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a b s t r a c t

SPARC facilitates the generation of plausible hypotheses regarding underlying biochemical mechanisms
by structurally characterizing protein sequence constraints. Such constraints appear as residues co-
conserved in functionally related subgroups, as subtle pairwise correlations (i.e., direct couplings), and
as correlations among these sequence features or with structural features. SPARC performs three types
of analyses. First, based on pairwise sequence correlations, it estimates the biological relevance of alter-
native conformations and of homomeric contacts, as illustrated here for death domains. Second, it esti-
mates the statistical significance of the correspondence between directly coupled residue pairs and
interactions at heterodimeric interfaces. Third, given molecular dynamics simulated structures, it charac-
terizes interactions among constrained residues or between such residues and ligands that: (a) are stably
maintained during the simulation; (b) undergo correlated formation and/or disruption of interactions
with other constrained residues; or (c) switch between alternative interactions. We illustrate this for
two homohexameric complexes: the bacterial enhancer binding protein (bEBP) NtrC1, which activates
transcription by remodeling RNA polymerase (RNAP) containing r54, and for DnaB helicase, which opens
DNA at the bacterial replication fork. Based on the NtrC1 analysis, we hypothesize possible mechanisms
for inhibiting ATP hydrolysis until ADP is released from an adjacent subunit and for coupling ATP hydrol-
ysis to restructuring of r54 binding loops. Based on the DnaB analysis, we hypothesize that DnaB ‘grabs’
ssDNA by flipping every fourth base and inserting it into cavities between subunits and that flipping of a
DnaB-specific glutamine residue triggers ATP hydrolysis.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

A major goal of modern biology is to identify the molecular
determinants and mechanisms underlying protein function. One
approach to achieving this goal is to characterize the sequence
and structural constraints shared by evolutionarily related proteins
with similar functions. Such constraints often appear as conserved
residues within an alignment of functionally related proteins from
phylogenetically diverse organisms or as sequence covariance in
multiple alignments.

Bayesian Partitioning with Pattern Selection (BPPS) [1,2] identi-
fies patterns of conserved residues arising through functional
divergence. It relies on the observation that phylogenetically
distant, yet functionally related proteins often conserve non-
catalytic residues that evolutionarily related, but functionally
divergent proteins do not. This occurs as superfamily members
diverge into subgroups, each adapting the superfamily’s structural
core to fill a functional niche. Often a subgroup G diverges further
into smaller subgroups, each conserving residues constrained by
G’s function as well as other residues constrained by more special-
ized functions. Repeated rounds of such divergence have led to
hierarchically arranged subgroups, each of which conserves dis-
tinctive residues at specific positions. BPPS identifies and charac-
terizes these subgroups by partitioning a multiple sequence
alignment (MSA) into a hierarchically nested series of MSAs, ter-
med a hiMSA, based on correlated residue patterns distinctive of
each subgroup. Using Markov chain Monte Carlo (MCMC) sam-
pling, BPPS searches among alternative hiMSAs for one corre-
sponding to a statistical model that is most likely to have
generated the aligned sequences. During sampling each protein is
assigned to a functionally divergent subgroup based on conserved
residues distinguishing that subgroup from other, closely related
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subgroups. Hence, this process reveals likely sequence and struc-
tural determinants of protein function at each level (i.e., superfam-
ily, family, subfamily, etc.) of a hierarchy.

Presumably, such subgroup-specific residues are functionally
associated. Consequently, they may mutually interact more often
than one would expect by chance. We developed the SIPRIS (Struc-
turally Interacting Pattern Residues’ Inferred Significance) program
[3] to estimate the statistical significance of 3D interaction net-
works involving BPPS-defined pattern residues. For each subgroup
of interest, SIPRIS identifies the statistically most significant corre-
spondence between pattern residues and a structurally defined
residue cluster. (SIPRIS applies a statistical procedure, termed Ini-
tial Cluster Analysis (ICA) [4], to estimate the probability of the
observe correspondence between two sets of variables by chance
alone.) Pattern residues and the structural clusters are defined in
the absence of structural and sequence information, respectively.
Hence, BPPS-SIPRIS analyses often elucidate (statistical)
sequence/structural properties that conventional computational
and experimental approaches fail to detect.

Direct Coupling Analysis (DCA) [5–13] predicts structurally
interacting residue pairs based on sequence covariance within an
MSA. The rationale behind DCA is that, over evolutionary time,
mutations at a given residue position are compensated for by
mutations at interacting positions to thereby maintain structural
integrity. DCA avoids the confounding effect of indirect correla-
tions due, for example, to two residues both interacting with a
third residue, but not with each other. Because a family of proteins
need not conserve the residues participating in such directly cou-
pled (DC) pairs, such correlations may be quite subtle. To assess
the statistical significance of the correspondence between high
DC-scoring residue pairs and 3D contacts, we developed the STARC
(Statistical Tool for Analysis of Residue Couplings) [14] program,
which assumes that higher DC-scores should be preferentially
associated with closer structural distances. STARC takes as input
a list of DC scores (i.e., average product corrected Frobenius norms)
for pairs of column positions in an MSA and a set of protein struc-
tural coordinates corresponding to one of the aligned sequences.
STARC applies ICA to estimate the probability, by chance, of the
observed correspondence between the highest DC-scoring pairs
and structural contacts. STARC returns an estimated p-value
expressed as a score S = –log10(p). Viewing direct couplings as func-
tionally imposed, S measures the degree to which a 3D structure is
in a functionally relevant conformation.

We incorporated BPPS, DCA, SIPRIS, STARC and other proce-
dures into a single program, DARC (Deep Analysis of Residue Con-
straints) [15], which also aids the visualization of these various
constraints, characterizes how they correlate with each other and
with structure, and estimates statistical significance. To help iden-
tify determinants of protein functional specificity, DARC highlights
within sequence alignments and available structures those resi-
dues subject to the strongest of each type of constraint. DARC also
identifies statistically significant direct couplings across homo-
meric interfaces, though not across heteromeric interfaces.

Interpreting the biological relevance of such constraints
requires further characterization of DARC-defined residues within
alternative ligand-bound states and conformations observed
among various crystal and cryo-EM structures and (since protein
structures are not static) among molecular dynamics (MD) simu-
lated structures. To accomplish this, here we introduce SPARC
(Structural Properties Associated with Residue Constraints). SPARC
identifies: (i) those protein structures whose highest DC-scoring
pairs best correspond to 3D structural interactions with a view to
examining the most relevant protein structures in greater detail;
(ii) direct couplings between residues at both homomeric and het-
eromeric interfaces within protein complexes; (iii) the formation
of various hydrogen bond interactions and 3D clusters involving
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top DC-scoring residue pairs and BPPS-defined pattern residues
within a time series of MD simulated structures; and (iv) corre-
lated formation or dissociation of interactions involving one or
two pairs of residues within MD simulated structures. We illus-
trate SPARC by applying it to death domains [16,17], to various
enzyme and regulatory heterodimeric complexes, and to two types
of homomeric ATPase complexes [18]: bacterial enhancer-binding
proteins (bEBPs) and DnaB helicases.
2. Results

2.1. The SPARC program

SPARC runs in eleven different modes. Two modes (‘rank’ and
‘hetmer’) are primarily applied to experimentally based structures
and these, along with a third mode (‘simul’) for simulated struc-
tures, compute STARC S-scores based on input structures and on
DC-scores obtained from a corresponding MSA or, for the hetmer
mode, from two MSAs. The rank mode computes S-scores for each
protein subunit of known structure in the MSA, whereas the hetmer
mode computes S-scores across heteromeric subunits—where each
DC-coupled pair includes a residue from one subunit and another
from a second subunit. The simul mode computes S-scores over a
time series of MD simulated structures of a given protein; this
assesses whether the estimated functional relevance of a structure
increases, decreases, or stays about the same over time.

The seven remaining analysis modes are also applied to time
course MD simulations. These are:

� sc2sc: investigates sidechain-to-sidechain hydrogen bonds.
� sc2bb: investigates sidechain-to-backbone hydrogen bonds.
� sc2sb: runs both sc2sc and sc2bb modes concurrently.
� dist: reports residue-to-residue or residue-to-ligand distances.
� correl: finds interacting residue pairs that form or dissociate in a
correlated manner.

� bb2bb: finds backbone-to-backbone interactions.
� sipris: finds the most significant SIPRIS clusters.

For all seven modes, SPARC automatically identifies structural
interactions or 3D clusters involving BPPS-defined residues and
top DC-scoring residue pairs, such as we further describe and illus-
trate in the following sections. An additional mode, vsi2pml, is used
to create PyMOL scripts for visualizing residue interactions within
MD simulated structures.
2.2. Ranking protein structures by S-score

In the rank mode, SPARC first computes DCA scores by applying
the CCMpred [19] algorithm to an input MSA of related proteins.
Next, it searches for aligned protein sequences that correspond to
one or more structural coordinate files. (Proteins of known struc-
ture must be labeled with NCBI pdbaa formatted identifiers, e.g.,
as 3M0E_A.) Finally, as a measure of biological relevance, it ranks
protein structures based on STARC S-scores. (Paths to correspond-
ing 3D coordinates, ideally with modeled hydrogen atoms, must
also be provided as input. Hydrogen atoms may be modeled using
the Reduce program [20] or the PyMOL h_add command.) SPARC
also computes the change in S-score (DS) upon inclusion of homo-
meric interactions, when present; values of DS � �3.0 suggest that
some residue pairs are directly coupled due to interactions
between identical subunits. S and DS scores can help identify the
biologically most relevant proteins structures for further analysis.
In addition to using a superfamily MSA to compute SPARC S-
scores, it is often more informative to apply it to a subgroup-
specific MSA, which may be obtained using DARC, to characterize



Table 1
SPARC ranking of pyrin-related death domain structures by STARC S-score. Eighteen proteins of known structure were identified among 3,572 pyrin domain aligned sequences, 6
of which are shown. Search parameters: r = 4.0 Å; m = 5. See Table 2 for parameter definitions. A colon between two chain designations (e.g., A:C) indicates that S was computed
using, for each residue pair, the shorter of the internal versus the homodimeric 3D distances (e.g., the A-to-A versus the A-to-C residue distances).

pdbid chain(s) S L D X d F DS resolution method Description

6ncv A:C 42.0 1977 111 141 60 1.9 12.9 3.7 Å cryo-EM NLRP6 filament
6ncv A:B 41.5 1977 111 141 60 1.9 12.4 3.7 Å cryo-EM NLRP6 filament
6ncv A:H 37.1 1977 107 141 55 1.9 8.0 3.7 Å cryo-EM NLRP6 filament
6ncv A:Q 36.6 1977 107 154 57 2.0 7.6 3.7 Å cryo-EM NLRP6 filament
2n1f A:B 35.2 1977 98 141 53 1.8 11.8 4.0 Å cryo-EM ASC filament
6ncv A 29.1 1977 92 141 46 1.9 3.7 Å cryo-EM NLRP6 filament
2n1f A:G 28.2 1977 87 181 50 2.3 4.8 4.0 Å cryo-EM ASC filament
6ncv A:R 27.7 1977 102 141 47 1.9 �1.4 3.7 Å cryo-EM NLRP6 filament
: : : : : : : : : : : :
2n1f A 23.4 1977 80 181 44 2.3 4.0 Å cryo-EM ASC filament
: : : : : : : : :
2n1f A:H 22.7 1977 88 141 41 1.8 �0.7 4.0 Å cryo-EM ASC filament
: : : : : : : : : : : :
4ewi A 19.4 2045 103 151 42 1.9 2.28 Å X-ray NLRP4
3qf2 A 18.9 2045 101 187 45 2.4 1.7 Å X-ray NALP3
4ewi A:B 18.7 2045 107 179 45 2.3 �0.6 2.28 Å X-ray NLRP4
5h7n A:B 18.2 2042 100 185 44 2.4 0.2 1.85 Å X-ray NLRP12
5h7n A 18.0 2042 97 185 43 2.4 1.85 Å X-ray NLRP12
3qf2 A:B 18.0 2045 105 187 45 2.4 �0.9 1.7 Å X-ray NALP3
: : : : : : : : :
2m5v A 9.0 1977 91 183 31 2.3 n.a. NMR NLRP10

Table 2
List of variables defined for STARC S-scores.

Symbol Definition

L Total number of MSA column pairs used
r Maximum 3D distance used to define contacting residue pairs

(default: 4 Å)
D Number of contacting pairs, i.e. distinguished elements
X Optimum cut point (as defined by STARC) for partitioning an array

of length L
d Number of left-distinguished elements, i.e. contacting pairs to the

left of the cut point X (inclusive)
m Minimum sequence separation between residue pairs in query

protein of known structure
‘ The length of the input MSA
F F ¼ X � l indicates how spread-out is the value of X relative to the

MSA length
S -log10 P, where P corresponds to the estimated probability after

correcting for multiple tests
DS Change in the value of S upon the inclusion of interactions between

homomeric interfaces
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subgroup-specific DC constraints. Hence, our approach is to first
use SPARC to search the superfamily MSA for high S- and DS-
scoring proteins, each of which may then be used as a query for
DARC to define a subgroup MSA for a second SPARC analysis.

Table 1 shows the results from a rank analysis of pyrin-related
death domains (PYD) [16,17]; for clarity, results are given for only
6 out of 18 structures represented in the input MSA. Cryo-EM
structures of the human NLRP6 PYD (pdb_id: 6ncv [21]) and of
the mouse ASC PYD (pdb_id: 2n1f [22]) obtained the highest S-
scores of S = 29.1 and S = 23.4, respectively, for chain A. These also
exhibited significant DS scores with two or more adjacent subunits
within their homomeric filament complexes, suggesting that these
3D contacts are biologically relevant. Indeed, DS scores of 7.6 to
12.9 for contacts with four adjacent NLRP6 PYD domains (Fig. 1)
strongly support the biological relevance of this complex. In con-
trast, several homodimeric X-ray crystal structures (4ewi, 5h7n
and 3qf2) had both lower S-scores (<20) and negative or barely
positive DS scores (-0.9 to 0.2), suggesting that their homomeric
interfaces lack biological relevance, and instead may merely be
crystallographic artifacts or duplicate copies of a monomer within
the unit cell. Both the NLRP6 and ASC PYD filaments exhibited a
1704
negative DS score with one other adjacent subunit, suggesting that
this contact may fail to play a significant functional role.

Because SPARC focuses on the highest DC-scoring pairs, it is
important to confirm both that each pair’s ranking (based on its
DC-score) is sufficiently reproducible and that the corresponding
residues observed within each protein of interest contribute posi-
tively to such scores. To address the first concern, SPARC performs
DCA multiple times using subsampled sets of aligned sequences to
construct a consensus ranking of the column pairs. Obtaining a
consistently high DC-score for a pair of columns in an MSA implies
that certain residue pairs at those positions occur more often than
expected by chance and others less often; these are termed ‘ele-
vated’ and ‘reduced’ pairs, respectively. Presumably, reduced resi-
due pairs are being negatively selected against; if so, then
proteins harboring such pairs presumably lack the structural/func-
tional constraints detected by SPARC at those positions. Hence,
SPARC addresses the second concern by differentiating between
elevated and reduced residue pairs using Fisher’s exact test
[23,24] for positive and negative correlation between each specific
residue pair at high DC-scoring column positions. Thus, not all resi-
due pairs at high scoring positions in all proteins are positively cor-
related. For example, Arg and Glu are observed significantly less
often than expected by chance (one-tail p = 0.001) for the top
DC-scoring pair in pyrin-related death domains; hence, the corre-
sponding R36:A-E27:B pair for NLRP6 (Fig. 1A) presumably is
selected against. In stark contrast, the residues observed for the
2nd and 3rd top DC-scoring pairs (K35:A-D60:B and K35:A-D63:
B) occur significantly more often than expected (p = 1.9x10-28

and p = 7.1x10-29, respectively). Prior to performing this test, resi-
due counts are down weighted for sequence redundancy and the
adjusted counts are rounded to the nearest integer.
2.3. Identifying direct couplings across a heteromeric interface

In the hetmer mode, SPARC computes the statistical significance
of the correspondence between direct couplings and 3D contacts
across adjacent heteromeric subunits. For this, each aligned
sequence needs to be labeled with its NCBI taxonomy ID (tax_id),
which can be done using our AddPhylum program (see Methods).
SPARC uses tax_ids to ensure that each heteromeric subunit pair
is from the same species. Unlike direct couplings across homo-



Fig. 1. SPARC rank analysis of pyrin-relate death domain (DD) proteins corresponding to Table 1. A. Table of the 10 top residue pairs for the cryo-EM structure of the NLRP6
PYD filament (pdb_id: 6ncv [21]) based on sub-sampling of aligned pyrin-related sequences. SPARC robustly ranked residue pairs based on the number of times they were
among the top DC-scoring (i.e., having the top average product corrected Frobenius norms) for 100 sub-samplings with replacement of the input MSA. Each sampled sub-MSA
consisted of 500 sequences randomly drawn from among the 3,572 sequences in the input MSA. Seven of the 10 highest ranked pairs (those shown in black font) correspond
to interactions that include contacts between adjacent death domains—suggesting that these contacts are functionally important. B. Image of the NLRP6 PYD filament cryo-
EM structure. The 12 pairs that interact in trans, among the 30 highest ranked pairs, are shown as red rods. Subunits adjacent to the A subunit are colored, whereas other
subunits are shown in light gray. C. Image of the NALP3 PYD crystal structure (pdb_id: 3qf2 [64]). For this structure, SPARC computes a negative value for DS suggesting that
this interaction lacks biological relevance and thus may be a crystallographic artifact.

Table 3
SPARC analysis of heteromeric interactions. Search parameters: r = 5.0; m = 5.

name pdb_id Å chains S L D X d F # seqs ‘1 ‘2

AMPA-type glu receptor 5fwy 2.12 A:B 0.3 86,925 70 78,250 67 114.2 450 288 307
cdc42 GAP 1grn 2.1 A:B 3.5 30,590 72 1,547 16 4.0 2,175 161 190
cyclin E1-CDK2 1w98 2.15 A:B 0.0 48,039 70 11,478 17 21.9 2,486 240 201
citryl-coa_synthetase 6hxq 2.91 A:B 42.9 83,280 97 727 35 1.1 17,361 240 349
guanylate cyclase 3uvy 2.02 A:B 5.2 26,250 69 6,097 36 16.3 1,810 151 175
hemoglobin A2 1si4 2.2 A:D 4.0 18,496 23 6,912 19 31.9 984 135 137
hydroquinone dioxygenase 5m4o 2.1 C:D 11.3 49,298 208 2626 44 5.3 340 157 321
nitrile hydratase 1ahj 2.65 A:B 21.1 37,943 249 6,592 110 16.5 2,057 186 204
Rab1 GAP 4hlq 3.3 A:B 3.0 41,984 84 4,226 24 60.8 2,527 224 159
Ras RasGAP 1wq1 2.5 R:G 5.0 41,310 101 9,239 45 21.8 2,105 164 256
SoxAX cytochrome 1 h32 1.5 A:B 18.6 15,836 51 168 17 0.5 1,094 148 110
tryptophan synthase 5e0k 2.76 A:B 21.1 70,022 49 342 16 0.5 21,450 229 315
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meric interfaces, which requires a single MSA as described above,
analyses across heteromeric interfaces requires two MSAs, one
for each subunit. To obtain an MSA of likely orthologs among an
aligned set of homologs for each subunit and each species, SPARC
selects the sequence with the highest pairwise score against the
corresponding sequence from the structural coordinate file pro-
vided as the query. Some heteromeric complexes may be absent
from many species, which therefore lack one or both orthologs.
To help identify such cases, SPARC outputs, for each subunit, a his-
togram of the pairwise scores between the structural sequence and
the candidate orthologs—with scores for true orthologs tending to
follow a unimodal distribution that is approximately normal.

Table 3 shows the results for 12 heteromeric protein complexes.
Anecdotally, we find that some enzymes forming a functional het-
erodimeric complex exhibit highly significant direct couplings at
the heteromeric interface (shown in bold text in the table),
whereas transient regulatory interactions tend to be marginally
significant at best. Of course, computed S-scores also depend on
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other factors (see Discussion), such as the number of aligned
sequences included in the analysis (as larger alignments provide
more accurate DC-scores and thus a stronger signal), and the
extent to which the heteromeric complex is conserved across
diverse organisms. Hence, a negative result does not exclude the
possibility of subtle co-evolving residues at the heteromeric inter-
face. SPARC generates PyMOL scripts showing the structural loca-
tions of the highest DC-scoring pairs, as illustrated for three
enzyme complexes in Fig. 2. The high S-scores observed for these
enzymes strongly support the existence of co-evolving 3D contacts
among trans-interacting residues.

2.4. SPARC analyses of molecular dynamics simulated structures

The simul mode is one of eight modes for characterizing struc-
tural features over a time series of MD simulated structures. It
computes S-scores at a series of time points during a simulation.
This provides a sense of whether the evolving structure is depart-



Fig. 2. The highest DC-scoring residue pairs across heteromeric subunits for three enzyme complexes. Solid and dashed red lines correspond to DC-pairs separated by � 10 Å
and > 10 Å, respectively. A. The 15 highest DC-scoring residue pairs between the nitrile hydratase (pdb_id: 1ahj [65]) a and b subunits. SPARC assigns an S-score of
�log10 pð Þ ¼ 21:1dits (48.6 nats) to the correspondence between DC-scores and 3D heteromeric interactions within r � 4.0 Å. B. The 27 highest DC-scoring pairs between the
citryl-CoA synthetase (pdb_id: 6hxq [66]) large (L) and small (S) subunits. S = 42.9 dits (98.8 nats). The cluster of > 10 Å DC-pairs (dashed lines on the right) suggests that
these regions may undergo conformational changes that bring them into contact. C. The 11 highest DC-scoring pairs between the tryptophan synthase (pdb_id: 5e0k [67]) a
and b subunits. S = 21.1 dits (48.6 nats).
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ing from or converging toward conformations for which more
directly coupled residue pairs make contact (i.e., toward conforma-
tions likely to be more relevant biologically and thus worthwhile
examining more closely). In the simul mode, SPARC outputs S-
scores computed as described for the rankmode above. This allows
comparisons among both simulated and empirically based confor-
mations and among various ligand-bound states (e.g., ATP- vs ADP-
bound vs unbound states).

The remaining SPARC modes characterize specific types of resi-
due interactions during an MD simulation. For these, output files
are generated to visualize changes in structural interactions. Note,
however, SPARC’s focus is not on simulating the dynamic motion of
a protein complex per se, for which many existing programs are
already available. Instead, SPARC aims to identify interactions
involving pattern residues and high DC-scoring residue pairs that
are congruent with current biochemical knowledge; this can sug-
gest molecular mechanisms that explain why certain residues are
subject to strong constraints.

2.5. Characterizing functional residue interactions in simulated
structures

SPARC’s sc2sc, sc2bb, sc2sb, dist, correl, bb2bb, and sipris, modes
primarily characterize residue 3D interactions for MD simulated
structures over time (though they can also take as input an empir-
ically based or AI predicted structures). For all these modes, SPARC,
when performed in conjunction with a DARC analysis, reveals the
category to which each interacting residue belongs and visualizes
their structural locations. As illustrated in the following subsec-
tions, such analyses can provide mechanistic clues into the roles
of BPPS-defined residues and of top DC-scoring residue pairs that
are distinctive of a given protein functional subgroup.

2.5.1. sidechain-to-residue and sidechain-to-heteroatom interactions
In the sc2sc, sc2bb, and sc2sb modes and in the dist mode, SPARC

searches for sidechain-to-residue and (primarily) residue-to-
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heteroatom hydrogen bond interactions, respectively. We illustrate
these analyses using the bacterial enhancer binding protein (bEBP)
[25,26] NtrC1 from the extreme hyperthermophile Aquifex aeolicus
[27]. NtrC1 activates transcription by remodeling RNA polymerase
(RNAP) containing the sigma factor r54 [26,28]. When saturated
with Mg-ATP or Mg-ADP, NtrC1 forms a symmetric, homohep-
tameric complex [29], but at slightly sub-stoichiometric amounts
of the ground or transition state ATP analogs Mg-ADP-BeF3 or
Mg-ADP-AlF3 it forms an asymmetric, homohexameric gapped ring
[29]. The hexameric form is believed to be the functional form
because it is seen when the transition state analog traps a bEBP
ATPase in complex with r54 [29], RNAP- r54 [30], or RNAP- r54-
promoter [31].

SPARC analyses suggest that NtrC1 may hydrolyze ATP only
upon ADP release from an adjacent subunit. SPARC sc2sc and dist
analyses of simulated NtrC1 hexameric structures over a 1 ls time
course suggest a possible mechanism involving alternative interac-
tions among residues that are distinctive of AAA + ATPases and of
bEBP-related proteins (as defined by BPPS within DARC; Fig. S1).
When ATP is bound to, say, the ‘A’ subunit, and ADP to other sub-
units within the NtrC1 hexameric complex (denoted as ATP:A/ADP:
B-F), the bEBP-residue R293:B forms a salt bridge both with D295:
B and, notably, with the AAA + catalytic base, E239:A, pulling it
away from the c-phosphate of ATP and thereby presumably
inhibiting ATP hydrolysis (Fig. 3A,B). This interaction appears to
require repositioning of a helix in subunit A whose N-terminal
end is attached to the Walker B region harboring E239:A. This
repositioning may be facilitated by formation (across subunit A’s
interface with subunit F) of a salt bridge between two other
bEBP-residues: R253:A, located within the helix, and E174:F, which
directly follows the Walker A catalytic lysine residue, K173:F. In
this state, the c-phosphate of ATP bound to subunit A interacts
with the AAA + trans-acting R-finger R299:B, whereas at the F:A
interface, R299:A forms a salt bridge with the bEBP-residue
D295:A—thereby sequestering R299:A away from ADP, which
may then be more easily expelled from the F subunit. A SPARC dist



A.F. Neuwald, H. Yang and B. Tracy Nixon Computational and Structural Biotechnology Journal 20 (2022) 1702–1715
analysis reveals that formation of the E174:F-R253:A salt bridge
also repositions E174:F away from the ADP-associated Mg++ ion,
which likewise may facilitate ADP release—considering that, in
GTPases, release of Mg++ induces a 460-fold increase in the nucleo-
Fig. 3. SPARC sc2sc analysis of MD simulated NtrC1 hexameric structures. Simulations w
of AAA + and bEBP associated residues are colored yellow and salmon, respectively. The
hexameric complex. In all cases, ADP is bound to subunits B-E. A. SPARC plot, as a function
R253:A and E174:F when ATP is bound to subunit A and ADP to subunit F. B. An NtrC1 sim
ADP is bound to the F subunit due to the trans salt bridge between R293:B and the catal
between R299:A (the AAA + R-finger) and D295:A prevents R299:A from coordinating w
with Mg++. Together these interactions may facilitate expulsion of ADP from the F subun
and the AAA + superfamily, respectively. C. Time series plot for the same residue pairs as
NtrC1 simulated structure corresponding to panel C. Disruption of the R253:A-E174:F s
brown) helix connected to the Walker B region, which harbors E239:A, the catalytic bas

Table 4
Top 15 highest DC-scoring residue pairs identified by SPARC for NtrC1 based on a bEBP fa

rank residue paira description or comment

site 1 site 2

1 A197 A249 May avoid steric clashes
2 R201 E246 Electrostatic contact noted in [27]
3 K327 K360 K-to-K is significantly reduced
4 F236 A278 Not distinctive of bEBP family
5 I153 V176 Contact between helices 1 and 0
6 F227 V254 Contact between helix 3 and L1 hel
7 E256 K360 E256 binds to Sensor-2 Arginine
8 K155 E371 Contact between adjacent domains
9 W352 V362 V362 packs against W352 and E358
10 E242 R281 Bridge next to E242-R293 bridge
11 E205 K250 Electrostatic contact noted in [27]
12 F339 I363 Not significantly elevated
13 I318 Q344 Not significantly elevated
14 E174 R253 trans salt bridge near Walker B D23
15 V171 I307 Contact between strand 5 and P-loo

a Residues in bold were also identified by BPPS as among the most distinctive of bEB
elevated and thus not among those residue pairs subject to constraints or that are also am
bEBPs.

b Subsampling: each of 1,000 subsamples of 2,500 aligned sequences randomly drawn
columns give the percentage of samplings for which the residue pair in each row was a
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tide dissociation rate [32]. Conversely, E174 may play a role in ATP
hydrolysis analogous to the role of the Walker B aspartate residue
by coordinating with and thereby stabilizing the nucleotide-bound
Mg++ ion. Once ADP is removed from subunit F’s catalytic site,
ere performed over 1 ls and were based on pdb coordinate file 4ly6 [33]. Sidechains
plots and figures correspond to interactions at the F:A and A:B interfaces within the
of time, of the trans interaction distances between R293:B and E239:A and between
ulated structure corresponding to panel A. ATP hydrolysis may be prevented when

ytic base, E239:A, in conjunction with a D295:B-R293:B salt bridge. The salt bridge
ith ADP, whereas the R253:A-E174:F salt bridge prevents E174:F from coordinating
it. Red and yellow sidechains correspond to residues distinctive of the bEBP family
in panel A but with ATP bound to subunit A and with subunit F in the apo state. D.
alt bridge may facilitate conformational changes at the A:B interface via the (dark
e. These changes reposition E239 to presumably facilitate ATP hydrolysis.

mily MSA.

shown in % sampled among topb

figures 20 10 5 2

yes 100 100 93 71
yes 100 100 86 38
– 100 100 88 26
– 100 100 87 26
– 100 100 79 33

ix – 100 96 30 4.3
– 100 83 20 0.7
– 100 78 10 0.6
– 100 71 6.2 0.3
– 100 51 0.4 0
yes 99 33 0.1 0

94 30 0.2 0
– 98 19 0.1 0

8 yes 88 10 0 0
p – 84 12 0.3 0

Ps. Rows in italicized, light gray font correspond to pairs that are not significantly
ong the highest scoring pairs in other AAA + proteins and thus are not distinctive of

from the bEBP MSA (95,469 sequences) were used to compute DC-scores. The last 4
mong the top 20,10, 5 or 2 highest DC-scoring out of 17,085 pairs.
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these salt bridge interactions are disrupted (Fig. 3C,D), thereby
repositioning for hydrolysis subunit A’s catalytic base E239:A.
Together, these observations suggest a mechanism to prevent
catalysis at the A:B interface until ADP is expelled from the F sub-
unit. These interactions, which were not observed in crystal struc-
tures, were stably maintained during 1 ls MD simulations based
on the 4ly6 hexameric structure [33] (Fig. 3A,C). MD simulations
of other nucleotide bound states (e.g., 3ATP/3ADP, 3ATP/2ADP/
APO, etc.) failed to suggest such a clear-cut hypothesis regarding
underlying mechanisms. The reason for this is currently unknown,
though similar analyses of the complete NtrC1/RNAP-r54/pro-
moter DNA complex should provide more insight.
2.5.2. Correlated formation and disruption of interacting residue pairs
In the correl mode, SPARC’s searches for correlated formation

and disruption of hydrogen bonds between residues by performing
a two tailed Fisher’s exact test on a contingency table to identify
deviations from what would be expected by chance given the mar-
ginal numbers of interactions and separations for each residue pair.
Note, however, that the estimated p-values are an invalid measure
of statistical significance, because we cannot assume that the time
series data points are sampled independently. Instead, SPARC uses
p-values merely to rank each pair of residue interactions.

Assuming that the NtrC1 hexameric complex in the 1ATP + 4A
DP + APO state is poised to couple ATP hydrolysis to remodeling
Fig. 4. Potential allosteric coupling of catalytic residues with the R201:A-E246:B residue
and L2 loops. A. Representative cis-to-trans conformational switch associated with two
scoring pairs, E246-R201 and A197-A249 (orange sidechains) (see Table 4). R201 and E2
simulation of the NtrC1 hexameric complex in the 1ATP/4ADP/APO state, the formation
formation and subsequent dissociation of a cluster of interacting residues at the ATP-b
shown in panel C. C. Structural locations of correlated interacting residues for the 84 ns
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of RNAP-r54, we looked for such correlations during a 1 ls MD
simulation. This identified two residue pairs often undergoing cor-
related formation and disruption of hydrogen bonds with other
pairs: an R201-E246 cis-to-trans switch and the disruption and for-
mation of a E239-T279 hydrogen bond, where R201-E246 corre-
sponds to one of the highest DC-scoring pairs (Table 4), E239
corresponds to the AAA + catalytic base and T279 to the AAA + sen-
sor 1 motif. A closer investigation using the sc2sc, sc2bb, and dist
modes revealed that, for the ATP-bound A subunit, the R201-
E246 cis-to-trans switch (Fig. 4A,B) correlates with the disruption
and formation of a E239-T279 hydrogen bond (Fig. 4B,C) and that
formation of the R201-E246-trans hydrogen bond is correlated
with the interaction of another sensor 1 residue, N280, with both
E239 and the c-phosphate group of ATP (Fig. 4B). Hence, we
hypothesize that formation of the R201-E246-trans salt bridge, in
conjunction with formation of interactions among E239, T279,
N280, D295, and ATP, may prime the active site for hydrolysis
(Fig. 4C). This and the location of R201 and E246 within the a2
and a3 helices, which are associated with the L1 and L2 r54-
binding loops, suggests an allosteric mechanism for coupling ATP
hydrolysis to remodeling of the RNAP-r54 complex.
2.5.3. backbone-to-backbone interactions
If ATP hydrolysis occurs when in the 1ATP/4ADP/APO state,

then this would transition the complex into the 5ADP/APO state,
pair associated with the a2 and a3 helices, which are linked to the r54-binding L1
bEBP-residues, K250 and E205 (salmon-colored sidechains), and with two high DC-
46 switches between interacting in cis and trans (as shown). B. During a 1 ls MD
and dissociation of the R201:A-E246:B salt bridge (black line) is correlated with the
ound active site (colored lines). The 84 ns time point corresponds to the structure
time point in panel B.



Fig. 5. Conformational changes associated with the a3 helix of the NtrC1 A subunit during a 1 ls MD simulation. A. SPARC analyses of backbone-to-backbone (bb2bb)
interaction distances between residue K250 and the residue adjoined to R253, namely V254. Distances are plotted as a function of time for the three nucleotide bound states
of the NtrC1 homohexamer shown in panel B. Note how the black and red plots are quite distinct. B. Schematic representation of the three hexameric nucleotide bound states.
C. Representative conformations of the a3 helix and L2 loop of the A subunit for the hexameric states shown directly above each image in panel B. When ATP is bound to the A
subunit and ADP to the other five subunits, the a3 helix of subunit A is well formed. However, when ADP is removed from the F subunit, a kink tends to form in subunits A’s
a3 helix. The helix a3 kink becomes more extensive upon hydrolysis of ATP to ADP. Because the a3 helix is attached to the N-terminal end of the L2 loop, the kink may
facilitate restructuring of r54 bound to the L2 loop. Salmon colored sidechains correspond to BPPS-defined residues distinctive of bEBPs (see Fig. S1).
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for which we also performed a 1 ls MD simulation. SPARC bb2bb
time analyses of all three states (Fig. 5A) reveal striking
conformational differences in the a3 helix, which directly precedes
the r54-binding L2 loop: Upon release of ADP from subunit F, this
helix begins to develop a kink in helix a3 that becomes more
extreme upon hydrolysis of ATP (Fig. 5B,C). The a3 helix harbors
R253, which forms with E174 a salt bridge that often undergoes
correlated formation and disruption of hydrogen bonds with other
pairs, including R201:E246. The a3 helix also harbors two other
residues subject to strong constraints: K250, which is distinctive
of bEBP-related proteins, and E246, which, as mentioned above,
forms one of the highest DC-scoring pairs with R201 (Table 4).
Moreover, as indicated in Fig. 4, the salt bridge formed by the
E246-R201 DC-pair often switches between cis and trans interac-
tions, where, for the trans interaction, these residues can form
hydrogen bonds with the highest DC-scoring and trans-
interacting pair A197-A249 (Table 4; Fig. 4A, bottom left image).
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The short alanine sidechains on these residues may facilitate the
E246-R201 cis-to-trans switch by avoiding the steric clashes that
might occur with longer sidechains. R201 is near the N-terminal
end of the a2 helix, which harbors both another bEBP-specific resi-
due, E205, with which R201 also interacts (Fig. 4A), and the L1 loop
that also binds to r54. Together, these structural features suggest
an allosteric mechanism for coupling ATP-hydrolysis to remodel-
ing of RNAP-r54.

2.5.4. Hydrogen bond networks involving pattern residues
We used SPARC, in conjunction with DARC, to find hydrogen

bond networks among BPPS-defined pattern residues for the
E. coli helicase DnaBC complex, which opens the replication fork
during DNA replication. To identify pattern residues, we ran DARC
on an MSA of 675,713 sequences belonging to the RecA-like super-
family, using as the query the E. coli DnaB protein. This identified
pattern residues most distinctive both of the RecA superfamily
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and of the DnaB-like family, as highlighted in Fig. S2. To further
characterize these residues, we performed MD simulations based
on a recent cryo-EM structure of the E. coli DnaBC complex [34].
In this complex, the DnaB helicase and the DnaC AAA + ATPase
each consist of six subunits forming a ring-shaped homohexamer
with each ring packed against the other and with a central pore,
through which single stranded DNA (ssDNA) is thread.

Using SPARC’s sipris mode we found that, within the DnaBC
complex, residues distinguishing DnaB-like helicases from other
RecA-like proteins form a highly significant (p < 10-14) cluster
located in loop regions between the catalytic site and ssDNA
(Fig. 6A). To investigate 3D interactions among these residues,
we performed a 1 ls MD simulation of this complex. SPARC finds
that, during the simulation, these residues can form an intricate
hydrogen bond network (Fig. 6B) that is associated with a flipped
Fig. 6. Residues distinctive of DnaB-like and RecA-like proteins within an MD simulated
(see Fig. S2) distinctive of DnaB-like proteins tend to cluster between ssDNA and ATP w
highly significantly clustered (p ¼ 1:4� 10�15) DnaB-like residues (red sidechains) that w
(K237, T238, and E262; yellow sidechains) distinctive of the RecA-like superfamily. B.
interface during a 1 ls MD simulation. This network includes hydrogen bonds to ssDNA a
network may facilitate the base flip. A similar flipped-out base occurs at the D:E interfac
simulation, flip out and insert into cavities associated with the C:D and D:E interfaces wit
but not within the B:C cavity. Flipped out bases are colored cyan; other bases are colored
C interface while interacting with ssDNA-associated R403. E. Later during the simulation
Q410 interacts both with a sidechain oxygen atom of the putative catalytic base, E262, an
mediate ATP hydrolysis—perhaps in conjunction with the 3rd flipped base fully exitin
distinctive of the RecA-like superfamily in panels D and E are shown with yellow sidech
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out nearby base of ssDNA (Fig. 6C). Within the complex, three of
the ssDNA bases flip in this way, two of which are inserted into a
cavity formed at the C:D and D:E interfaces between subunits
(Fig. 6C), perhaps thereby ‘grabbing’ onto the DNA strand. At these
interfaces and early in the simulation at the B:C interface, one of
these residues, Q410, is positioned toward the ssDNA. Later in
the simulation, however, Q410:B (at the B:C interface) flips around
to form hydrogen bonds with the putative catalytic base (E262:C)
and with a water molecule (Fig. 6D). The water’s oxygen atom is
positioned to attack the c-phosphorous atom of ATP where one
of the water’s hydrogen atoms could be taken up by Q410:B’s side-
chain oxygen and the other by a c-phosphate oxygen (Fig. 6D). If
Q410:B is required for hydrolysis, then the Q410:C and Q410:D
flipped ‘down’ states may prevent premature ATP hydrolysis at
the C:D and D:E interfaces. Hence, these conformational states
structure of the DnaBC complex bound to ATP and ssDNA. A. BPPS-defined residues
ithin the cryo-EM structure of the DnaBC complex (pdb_id: 6qem [34]). Shown are
ere identified by SPARC (using the sipris mode) along with three catalytic residues
A network of hydrogen bonds formed among eight DnaB-like residues at the C:D
nd is associated with a flipped-out thymidine base (dT5; palecyan). Formation of this
e (as shown in panel C). C. Two thymidine bases within the ssDNA that, during the
hin the homohexameric complex and a third flipped out thymidine base that is near
palecyan. D. MD simulated (23 ns time point) conformation of residue Q410 at the B:
(683 ns time point) Q410 has flipped around to interact with the ATP binding site.
d with a buried water oxygen atom, which could attack the c-phosphorous atom to
g the B:C cavity. E262 also coordinates with the ATP-bound Mg++ ion. Residues
ains.
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may reflect mechanistic features coupling ATP hydrolysis to
translocation of the helicase along DNA. These interactions are evi-
dent during an MD simulation, but not in the cryo-EM structure
used to set up the simulation (pdb_id: 6qem) [34]. Because the par-
ticipating residues are conserved among the 86,801 DnaB-like pro-
teins used in our analysis, which represent 38 bacterial phyla,
these findings may provide a structural context for rational drug
design of broad-spectrum antibiotics.
3. Discussion

SPARC and our overall approach focus on large superfamilies
that have functionally diverged into subgroups, each of which has
its own, characteristic constraints. This provides the best opportu-
nity to glean clues to underlying molecular mechanisms by hierar-
chically categorizing constraints. Although the statistical power of
such an analysis depends on the number of aligned input
sequences, there are hundreds of sufficiently large superfamilies
currently available, for which MSAs can be created from NCBI
CDD hierarchies [35]. There is no sharp cutoff regarding the mini-
mum number of input sequences required, though, roughly speak-
ing, there should be at least say, 2,000 sequences given that there
are 400 possible residue pairs for 20 amino acids. Conversely, statis-
tical power will tend to converge as the data becomes sufficiently
large. Ideally, SPARC should be applied to superfamilies with at
least 20,000 distinct sequences or, better yet, with several hundred
thousand or more sequences and with a lot of structural data.

SPARC differs from other MD analysis tools, as it specifically
identifies and structurally visualizes 3D clusters and interactions
involving constrained residues and top DC-scoring residue pairs,
while also assessing each structure’s potential biological relevance;
though it can also be applied to empirically based structures. SPARC
also computes S scores for heteromeric interfaces within multi-
meric complexes and allows a user to investigate the most interest-
ing interactions involving individual residues or residue pairs in
greater depth. It incorporates more common ways to search for
residue interactions and correlations (which our other programs
do not) and therefore serves as a single tool to perform an extensive,
multifaceted analysis. Traditional MD analysis tools like MDAnaly-
sis [36], MDtraj [37] and Pycontact [38] also focus on low resolution
metrics, such as RMSD, RMSF, radius of gyration, or solvent accessi-
ble surface area, whereas SPARC focuses on specific hydrogen bonds
involving residues or residue networks subject to statistically sig-
nificant constraints. Hence, SPARC performs analyses from a per-
spective that, to our knowledge, existing MD analysis tools do not.

Although deep learning methods can leverage vast amounts of
information to perform well on shallow MSAs, they will obscure
the residue constraints that SPARC seeks to characterize. Consider,
for example, the top CASP12- and CASP13-winning contact and
distance prediction method, RaptorX-Contact [39]. This method
relies on CCMpred DC-scores, just as SPARC does, but also relies
on (i) a position-specific scoring matrix, (ii) predicted secondary
structure confidence scores, (iii) predicted solvent accessibility
scores, and (iv) three other matrices for pairwise relationships gen-
erated by the alnstats routine in MetaPSICOV [40]. Consequently,
by merging such information, RaptorX-Contact will obscure the
DC-signals associated with pairwise correlations in unanticipated
ways, so that a clear signal cannot be associated with a specific
residue pair. This would undermine SPARC’s main objective. Nev-
ertheless, SPARC can compute S scores using rankings based on
contemporary deep learning DCA methods using a command line
option that takes arbitrary DC-scores as input. This will estimate
the statistical significance of the correspondence between the
highest of these alternative DC-scoring pairs and the 3D contacts
within structures, just as they do for SPARC’s built-in DC-scores.
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We prefer empirically based structures over AI predicted struc-
tures, because SPARC works best using protein multimeric com-
plexes bound to cofactors, substrate, other ligands, ions, and
other, interacting subunits; these are currently unavailable for
AlphaFold [41] structures—though RoseTTAFold [42] is able to
model multiple subunits. Meaningful sidechain interactions and
loops are another key element of SPARC analyses both for static
structures and as a good starting point for MD simulations; how-
ever, AI predicted structures are reported as having inaccurate
sidechains and loops and other limitations [43,44]. Nevertheless,
as AI predictions improve to include protein complexes in sub-
strate and cofactor bound states, it will be straightforward to per-
form SPARC analyses on these as well.

SPARC, in conjunction with DARC, structurally characterizes
residue constraints as likely determinants of protein function, lead-
ing to clues regarding possible underlying mechanisms. SPARC’s
modes provide multiple perspectives on structural features associ-
ated with those constraints. We illustrated this for empirically
based structures of homomeric death domain filaments and of var-
ious heterodimeric complexes. This revealed that both a cryo-EM
structure of a death domain filament and certain crystal structures
of heterodimeric enzymes have highly significant (interface) DS
and S scores—suggesting that these interactions are biologically
relevant. An avenue for further research is predicting heteromeric
interaction sites when only the structures of the individual pro-
tomers are available. In this case, one could search over possible
interfaces for the highest S-scoring interface, as the likely actual
interface. Notably, SPARC’s ability to pair up heterodimeric sub-
units from distinct species automates a process that is now often
performed manually.

SPARC also provides complementary information, such as
whether specific residues are elevated or depressed at high DC-
scoring MSA positions; this reveals whether certain residue pairs
in a protein of interest are subject to the DC constraints imposed
at those positions in other, related proteins. Although not
described here, SPARC can be used in this way to assess the quality
of predicted versus empirically based protein structures. For exam-
ple, we found that AlphaFold [41] structures for GTPase domains
received similar S-scores as did empirically based structures.

Some of the heterodimers (e.g., AMPA-type Glu receptor and
cyclin E1-CDK2 in Table 3) failed to achieve significant S-scores.
This could be due to a variety of reasons: For example, as organ-
isms adapt to changing conditions, interactions of a regulatory pro-
tein with regulated proteins may evolve more rapidly, and thus
obtain a lower S-score, than would a more stable, biochemically
critical heteromeric enzyme interaction. Alternatively, as illus-
trated in [45], the correspondence between high DC-scoring resi-
due pairs and 3D contacts may be obscured due to their
association with transient interactions during folding or upon
binding. Likewise, while performing its cellular function, a protein
complex may cycle through alternative states, only some of which
may bring together top DC-scoring pairs. SPARC could be applied,
of course, to such alternative conformations if their structural coor-
dinates were available.

DC-signals associated with subunit interactions may also fail to
be conserved across members of an evolutionarily related protein
family due to divergence in structure or function, leading to differ-
ences in subunit contacts, or in folding, or binding properties. This,
in turn, may be due to environmental differences, among, for
example, thermophilic vs cryophilic, halophilic vs osmophilic, or
acidophilic vs alkaliphilic bacteria. A low S-score could also be
due to crystallographic artifacts, to an incorrect structure, or to
insufficient data to obtain a clear-cut DC signal. In any case, an
insignificant S or DS score does not exclude the possibility of cer-
tain subunit interactions being biologically relevant—though
SPARC cannot determine whether any constraints are obscured
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and, if so, why. (In such cases, PDBePISA [46] or 3D complex [47]
might differentiate between real and artifactual low S-scoring
interactions.) For these reasons, SPARC focuses solely on high S
scoring structures that are more likely to exhibit interactions asso-
ciated with the underlying molecular mechanisms that we seek to
understand. Indeed, obtaining a highly significant S score for an
incorrect conformation is highly improbable. This is a major advan-
tage of performing a statistical analysis, as the p-value estimate
does not depend on the amount of or the quality of the data, but
rather on the probability of obtaining the observed result by
chance alone. An incorrect protein structure or incorrect DC-
scores should only lead to statistically insignificant results.

Because protein structure is dynamic, MD simulations add an
important dimension to the analysis and interpretation of
sequence and structural constraints and vice versa. SPARC exami-
nes, in this way, dynamic changes associated with BPPS-defined
residues and clusters, and with high DC-scoring residue pairs. This
provides otherwise unavailable clues regarding underlying mecha-
nisms, leading to plausible hypotheses for experimental follow up.
For example, our analysis of the NtrC1 hexamer suggests a possible
mechanism to couple hydrolysis at an ATP bound subunit with
nucleotide exchange at an adjacent, ADP-bound subunit: Two
trans-interacting salt bridges involving three bEBP-specific resi-
dues and the E239 catalytic base (R293:B-E239:A and R253:A-
E174:F) were stably maintained over a 1 ls simulation in the
ATP:A/ ADP:B-F state. Also stably maintained in this state is a cis-
interacting salt bridge between the AAA + R-finger R299:A and
the bEBP-specific residue D295:A (R299:A-D295:A). The R293:B-
E239:A salt bridge sequesters the catalytic base away from ATP-
Mg++ bound to the active site; the R253:A-E174:F salt bridge
sequesters E174:F away from its interaction with the ADP-bound
Mg++ ion; and the D295:A-R299:A salt bridge sequesters the trans-
acting R-finger away from its interaction with ADP bound to sub-
unit F. However, upon release of ADP from the F subunit, these salt
bridges are disrupted leading to the interaction of the catalytic
base (E239:A) with ATP-Mg++. Together, this suggests a mechanism
facilitating concurrent release of ADP from subunit F and ATP
hydrolysis at subunit A.

This raises the question: How is ATP hydrolysis coupled to
remodeling of the RNAP-r54 complex? SPARC analyses of 1 ls
simulated structures of NtrC1 in the ATP:A/ADP:B-E/APO:F state
reveal a correlation between a cis-to-trans switch of the R201-
E246 salt bridge and the interact of three bEBP residues with
bound ATP and with the catalytic base. E246 is in the a3 helix,
which attaches to the L2 loop, and R201 is at the N-terminal end
of the a2 helix, which harbors the L1 loop; these loops are believed
to play key roles in binding and remodeling of RNAP-r54 during
promoter melting [27,28]. A SPARC comparison of the
ATP:A/ADP:B-E/APO:F state with the ADP:A-E/APO:F state, which
would result upon ATP hydrolysis and Pi release, reveals a dramatic
restructuring of helix a3 in subunit A. Conformational changes
associated with such collapse of helix a3 could cause loops L1
and L2 to deliver mechanical work to r54. A less severe distortion
in helix a3 involving these same residues was reported upon com-
paring crystal structures of NtrC1 ATPase saturated by ADP and a
non-hydrolytic mutant saturated by ATP [27]. However, those
studies with wildtype and mutant NtrC1 were in the context of
symmetric, heptameric (probably nonfunctional) forms. Together,
the SPARC analyses reported here provides new mechanistic clues
regarding specific nucleotide states within the asymmetric, gapped
hexameric (probably functional) form of NtrC1. In this way, SPARC
expands on the existing glutamate-switch [48] and rigid-body-roll
[27,33] proposals for how the bEBP subclass of AAA + ATPases
function. Arriving at such a new hypothesis illustrates how SPARC
can be useful for experimental design.
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SPARC/DARC analyses in conjunction with MD simulations like-
wise provided clues regarding mechanisms associated with DnaB
helicases. Within the cryo-EM structure of the DnaBC complex,
SPARC found, between the active site and ssDNA, a highly signifi-
cant cluster of BPPS-defined residues distinctive of the DnaB fam-
ily. SPARC analysis of DnaBC simulated conformations identifies a
hydrogen bond network involving DnaB-like residues and associ-
ated with ssDNA flipped-out bases inserted into a cavity between
DnaB subunits. SPARC also identifies a conformational switch
involving Q410 that may be involved in activation of ATP hydroly-
sis. These structural features are hypothesized to be involved in
coupling hydrolysis to translocation of the helicase along DNA.

Francis Bacon, in his book Novum Organum [49], describes, as
the first step in applying the scientific method, the compilation
of observational data, followed by the categorization of these
observations and the generation of hypotheses. As illustrated here,
by extensively characterizing protein sequence and structural con-
straints, SPARC facilitates the generation of hypotheses, from
which may follow the accumulation of additional empirical results
through further experimentation.
4. Methods

Protein structural coordinates. Structural coordinate files were
obtained from the RCSB protein data bank (PDB) [50]. The PDB
identifiers for the structures examined in this study were: 6ncv,
2nlf, 4ewi, 3qf2, 5h7n, 2m5v, 5hwy, 1grn, 1w98, 6hxq, 3uvy 1si4,
5m4o, 1ahj, 4hlq, 1wq1, 1 h32, 5e0k, 4ly6, and 6qem. Hydrogen
atoms were added to these files using the Reduce program [20]
version 3.3.

MAPGAPS (version 2.0). MAPGAPS (Multiply Aligned Profiles for
Gapped Alignment of Protein Sequences) [51] can both identify and
accurately align up to a million or more sequences, taking as input
a fasta-formated database file of protein sequences along with a
hierarchical MSA, such as are available from the NCBI (ftp://ftp.
ncbi.nlm.nih.gov/pub/mmdb/cdd/hiMSA)[52]. A hierarchical MSA
consists of a set of sub-MSAs (one for each subgroup in a superfam-
ily) and a template MSA that globally aligns the sub-MSAs to each
other. From the hierarchical MSA, MAPGAPS creates a set of multi-
ply aligned profiles, which then detect and align related database
sequences, as follows: Each sequence that scores above a specified
threshold against the root profile is first locally aligned against the
most closely-related profile; then all of the sequences detected in
this way are globally aligned using the template MSA. With suffi-
ciently diverse sequence representation in the hierarchical MSA,
the output MSA will be of comparable quality. Due to memory lim-
itations, we split database sequences into smaller files containing
no more than 250,000 sequences each and run MAPGAPS on each
of these files separately, the resulting MSAs were then merged into
a single MSA. We removed sequence fragments (i.e., those
with > 25% deletions) and all but one sequence among those shar-
ing � 95% identity using the PurgeMSA program, which is included
with MAPGAPS. We also used MAPGAPS to detect and multiply
align related proteins of known structure within the NCBI pdbaa
fasta file (available at: ftp.ncbi.nlm.nih.gov/blast/db/FASTA/pdbaa.
gz); these were added to the MSA, and PurgeMSA was used to
remove sequences identical to these sequences from the initial
MSA. This allows SPARC, BPPS, and DCA to associate protein struc-
tural coordinates with corresponding sequences in the alignment.

Jackhmmer MSAs. We used the following six steps to create
MSAs using Jackhmmer [53]. (1) We labeled NCBI nr, env_nr, and
translated EST fasta-formatted sequences with their NCBI taxon-
omy identifiers using the AddPhylum progam, which is available
with SPARC. (2) For heteromeric interface analyses, we used each

http://ftp.ncbi.nlm.nih.gov/pub/mmdb/cdd/hiMSA
http://ftp.ncbi.nlm.nih.gov/pub/mmdb/cdd/hiMSA
http://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/pdbaa.gz
http://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/pdbaa.gz
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subunit of a heterodimeric complex of known structure as a query
in a PSI-BLAST [54] search to obtain a set of related database
sequences. (3) For each of the two sets, we applied cd-hit [55] to
reduce redundancy at a sequence identity threshold of 95%. (4)
We used Jackhmmer to iteratively align sequences to each query.
(5) We removed aligned columns with > 50% deletions and
sequences that failed to match at least 95% of the retained col-
umns. (6) For each species, SPARC retains a pair of sequences,
one sequence from each MSA that is most similar to the query
for that MSA; any remaining sequences for that species are
removed. For the DnaB analysis, Jackhmmer was used in the same
way to create an input MSA.

SPARC/DARC. SPARC/DARC input files included: (i) an MSA that
includes proteins of known structure; (ii) corresponding 3D struc-
tural coordinate files; and (iii) a designated sequence in the MSA to
serve as a query to seed the DARC analysis. DARC’s statistical mod-
els and algorithms were recently described in detail [15]. The MSA
obtained was in cma format, which requires less memory than
other formats. Fasta formatted MSAs may be converted to cma for-
mat using the auxiliary ConvertMSA program provided with
SPARC. We first ran DARC to define the query protein family and
the pattern residues distinguishing family members from other
sequences based on the input MSA; this step creates rich text for-
mat ‘contrast’ alignment output files, as shown in Figs S1 and S2.
Using the information obtained from DARC, we ran SPARC in vari-
ous modes to structurally characterize and visualize (via PyMOL
scripts) pattern residues and directly coupled residue pairs within

protein structures. PyMOL is available at http://www.pymol.org/.

DCA. The source code for CCMpred version 0.3.2 (https://travis-

ci.org/soedinglab/CCMpred) [19] was incorporated into the SPARC
program. To determine whether different input MSAs rank
DC-pairs consistently, a SPARC auxiliary routine performs
subsampling. From the input MSA for NtrC1, this routine drew
1,000 samples of 2,500 sequences, from each of which DCA scores
were computed. Between samplings, the 2,500 previously sampled
sequences are replaced prior to sampling the subsequent set. The
percentage of times that each residue pair was among those with
the top 20, 10, 5 or 2 DC-scoring pairs are reported. The robustness
of the bEBP NtrC1 analysis was further confirmed by subsampling
in this way for two different full-size input MSAs: one consisting of
108,178 sequences and another consisting of 62,601 sequences.

Molecular dynamics (MD) simulations. MD simulations for NtrC1
were performed using AMBER18 [56]. The configuration of the pro-
tein complex and of bound nucleotide were based on the crystal
structure 4ly6, which contains 4 hexameric complexes within the
unit cell. Models with one apo unit were based on the hexamer cor-
responding to subunits A-F, five subunits of which are bound to
ADP-BeFx; models without an apo unit were based on the chain
G-L hexamer, for which all six subunits are bound to ADP-BeFx.
Bound ADP was constructed by removing the beryllium (Be) and
the three fluorine (F) atoms of ADP-BeFx; bound ATP was con-
structed by replacing each Be with phosphorous (P), and each F
with oxygen (O). Counterions (�0.01 M NaCl) were added to neu-
tralize the system. The system was then solvated with TIP3P water
molecules. The size of the initial system was 190 � 127 � 184 Å3

and contained � 400,000 atoms. Minimization and equilibration
stages were conducted by gradually reducing constraints on the
protein and bound ligands. First, a 1000-step minimization was
performed consisting of 400 steps of steepest decent and 600 steps
of conjugated gradient minimization with protein and bound
ligands positions constrained using a force constant of 250 kcal/-
mol/Å2. After minimization, the system temperature was increased
to 300 K through two sequential runs, with 10 and 2 kcal/mol/Å2

constraints placed on the positions of the protein and bound
ligands, respectively. First, the system was heated to 100 K for
1713
20 ps in an NVT ensemble, and then it was slowly heated to
300 K for 100 ps at 1 atmosphere in an NPT ensemble, with a 2 fs
time step, 10 Å nonbonded interaction cutoff, and SHAKE-
constrained hydrogen bonds. A short 500 ps NPT simulation was
then performed with no constraints prior to production simula-
tions. Conventional MD simulations were conducted on the models
for 1000 ns with periodic boundary conditions, a temperature of
300 K, a pressure of 1 atm, 2 fs time steps, 10 Å nonbonded interac-
tion cutoff, and SHAKE-constrained hydrogen bonds. In all simula-
tions, the protein was described by the FF14SB force field [57], the
ADP and ATP by the parameters obtained from the Bryce AMBER
Parameter Database [58], and the H2O molecules and counterions
were described by the TIP3P model [59]. One thousand structures
were obtained by sampling every ns during the simulation.

MD simulations for DnaBC were performed using OpenMM-
7.4.1 [60] with input files created using CHARMM-GUI [61] with
the OpenMM generator [61,62] and using the CHARMM36 additive
force field. The configuration of the protein complex and of bound
nucleotide were based on the crystal structure 6qem, which con-
tains the doubly hexameric DnaBC complex bound to ssDNA and
with ADP bound to each of the six DnaC subunits and ADP	BeF3
bound to five of the six DnaB subunits (denoted as chains A-F, with
F in the apo state). For simulations, the bound ADP	BeF3 was chan-
ged to ATP by replacing each beryllium (Be) atom with phospho-
rous (P), and each F with oxygen (O). We used the CHARMM-GUI
default settings for adding counterions to neutralize the system
and for solvation with TIP3P (explicit) water molecules. Minimiza-
tion and equilibration stages were conducted using the CHARMM-
GUI default input parameters. MD simulations were conducted for
1000 ns with periodic boundary conditions, a temperature of
303.15 K, a pressure of 1 atm, 2 fs time steps, 10 Å nonbonded
interaction cutoff, and constraints on bonds involving hydrogen.
One thousand structures were obtained by sampling every ns dur-
ing the simulation.

S-scores. SPARC estimates of the statistical significance of the
correspondence both between the highest DC-scoring pairs and
3D contacts (as in STARC) and between BPPS-defined pattern resi-
dues and spatially adjacent residue clusters within a structure (as
in SIPRIS) by applying Initial Cluster Analysis [4] to compute
S = -log10(p). In the former case, SPARC assesses the correspon-
dence between top DC-scoring pairs and internal contacts alone
for each chain (e.g., labeled as chain ‘A’) and between top
DC-scoring pairs and both internal and adjacent subunit interface
contacts (e.g., labeled as ‘A:B’ or ‘A:G’ for chain A and adjacent
chains B and G, respectively). The change in S upon inclusion of
interface contacts is denoted as DS. High positive values for DS
suggest that strong selective pressures are maintaining 3D contacts
between adjacent subunits. In contrast, values for DS<0.01 suggest
that subunit interactions are not subject to detectable selective
constraints. Because SPARC focuses on specific interactions that
involve constrained residue sidechains, we add hydrogen atoms
to structures and compute the distance between residues based
on all the atoms, not just on a- or b-carbons. Specifically, hydrogen
bonds are computed based on the distances among donor, accep-
tor, and hydrogen atoms [63]. SPARC also imposes an ordering on
residue interactions, such that closer interactions are ranked
higher than those further apart within a cutoff of 4 Å, by default.
SPARC computes S = -log10(p) using ICA [4].

Availability

SPARC, our other programs, and C++ source code are available at
https://www.igs.umaryland.edu/labs/neuwald/software/. All rele-
vant data are within this paper and its supporting information files
or at this website or (for very large data sets) from the authors
upon request.

http://www.pymol.org/
https://travis-ci.org/soedinglab/CCMpred
https://travis-ci.org/soedinglab/CCMpred
https://www.igs.umaryland.edu/labs/neuwald/software/
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