0.083 g of TA, and 0.2 mL of NaOH were added to a 100 mL beaker and stirred for 1 h. Next, 10 mL of the prepared solution was added to a 50 mL beaker, and a substrate sample cut into 2 cm \times 1.5 cm was immersed and irradiated with UV–vis light (300 nm $\leq \lambda \leq$ 600 nm) for 15 min. Finally, the solution was placed in a 3 mL quartz cell, and the fluorescence spectrum was measured with a fluorescence spectrophotometer (RF-6000, Shimadzu). The excitation and emission wavelengths were 315 and 425nm for 2-hydroxyterephthalic acid (TAOH), respectively. 12

The reducing power of the photocatalytic material was evaluated from a qualitative evaluation of the generated reactive oxygen species (ROS) by using electron spin resonance (ESR). First, 5 mL of CH₃OH and 5 mg of DMPO were added to a small container and stirred. Next, the substrate sample was immersed and irradiated with UV—vis light ($300 \le \lambda \le 600$ nm) for 15 min. Finally, the spectra of the ROS were analyzed by using ESR spectroscopy (E-500, Bruker).

A small cell with a quartz window at the top was attached to the original closed system, and a gas chromatograph (GC, GC-8A, Shimadzu) connected to the closed system was used to detect photocatalytic H_2 production. First, 6.4 mL of pure water and 1.6 mL of methanol were added to the small cell, and the mixture was stirred. Next, a photocatalyst sample was added to the cell; the lid was closed, and the entire closed system was filled with nitrogen gas. Finally, the system was irradiated by UV–vis light (300 nm $\leq \lambda \leq$ 600 nm), and the H_2 production was measured every hour for 5 h.

3. RESULTS AND DISCUSSION

3.1. Evaluation of Synthesized TiO₂ Nanotube Arrays

Figure S1a shows an X-ray diffraction pattern (XRD) that indicates that the Ti substrate was oxidized to anatase TiO_2 by anodic oxidation. Furthermore, the XRD patterns shown in Figures 1a and S1b, along with microscopy observations, demonstrate that the synthesized TiO_2 forms NTA with an orientation perpendicular to the substrate with a diameter of about 80 nm and a depth of about 1.5 μ m. From the Mott–Schottky (Figure S2a) and Tauc plots (Figure S2b), the CB and VB of the TiO_2 –NTA were estimated to be 0.1 and 3.4 V (vs normal hydrogen electrode (NHE)), respectively. $^{14-17}$

3.2. Synthesis and Evaluation of g- C_3N_4 Small Nanoparticles by CVD Method and Their Support on TiO_2 -NTA

XPS spectra of g- C_3N_4 deposited on a TiO_2 -NTA substrate when the temperature in region 1 was set between 650 and 800 $^{\circ}$ C are shown in Figure 3a. The peak at 288.6 eV is the peak of carbon nitride derived from the bonding of carbon and nitrogen and appears strongly at temperatures above 750

°C. 16,18,19 The peak at 284.6 eV is reported to be due to incomplete polymerization or C=C bonding due to defects, and the peak appeared strongly at 650 and 700 °C. 16,18,20,21 The C/N ratio at 650 °C is C/N = 3:5.83, clearly indicating a large ratio of nitrogen. On the other hand, at 750 °C, the C/N ratio was close to the theoretical value, C/N = 3:4.07, and the peak at 284.6 eV was clearly smaller than at 700 °C and below. The is known that during the thermal polymerization process of melamine to carbon nitride, the end group is removed as ammonia and the content nitrogen decreases. Therefore, when the temperature in region 1 was set below 700 °C, the ratio of nitrogen is thought to have been larger because melamine did not thermally polymerize completely to g-C₃N₄. The g-C₃N₄ yield was highest when the temperature of region 1 was above 750 °C.

As can be seen in Figure 3b, when the temperature in region 1 was fixed at 750 °C and the holding time was changed from 30 min to 1 h, the peak intensity at 288.6 eV and N 1s clearly decreased, while the peak intensity at 284.6 eV increased. This is thought to be due to the longer holding time breaking unstable bonds between carbon and nitrogen atoms, leading nitrogen to desorb and the formation of a stable C=C bond. We have examined the relative defect formation energies in g-C₃N₄ for a variety of sites (with density functional theory (DFT)-based quantum chemical calculation) as shown in Figure 3c. These calculations showed that a defect at the N3 site had the lowest formation energy, supporting the above XPS discussion. Details of the calculation process are reported in the Supporting Information.

The XPS spectra for when region 1 was fixed at 750 $^{\circ}$ C with a holding time of 30 min while region 2 was held at 400 and 500 $^{\circ}$ C are shown in Figure 3d. When region 2 was 400 $^{\circ}$ C, a large peak indicating incomplete polymerization appeared at 284.6 eV. This result indicates that thermal polymerization progresses not only during transport but also after deposition on the substrate.

Based on these results, the optimal conditions for synthesizing g- C_3N_4 by CVD are with the temperatures in regions 1 and 2 set for 750 and 500 °C, respectively, with a holding time of 30 min.

From the XRD patterns shown in Figures 4a and S1a, it was confirmed that the crystalline phase of TiO_2 –NTA did not change after CVD. The reason why no peaks corresponding to loaded $g-C_3N_4$ were observed is thought to be due to the small amount of $g-C_3N_4$ loaded.

XPS spectra comparing g- C_3N_4 synthesized by CVD and simple g- C_3N_4 powder synthesized by the thermal polymerization of melamine are shown in Figure 4b. It can be seen that g- C_3N_4 synthesized by CVD and g- C_3N_4 formed by the heating of powder lead to similar shapes.

Figure 4c shows the FT-IR spectra of melamine, g- C_3N_4 powder, TiO₂–NTA, and TiO₂–NTA/g- C_3N_4 . Compared to melamine, g- C_3N_4 powder shows a characteristic peak at 1200–1400 cm⁻¹, which originates from aromatic C–N groups. The enlarged FT-IR spectrum shows that TiO₂–NTA has no peaks between 1200 and 1400 cm⁻¹, while TiO₂–NTA/g- C_3N_4 has a small peak therein. This result confirms that g- C_3N_4 is slightly loaded in TiO₂–NTA.

3.3. Surface Morphology and Band Structure of TiO_2 -NTA/g- C_3N_4

By analysis of SEM images, we compared the grain size of g- $\rm C_3N_4$ deposited on $\rm TiO_2{-}NTA/g{-}C_3N_4$ (2.0 g) and $\rm TiO_2{-}$

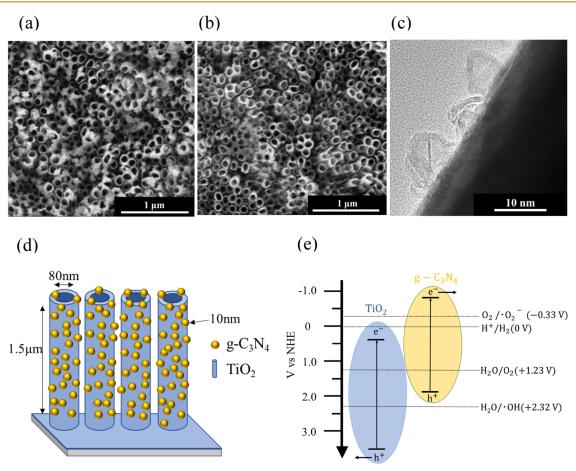


Figure 5. (a) SEM image of TiO_2 –NTA/g-C₃N₄ (2.0 g). (b) The SEM image of TiO_2 –NTA/g-C₃N₄ (0.2 g). (c) The TEM image of TiO_2 –NTA/g-C₃N₄ (0.2 g). (d) The schematic diagram of TiO_2 –NTA/g-C₃N₄ (0.2 g) grown by our CVD apparatus. (e) Relative band alignments of TiO_2 –NTA and g-C₃N₄.

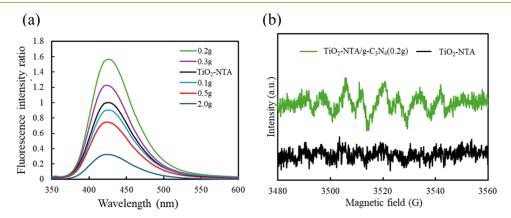


Figure 6. (a) PL measurements of TiO_2 -NTA/g- C_3N_4 for varying amounts of melamine placed in the crucible. (b) ESR measurements of TiO_2 -NTA/g- C_3N_4 (0.2 g).

NTA/g- C_3N_4 (0.2 g). As shown in Figure 5a, TiO₂–NTA/g- C_3N_4 (2.0 g) had 30–100 nm of g- C_3N_4 deposited on TiO₂–NTA. On the other hand, g- C_3N_4 was not observed on TiO₂–NTA in TiO₂–NTA/g- C_3N_4 (0.2 g), as shown in Figure 5b. This result contradicts the results of Figures 3 and 4 and implies that g- C_3N_4 of TiO₂–NTA/g- C_3N_4 (0.2 g) is supported on TiO₂–NTA as small nanoparticles so that it cannot be observed in the SEM image. Therefore, a more detailed image was obtained by using TEM (Figure 5c). The results show that TiO₂–NTA/g- C_3N_4 (0.2 g) has evenly

spaced g- C_3N_4 deposits with a uniform size of about 10 nm on TiO₂–NTA. It was also confirmed that the lattice spacing of this g- C_3N_4 was 0.34 nm, indicating a 002 peak, which is an interphase stacking of g- C_3N_4 (Figure S3).²⁷ A large amount of melamine was placed in a crucible for the growth of the TiO₂–NTA/g- C_3N_4 (2.0 g) sample. g- C_3N_4 growth of 30 to 100 nm was observed to be nonuniform due to the high molecular density, which facilitated thermal polymerization and aggregation. On the other hand, the TiO₂–NTA/g- C_3N_4 (0.2 g) sample, which used a smaller amount of melamine, has a lower

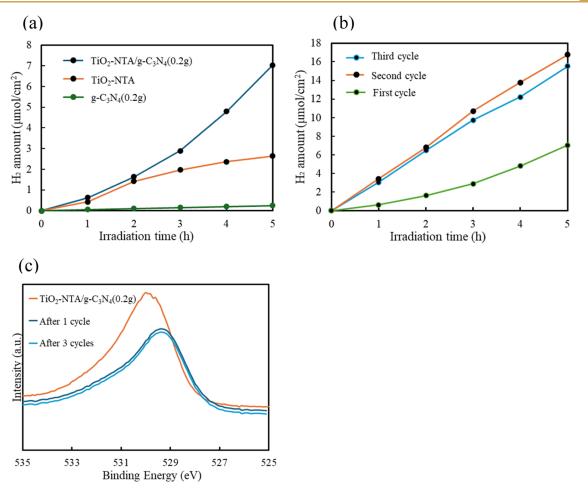


Figure 7. (a) Photocatalytic hydrogen production of TiO_2 –NTA/g-C₃N₄ (0.2 g), TiO_2 –NTA, and g-C₃N₄ (0.2 g). (b) Photocatalytic hydrogen production cycling experiment with TiO_2 –NTA/g-C₃N₄ (0.2 g). (c) Change in the XPS O 1s spectra of TiO_2 –NTA/g-C₃N₄ (0.2 g) during a photocatalytic hydrogen production cycling experiment.

molecular density, making polymerization and aggregation less likely to occur and leads to deposition on the ${\rm TiO_2-NTA}$ in the form of uniform small nanoparticles of 10 nm in size. A schematic diagram of the ${\rm TiO_2-NTA/g-C_3N_4}$ (0.2 g) growth process is shown in Figure 5d.

For electrochemical measurements, g- C_3N_4 was synthesized on indium tin oxide coated substrates (ITO) by placing them in region 2. From Mott–Schottky (Figure S4a) and Tauc plots (Figure S4b) of g- C_3N_4 loaded on ITO, the CB and VB of g- C_3N_4 were estimated to be -0.8 and 1.9 V (vs NHE), respectively. The band diagrams of TiO_2 –NTA and g- C_3N_4 that are estimated from Figures S2 and S4 are shown in Figure 5e.

3.4. Evaluation of the Photocatalytic Redox Power of TiO₂-NTA/g-C₃N₄ by PL and ESR Measurements

Figure 6a shows the results of a series of PL measurements, where the amount of g-C₃N₄ deposited in TiO₂–NTA was varied. It can be seen that TiO₂–NTA/g-C₃N₄(0.2 g) produced the largest number of OH radicals. Figure 6b shows ESR results for TiO₂–NTA and TiO₂–NTA/g-C₃N₄ (0.2 g). No ROS peak was detected for TiO₂–NTA, whereas a ROS peak was detected for TiO₂–NTA/g-C₃N₄ (0.2 g). The band diagram in Figure 5e shows that TiO₂–NTA satisfies the formation potential of OH radicals but not that of reactive oxygen species, while g-C₃N₄ satisfies the formation potential of reactive oxygen species but not that of OH radicals. 29,30

Therefore, taking into account the results of the PL and ESR measurements, it is concluded that ${\rm TiO_2-NTA/g-C_3N_4}$ (0.2 g) forms a Z-scheme reaction, meaning that efficient charge separation occurred.

3.5. Photocatalytic Hydrogen Production by TiO_2 -NTA/g- C_3N_4 (0.2 g)

A comparison of the photocatalytic hydrogen production from methanol aqueous solutions (20%) of TiO₂-NTA, g-C₃N₄ (0.2 g), and TiO_2 -NTA/g-C₃N₄ (0.2 g) is shown in Figure 7a. TiO₂-NTA/g-C₃N₄ (0.2 g) generated more H₂ than did TiO_2 -NTA and g-C₃N₄ (0.2 g). The band structure of TiO_2 -NTA does not satisfy the redox potential for generating hydrogen from water, but the reason why it generates a small amount of hydrogen is believed to be due to the band-filling effect.³¹ In addition, the results of a cycling experiment in Figure 7b show that TiO₂-NTA/g-C₃N₄ (0.2 g) produced more H₂ in the second cycle than in the first, while the amount of H₂ produced in the second and third cycles remained unchanged. On the other hand, there was no significant change in the amount of hydrogen produced by TiO₂-NTA in the three cycle experiments (Figure S5). Considering that g-C₃N₄ is known as a material that easily adsorbs oxygen and the XPS results in Figure 7c, the first reduction reaction is thought to be a simultaneous proton reduction and adsorbed oxygen reduction.^{32,33} After a certain period of time elapses, it is speculated that the adsorbed oxygen desorbs and the excited

electrons of g-C₃N₄ are active only for proton reduction, suggesting that the photocatalytic hydrogen production in the second reaction was higher than that in the first. The graph in Figure 7b, which shows a change from a nonlinear to a linear increase, confirms the validity of this premise. Previous research has also shown that the initial stage of photocatalytic hydrogen production by g-C₃N₄ tends to have a nonlinear increase in the amount of hydrogen produced. 16 The fact that the results of photocatalytic hydrogen production did not change between the second and third cycles indicates that the adsorbed oxygen was lost and that catalytic degradation did not occur. The reason why the hydrogen production of TiO₂-NTA alone is linear is thought to be because of the absence of impurities on the TiO2 surface. The oxygen peak in the XPS O 1s spectra of TiO2-NTA measured before and after the cycling experiment (Figure S6) also did not change. Since the O 1s signals in Figure S6 are due to oxygen derived from TiO₂, this cycling experiment suggests that TiO2-NTA does not deteriorate even after long-term use. Finally, we confirmed that this reaction was proceeded by photocatalysis (Figure S7).

4. CONCLUSIONS

This paper demonstrates that it is possible to uniformly support $g\text{-}C_3N_4$ small nanoparticles on nanotube TiO_2 by adjusting the temperature and heating time in a CVD apparatus operating at reduced pressure. Furthermore, it was found that $\text{TiO}_2\text{-NTA}$ loaded with $g\text{-}C_3N_4$ was more efficient at various photocatalytic properties than $\text{TiO}_2\text{-NTA}$ and $g\text{-}C_3N_4$ alone. This indicates that $g\text{-}C_3N_4$ small nanoparticles prepared from melamine under CVD conditions function as a semiconductor photocatalyst similar to $g\text{-}C_3N_4$ powder prepared by powder heating.

These findings are expected to lead to the development and use of similar CVD apparatuses not only in the field of photocatalysis but also in other fields requiring the support of small nanoparticles.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00084.

XRD; SEM; Mott–Schottky plot; Tauc plot; TEM; photocatalytic hydrogen production cycling experiment; XPS; and control experiments for photocatalytic H_2 generation (PDF)

AUTHOR INFORMATION

Corresponding Authors

Kosei Ito – Keio University, Department of Electronics and Electrical Engineering, Yokohama 223-8522, Japan;

orcid.org/0009-0000-3160-5588; Email: itokosei-124183@keio.jp

Kei Noda — Keio University, Department of Electronics and Electrical Engineering, Yokohama 223-8522, Japan; orcid.org/0000-0003-2031-8975; Email: nodakei@

elec.keio.ac.jp

Authors

Sho Yoneyama – Keio University, Department of Electronics and Electrical Engineering, Yokohama 223-8522, Japan

Shusuke Yoneyama — Keio University, Department of Electronics and Electrical Engineering, Yokohama 223-8522, Japan

Paul Fons — Keio University, Department of Electronics and Electrical Engineering, Yokohama 223-8522, Japan;
oorcid.org/0000-0002-7820-1924

Complete contact information is available at: https://pubs.acs.org/10.1021/acsmaterialsau.4c00084

Author Contributions

K.I.: conceptualization, methodology, investigation, writing—original draft, data curation, and writing—review and editing. S.Y.: investigation and data curation. S.Y.: investigation and data curation. P.F.: methodology and writing—review and editing. K.N.: conceptualization, methodology, writing—review and editing, supervision, and project administration.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study was supported by a Grant-in-Aid for Scientific Research (KAKENHI No. 19H02174) of the Japan Society for the Promotion of Science (JSPS). K.I. is very grateful for the support from JST SPRING Grant Number JPMJSP2123.

REFERENCES

- (1) Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. *Nature* **1972**, 238 (5358), 37–38.
- (2) Ikreedeegh, R. R.; Hossen, M. A.; Tahir, M.; Aziz, A. A. A comprehensive review on anodic TiO₂ nanotube arrays (TNTAs) and their composite photocatalysts for environmental and energy applications: Fundamentals, recent advances and applications. *Coord. Chem. Rev.* **2024**, 499, No. 215495, DOI: 10.1016/j.ccr.2023.215495.
- (3) Pandey, B.; Rani, S.; Roy, S. C. A scalable approach for functionalization of TiO_2 nanotube arrays with g-C₃N₄ for enhanced photo-electrochemical performance. *J. Alloys Compd.* **2020**, 846, No. 155881, DOI: 10.1016/j.jallcom.2020.155881.
- (4) Pourhashem, S.; Duana, J.; Guana, F.; Wanga, N.; Gaoa, Y.; Hou, B. New effects of TiO_2 nanotube/g- C_3N_4 hybrids on the corrosion protection performance of epoxy coatings. *J. Mol. Liq.* **2020**, 317, No. 114214, DOI: 10.1016/j.molliq.2020.114214.
- (5) Liu, G.; Zheng, F.; Li, J.; Zeng, G.; Ye, Y.; Larson, D. M.; Yano, J.; Crumlin, E. J.; Ager, J. W.; Wang, L. W.; Toma, F. M. Investigation and mitigation of degradation mechanisms in Cu₂O photoelectrodes for CO₂ reduction to ethylene. *Nat. Energy* **2021**, *6*, 1124–1132.
- (6) Wang, F.; Hou, T.; Zhao, X.; Yao, W.; Fang, R.; Shen, K.; Li, Y. Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO₂ reduction. *Adv. Mater.* **2021**, 33, No. 2102690, DOI: 10.1002/adma.202102690.
- (7) Wang, S.; Zhan, J.; Chen, K.; Ali, A.; Zeng, L.; Zhao, H.; Hu, W.; Zhu, L.; Xu, X. Potassium-doped g- C_3N_4 achieving efficient visible-light-driven CO_2 reduction. ACS Sustainable Chem. Eng. 2020, 8, 8214–8222.
- (8) Tan, M.; Ma, Y.; Yu, C.; Luan, Q.; Li, J.; Liu, C.; Dong, W.; Su, Y.; Qiao, L.; Gao, L.; Lu, Q.; Bai, Y. Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn₂S₄ /g-C₃N₄ heterojunction. *Adv. Funct. Mater.* **2022**, 32, No. 2111740, DOI: 10.1002/adfm.202111740.
- (9) Li, Y.; Ren, Z.; He, Z.; Ouyang, P.; Duan, Y.; Zhang, W.; Lv, K.; Dong, F. Crystallinity-defect matching relationship of g-C₃N₄: Experimental and theoretical perspectives. *Green Energy Environ.* **2024**, *9*, 623–658.
- (10) Gao, Z.-D.; Qu, Y.-F.; Zhou, X.; Wang, L.; Song, Y.-Y.; Schmuki, P. Pt-Decorated g-C₃N₄/TiO₂ Nanotube Arrays with

- Enhanced Visible-Light Photocatalytic Activity for H₂ Evolution. *ChemistryOpen* **2016**, *5*, 197–200.
- (11) Goto, H.; Masegi, H.; Sadale, S. B.; Noda, K. Intricate behaviors of gas phase CO₂ photoreduction in high vacuum using Cu₂O-loaded TiO₂ nanotube arrays. *J. CO₂ Util.* **2022**, *59*, No. 101964, DOI: 10.1016/j.jcou.2022.101964.
- (12) Sotiles, A. R.; Barbosab, L. V.; Vedovatob, Y. P.; Wypycha, F.; Fariab, E. H. Effect of Zn₂Cr layered double hydroxide on photocatalytic hydroxylation of terephthalic acid and photodegradation of sodium diclofenac. *Catal. Today* **2023**, *423*, No. 114287, DOI: 10.1016/j.cattod.2023.114287.
- (13) Sreekantan, S.; Hazan, R.; Lockman, Z. Photoactivity of anatase—rutile TiO_2 nanotubes formed by anodization method. *Thin Solid Films* **2009**, *518*, 16–21.
- (14) Ito, K.; Uchida, R.; Noda, K. Visible light-assisted hydrogen generation over platinum-loaded tungsten trioxide nanorods with the hexagonal and triclinic phases. *J. Photochem. Photobiol. A* **2023**, 443, No. 114824, DOI: 10.1016/j.jphotochem.2023.114824.
- (15) Zos'ko, N. A.; Aleksandrovsky, A. S.; Kenova, T. A.; Gerasimova, M. A.; Nikolay, G.; Maksimov, N. G.; Taran, O. P. Cyclic voltammetry as an activation method of TiO₂ nanotube arrays for improvement of photoelectrochemical water splitting performance. *ChemPhotoChem* **2023**, 7, No. e202300100, DOI: 10.1002/cptc.202300100.
- (16) Ito, K.; Noda, K. Highly efficient hydrogen production and selective CO_2 reduction by the C_3N_5 photocatalyst using only visible light. *Phys. Chem. Chem. Phys.* **2024**, 26, 153–160.
- (17) Montakhab, E.; Rashchi, F.; Sheibani, S. Enhanced photocatalytic activity of TiO₂ nanotubes decorated with Ag nanoparticles by simultaneous electrochemical deposition and reduction processes. *Appl. Surf. Sci.* **2023**, *615*, No. 156332, DOI: 10.1016/j.apsusc.2023.156332.
- (18) Liu, Y.; Gaob, Y.; Chena, L.; Lia, L.; Dinga, D.; Daia, Z. MnOx-decorated oxygen-doped g-C₃N₄ with enhanced photocatalytic activity for efficient removal of uranium(VI). *Sep. Purif. Technol.* **2023**, 307, No. 122794, DOI: 10.1016/j.seppur.2022.122794.
- (19) Xu, Z.; Chenb, Y.; Wanga, B.; Ranb, Y.; Zhongb, J.; Li, M. Highly selective photocatalytic CO_2 reduction and hydrogen evolution facilitated by oxidation induced nitrogen vacancies on g- C_3N_4 . J. Colloid Interface Sci. 2023, 651, 645–658.
- (20) Ding, Y.; Tang, Y.; Yang, L.; Zeng, Y.; Yuan, J.; Liu, T.; Zhang, S.; Liu, C.; Luo, S. Porous nitrogen-rich carbon materials from carbon self-repairing g-C₃N₄ assembled with graphene for high-performance supercapacitor. *J. Mater. Chem. A* **2016**, *4*, 14307–14315.
- (21) Feng, P.; Cuia, K.; Haib, Z.; Wang, J.; Wangb, L. Facile synthesis of activated carbon loaded g-C₃N₄ composite with enhanced photocatalytic performance under visible light. *Diamond Relat. Mater.* **2023**, *136*, No. 109921, DOI: 10.1016/j.diamond.2023.109921.
- (22) Ma, X.; Lv, Y.; Xu, J.; Liu, Y.; Zhang, R.; Zhu, Y. A strategy of enhancing the photoactivity of g- C_3N_4 via doping of nonmetal elements: A first-principles study. *J. Phys. Chem. C* **2012**, *116*, 23485–23493.
- (23) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. *Nat. Mater.* **2009**, *8*, 70–80, DOI: 10.1038/nmat2317.
- (24) Liao, J.; Cui, W.; Li, J.; Sheng, J.; Wang, H.; Dong, X.; Chen, P.; Jiang, G.; Wang, Z.; Dong, F. Nitrogen defect structure and NO⁺ intermediate promoted photocatalytic NO removal on H_2 treated g- C_3N_4 . *Chem. Eng. J.* **2020**, 379, No. 122282, DOI: 10.1016/j.cej.2019.122282.
- (25) Dong, G.; Wen, Y.; Fan, H.; Wang, C.; Cheng, Z.; Zhang, M.; Ma, J.; Zhang, S. Graphitic carbon nitride with thermally-induced nitrogen defects: An efficient process to enhance photocatalytic H₂ production performance. *RSC Adv.* **2020**, *10*, 18632–18638.
- (26) Pan, Y.; Liu, X.; Zhang, W.; Shao, B.; Liu, Z.; Liang, Q.; Wu, T.; He, Q.; Huang, J.; Peng, Z.; Liu, Y.; Zhao, C. Bifunctional template-mediated synthesis of porous ordered g- C_3N_4 decorated with potassium and cyano groups for effective photocatalytic H_2O_2

- evolution from dual-electron O₂ reduction. *Chem. Eng. J.* **2022**, 427, No. 132032, DOI: 10.1016/j.cej.2021.132032.
- (27) Ge, L. Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts. *Mater. Lett.* **2011**, *65*, 2652–2654. (28) Yu, Q.; Yang, K.; Li, H.; Li, X. Z-scheme α -Fe₂O₃/g-C₃N₄ with the Fe–OC– bond toward enhanced photocatalytic degradation. *Colloids Surf., A* **2021**, *616*, No. 126269, DOI: 10.1016/j.colsurfa.2021.126269.
- (29) Muñoz, E.; Marotti, R.; Navarrete, E. Communication-hydroxyl radicals attack CdTe quantum dots. *J. Electrochem. Soc.* **2021**, *168*, No. 097503, DOI: 10.1149/1945-7111/ac2282.
- (30) Zhan, H.; Zhou, Q.; Li, M.; Zhou, R.; Mao, Y.; Wang, P. Photocatalytic O₂ activation and reactive oxygen species evolution by surface B-N bond for organic pollutants degradation. *Appl. Catal., B* **2022**, *310*, No. 121329, DOI: 10.1016/j.apcatb.2022.121329.
- (31) Diwald, O.; Thompson, T. L.; Goralski, E. G.; Walck, S. D.; Yates, J. T., Jr The effect of nitrogen ion implantation on the photoactivity of TiO_2 rutile single crystals. *J. Phys. Chem. B* **2004**, *108*, 52–57.
- (32) Wang, X.; Zhang, X.; Wei, Y.; Gao, C.; Bao, J.; Zhang, N. In situ grown Co_3O_4 nanosheets in the interlayer space of g-C₃N₄ for efficient removal of Hg0 from flue gas. *Fuel* **2022**, 324, No. 124660, DOI: 10.1016/j.fuel.2022.124660.
- (33) Shang, D.; Zhong, Q.; Cai, W. High performance of NO oxidation over Ce-Co-Ti catalyst: The interaction between Ce and Co. *Appl. Surf. Sci.* **2015**, 325, 211–216.