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Abstract:
The goal of diabetes treatment is to maintain good glycemic control, prevent the development and progres-

sion of diabetic complications, and ensure the same quality of life and life expectancy as healthy people. He-

moglobin A1c (HbA1c) is used as an index of glycemic control, but strict glycemic control using HbA1c as

an index may lead to severe hypoglycemia and cardiovascular death. Glycemic variability (GV), such as ex-

cessive hyperglycemia and hypoglycemia, is associated with diabetic vascular complications and has been

recognized as an important index of glycemic control. Here, we reviewed the definition and evaluated the

clinical usefulness of GV, and its relationship with diabetic complications and therapeutic strategies to reduce

GV.
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Introduction

The purpose of diabetes treatment is to maintain good

glycemic control from the early stage of diabetes and to pre-

vent the onset and progression of diabetic microvascular

complications and arteriosclerotic diseases (1). For this pur-

pose, understanding the status of glycemic control in pa-

tients is necessary, and hemoglobin A1c (HbA1c) has been

used as a golden standard index of glycemic control. HbA1c

is the most commonly used method for evaluating blood

glucose control in clinical treatment and is recognized as the

key surrogate marker for the development of diabetic com-

plications. In fact, previous studies have revealed that

achieving good glycemic control is associated with a lower

incidence and lower progression of diabetic microvascular

complications, while HbA1c is used as an indicator of gly-

cemic control (2, 3). Subsequently, however, it was reported

that strict glycemic control using HbA1c as an index does

not lead to the suppression of cardiovascular disease (CVD),

but rather to severe hypoglycemia, weight gain, and poten-

tially increased cardiovascular death (4-7).

Although HbA1c represents the mean blood glucose lev-

els over the past 1-3 months, it does not necessarily repre-

sent glycemic fluctuations, such as excessive daily hypergly-

cemia or hypoglycemia (7-10). Self-monitoring of blood

glucose (SMBG) has been used to evaluate the status of

daily glycemic control; however, SMBG can only evaluate

the blood glucose levels at the time of measurement and

cannot sufficiently evaluate hypoglycemia and hyperglyce-

mia. Continuous glucose monitoring (CGM) provides a

more detailed assessment of daily glycemic control than

SMBG because it continuously measures glucose concentra-

tions in the subcutaneous interstitium fluid. With the ad-

vancement of CGM technology, CGM has recently been

used more and more frequently in clinical practice.

Recently, it has been reported that high glycemic variabil-

ity (GV) is associated with the development and progression

of diabetic vascular complications, the exacerbation of hypo-

glycemic risk, and the deterioration of patient quality of life

(QOL) (11-17). Moreover, GV is now recognized as an im-

portant index of glycemic control. This article outlines the

significance of GV in diabetes mellitus.

1. Definition of GV

GV is usually defined by measuring fluctuations of glu-

cose or other parameters related to glucose homoeostasis

within a given time interval (17, 18). There are two types of

GV: (i) long-term GV assessed by HbA1c and long-term
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Table　1.　Glycemic Variability Metrics and Time in Ranges.

GV metrics Definition and interpretation Ref

A. Long-term GV

 a. SD Variation from the mean of HbA1c and BG between sequential visits. 18

 b. CV Magnitude of variability relative to mean HbA1c and BG between sequential visits. 18

B. Short-term GV

 a. SD Variation from the mean blood glucose. SD is easy to calculate and is the most used index of within-day 

GV. SD is highly influenced by the mean blood glucose. SD reflects within-day GV.

19

 b. CV Magnitude of variability relative to mean blood glucose. CV is calculated by dividing the SD by mean 

blood glucose and multiplying by 100 to get a percentage. CV reflects within-day GV.

20

 c. MAGE Average of absolute differences between glucose peaks and nadirs (each difference need to be greater 

than 1 SD from the mean). MAGE reflects within-day GV.

21

 d. CONGA SD of differences between a current blood glucose reading and a reading taken hours earlier. CONGA 

reflects within-day temporal GV.

22

 e. LBGI/HBGI Calculated by performing a logarithmic transformation to balance the amplitude of hypoglycemic and 

hyperglycemic ranges. LBGI and HBGI are indices for specific prediction of hypo- and hyperglycemia.

23, 24

 f. ADRR Sum of the daily peak risks for hypo- and hyperglycemia. ADRR is a risk indicator for both future 

extreme hypoglycemia and hyperglycemia.

25

 g. MODD Mean of all valid absolute value differences between two glucose values measured at the same time 

within a 24-hour interval. MODD reflects between-day GV.

26

 h. IQR of AGP The spread of glucose data at given timepoints over several sequential days. IQR of AGP reflects the 

presence of day-to-day synchrony in glucose measures at a given time.

27

C. Time in ranges

 a. TIR Percentage of time spent within the target glucose range during the measurement period. TIR is known 

to be appropriate and useful as clinical targets and outcome measurements that complement HbA1c.

27

GV: glycemic variability, SD: standard deviation, HbA1c: hemoglobin A1c, BG: blood glucose, CV: coefficient of variation, MAGE: mean amplitude of 

glycemic excursion, CONGA: continuous overlapping net glycemic action, LBGI: low blood glucose index, HBGI: high blood glucose index, ADRR: 

average daily risk range, MODD: mean of daily differences, IQR: interquartile range, AGP: ambulatory glucose profile, TIR: time in range

fasting and postprandial blood glucose levels; and (ii) short-

term GV based on the intraday and interday variability in

blood glucose (18, 19). Typical GV indices are shown in Ta-

ble 1.

Long-term GV

Long-term GV is a measure of GV after several weeks or

months and is assessed by HbA1c or fasting and postpran-

dial blood glucose levels (18, 19). The variation in HbA1c

and blood glucose levels between visits is often calculated

using the standard deviation (SD) or coefficient of variation

(CV) (18, 19). Variations in HbA1c are reported to be corre-

lated with the mean blood glucose and HbA1c levels (28),

and some studies have investigated this using methods such

as variation independent of the mean (VIM) to eliminate the

influence of mean values (31, 32).

Short-term GV

Short-term GV is an index of within-day and between-day

glycemic fluctuations. Recently, short-term GV is more

often evaluated by CGM than by SMBG. The SD is a typi-

cal index of short-term GV. Although the SD is easy to cal-

culate, it has the disadvantage that it is easily affected by

the mean glucose level. The CV is calculated from the SD

and mean blood glucose and is recommended as a GV index

for the ambulatory glucose profile (AGP) because of its rela-

tive sensitivity to hypoglycemia and ease of calculation in

comparison to the SD (27).

The mean amplitude of glycemic excursion (MAGE) is

often used as another short-term GV index (21). The MAGE

focuses on the range of blood glucose levels from nadir to

peak and does not evaluate the time from nadir to peak (33).

In addition, not all blood glucose fluctuation is evaluated

because only blood glucose fluctuation exceeding 1 SD

from the mean is evaluated (34). Other GV indices include

the J-index, which is calculated from the mean blood glu-

cose and SD (35); the low blood glucose index/high blood

glucose index, which is designed to be sensitive to the fre-

quency and severity of hypoglycemia or hyperglyce-

mia (23, 24); and the average daily risk range, which is de-

signed to predict both severe hyperglycemia and hypoglyce-

mia (25).

The mean of daily differences (MODD) is often used as a

between-day GV index (26). The MODD is the absolute dif-

ference in blood glucose levels at the same time on consecu-

tive days but is easily affected by the content and time of

meals. The AGP is used in daily practice using CGM (27).

In the AGP, a curve showing the median blood glucose lev-

els and a curve showing the 25th and 75th percentiles of

blood glucose levels within a specified period, called the in-

terquartile range (IQR), are drawn. The median, IQR, and

other values obtained using the AGP can be used to evaluate

within-day and between-day glycemic fluctuations (36).

Time in range (TIR)

The International Consensus Report on Clinical Targets

for Continuous Glucose Monitoring Data Interpretation has

been developed and is widely recognized (27). This consen-
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sus statement mentioned that the TIR is appropriate and use-

ful as a clinical target and outcome measurement that com-

plements HbA1c for various patients with diabetes (27). Al-

though the TIR is not strictly a GV index, because it indi-

cates the time spent in the target range (usually 70-180 mg/

dL), we reported that the TIR and GV are correlated with

each other (37). Moreover, the TIR has been reported to be

associated with diabetic complications (38-42).

2. Mechanisms by Which GV Affects the
Development and Progression of

Diabetic Complications

The pathogenic mechanisms of diabetic microvascular

complications include (i) increased metabolism of the polyol

pathway, (ii) increased formation of advanced glycation end-

products, (iii) activation of protein kinase C (PKC), and (iv)

activation of the hexosamine pathway (42, 43), among oth-

ers. In addition to hyperglycemia, GV increases reactive

oxygen species (ROS) production (44-47), and the afore-

mentioned pathogenic mechanisms (i.e., i-iv) are activated

by ROS (43). In fact, the inhibition of mitochondrial super-

oxide production is reported to suppress polyol metabolism,

PKC activation, and hexosamine pathway activation (43). In

addition, the risk of hypoglycemia may increase with in-

creasing GV (19, 47, 48), and hypoglycemia also induces

oxidative stress (49, 50). Thus, hyperglycemia, rapid

changes in blood glucose levels, and hypoglycemia may be

involved in the development and progression of diabetic mi-

crovascular complications through increased oxidative stress.

Although vascular endothelial dysfunction is an important

early indicator of atherosclerotic disease, oxidative stress is

also a key player in vascular endothelial dysfunction. In ba-

sic experiments, ROS overproduction and increased apopto-

sis of endothelial cells occur when human umbilical vein

endothelial cells are cultured at alternating high and normal

glucose concentrations in comparison to when they are cul-

tured at sustained high glucose concentrations (45). Oscillat-

ing glucose levels exacerbate oxidative stress and the vascu-

lar endothelial function more than constant high glucose lev-

els in patients with type 2 diabetes mellitus (T2DM) (51). In

addition, hyperglycemia and GV-induced oxidative stress de-

crease the activity of nitric oxide synthase and cause dys-

function of the vascular endothelium (52). Furthermore, hy-

poglycemia not only induces oxidative stress but also leads

to vascular endothelial dysfunction by decreasing the

bioavailability of nitric oxide in vascular endothelial

cells (53) and activating adhesion molecules, such as inter-

cellular adhesion molecule and platelets (54, 55). In addi-

tion, the sympathoadrenal response during hypoglycemia in-

creases adrenaline secretion, induces arrhythmias, and in-

creases the cardiac workload (56, 57). Thus, it is assumed

that high GV leads to CVD through endothelial dysfunction.

3. Relationship between GV and Diabetic
Complications in Clinical Practice

Long-term GV

The relationship between long-term GV and diabetic mi-

crovascular and macrovascular complications in clinical

practice is shown in Table 2. Variations in HbA1c and fast-

ing plasma glucose levels are reported to be more associated

with diabetic vascular complications than with HbA1c

alone (28, 29). A meta-analysis reported that HbA1c vari-

ability is associated with diabetic microvascular and

macrovascular complications and mortality in both type 1

diabetes mellitus (T1DM) and T2DM (77).

However, although long-term GV is correlated with the

mean blood glucose and HbA1c, its relationship with short-

term GV is unclear (78). Furthermore, because no studies

have focused on the effects of long-term GV on ROS gen-

eration, further studies are needed.

Short-term GV

The relationship between short-term GV and diabetic

complications in clinical practice is shown in Table 3. In

cross-sectional studies involving patients with T2DM, short-

term GV indices, such as SD and CV, and the TIR, which

are assessed by CGM, are associated with diabetic retinopa-

thy (DR), diabetic kidney disease, and diabetic peripheral

neuropathy (DPN) (38-41, 68, 69). In addition, we reported

that albuminuria and DPN were associated with the worsen-

ing of the TIR in Japanese patients with T2DM (42). For

diabetic macrovascular complications, cohort studies have

reported that short-term GV and the TIR, which are assessed

by SMBG and CGM, are associated with CVD and cardio-

vascular death (71, 72, 74).

In contrast, analyses of the Diabetes Control and Compli-

cations Trial/Epidemiology of Diabetes Interventions and

Complications for T1DM have reported that GV indices,

such as SD and MAGE, which are assessed by SMBG, were

not associated with DR or DPN (79, 80). Although the dif-

ference between SMBG and CGM may have affected the re-

sults (10, 81), a large-scale, prospective, long-term study is

needed to clarify the relationship between short-term GV

and diabetic complications.

4. Treatment Strategies to Minimize GV

Type 2 diabetes

For the treatment of patients with diabetes mellitus, set-

ting therapeutic targets for each patient and managing blood

glucose while avoiding excessive hyperglycemia, large glu-

cose fluctuation, and hypoglycemia are important. Dietary

and exercise therapies are useful for GV suppres-

sion (82, 83); however, drug therapy is also quite effective.

Some studies on the effects of antidiabetic drugs on GV are



Intern Med 61: 281-290, 2022 DOI: 10.2169/internalmedicine.8424-21

284

Table　2.　Association of Long-term Glycemic Variability Metrics and Diabetic Complications.

Subjects N Design
Main GV 

metrics
Main results Ref

Microvascular complications

T1DM 1,441 RCT HbA1c-SD HbA1c-SD contributed to the development of DR and DN. 28

T2DM 821 Prospective 

cohort 

HbA1c-SD HbA1c-SD was independently associated with the development of 

microalbuminuria.

58

T2DM 8,260 Prospective 

cohort 

HbA1c-SD HbA1c-SD affected (albuminuric) CKD. 59

T1DM 2,019 Retrospective 

cohort 

HbA1c-CV HbA1c-CV was associated with an increased cumulative incidence 

and risk of DR.

60

T1DM 35,891 Retrospective 

cohort 

HbA1c-CV HbA1c-CV was independently associated with DR. 61

T2DM 32,481 Retrospective 

cohort 

FG-CV, 

HbA1c-CV

FG-CV and HbA1c-CV predicted development of end-stage renal 

disease.

62

T2DM 4,231 Retrospective 

cohort 

HbA1c-SD HbA1c-SD was associated with the development of DKD. 63

T2DM 36,152 Retrospective 

cohort 

FG-SD FG-CV was significant predictors of diabetic polyneuropathy. 64

Macrovascular complications

T2DM 4,399 RCT FG-SD, 

HbA1c-SD

HbA1c-SD and FG-SD were associated with combined 

macrovascular and microvascular events and macrovascular events. 

29

Chinese 

without CVD

53,607 Prospective 

cohort 

FG-CV FG-CV increased the risk of CVD and all-cause mortality. 65

T2DM 1,791 RCT FG-CV, 

ARV

FG-CV and FG-ARV were significantly associated with CVD. 30

T2DM 30,932 Retrospective 

cohort 

FPG-CV FPG-CV was associated with PAD. 66

T2DM 13,111-19,883 Retrospective 

cohort

HbA1c 

variability 

score

HbA1c variability was associated with increased risks of all-cause 

mortality, CV events, and diabetic microvascular complications.

67

Diabetes 624,237 Retrospective 

cohort 

FPG-VIM As the quartile of FPG-VIM increased, the risk of stroke, MI, and 

all-cause mortality serially increased. 

31

T2DM 9,483 RCT HbA1c-

CV, VIM

HbA1c variability indices were significantly associated with total 

mortality.

32

GV: glycemic variability, T1DM: type 1 diabetes mellitus, RCT: randomized controlled trial, SD: standard deviation, DR: diabetic retinopathy, DN: diabetic ne-

phropathy, T2DM: type 2 diabetes mellitus, CKD: chronic kidney disease, CV: coefficient of variation, FG: fasting glucose, DKD: diabetic kidney disease, CVD: 

cardiovascular disease, ARV: average real variability, PAD: peripheral artery disease, VIM: variation independent of the mean, MI: myocardial infarction

shown in Table 4.

The Japanese Clinical Practice Guideline for Diabetes rec-

ommends patient-oriented use of antidiabetic drugs accord-

ing to the condition of each patient (1). In Japan, dipeptidyl

peptidase-4 inhibitors (DPP-4is) are frequently used (42).

DPP-4is stimulate insulin secretion in a glucose-dependent

manner and improve GV, but do not induce hypoglycemia

when used as a single agent (97). In fact, DPP-4is improve

GV without increasing the risk of hypoglycemia (84-87),

and a cohort study has reported a reduction in CVD inci-

dence (98). In addition, α-glucosidase inhibitors (α-GIs) can

improve postprandial blood glucose levels and suppress

CVD (99), and we have reported that the combination of

DPP-4is and α-GIs can regulate the dynamics of glucagon-

like peptide-1 (GLP-1) secretion dynamics and improve GV

indices, such as SD and MAGE (100). In contrast, a meta-

analysis investigating the association of DPP-4is, GLP-1 re-

ceptor agonists ( GLP-1 RAs ) , and sodium-glucose

cotransporter-2 inhibitors (SGLT-2is) with CV events

showed that DPP-4is were not associated with lower CVD

mortality, whereas SGLT-2is and GLP-1RAs were associated

with lower CVD mortality (101).

SGLT-2is not only improve glycemic control by inhibiting

SGLT-2 in the proximal tubule and promoting urinary glu-

cose excretion, but also have an inhibitory effect on weight

loss (102). In comparison to placebo, SGLT-2is have been

reported to improve SD and the TIR assessed using CGM

without increasing the risk of hypoglycemia (88-90). In a

randomized comparison of sitagliptin and dapagliflozin, GV

indices, such as CV and MAGE, were significantly im-

proved after the administration of sitagliptin, whereas da-

pagliflozin was effective in improving cardiometabolic risk

factors, such as weight loss, serum insulin reduction, serum

uric acid reduction, and increasing high-density lipoprotein-

cholesterol (91). Randomized controlled trials involving pa-

tients with T2DM have reported that SGLT-2is inhibited

CVD mortality, heart failure-related hospitalization, and al-

buminuria development (103-106). Interestingly, the use of

SGLT-2is also reduced hospitalization for heart failure in pa-

tients without diabetes, suggesting that SGLT-2is themselves

have cardioprotective effects (107, 108). Thus, GV improve-

ment may not account for the cardioprotective effect of an-



Intern Med 61: 281-290, 2022 DOI: 10.2169/internalmedicine.8424-21

285

Table　3.　Association of Short-term Glycemic Variability Metrics and Diabetic Complications.

Subjects N Design
Main GV 

metrics 
Main results Ref

Microvascular complications

T2DM 3,262 Cross-sectional CGM-TIR CGM-TIR was associated with DR. 38

T2DM 982 Cross-sectional CGM-MAGE CGM-MAGE was a significant independent contributor to DPN. 68

T2DM 2,927 Cross-sectional CGM-SD CGM-SD was associated with DR. 69

T2DM 866 Cross-sectional CGM-TIR CGM-TIR was associated with albuminuria. 39

DM with 

DPN

364 Cross-sectional CGM-TIR CGM-TIR was associated with painful diabetic neuropathy. 40

T2DM 999 Cross-sectional CGM-SD, 

TIR

CGM metrics were associated with the severity of DR or albuminuria. 41

T2DM 281 Cross-sectional CGM-TIR CGM-TIR was associated with albuminuria and DPN. 42

T1DM 1,440 RCT SMBG-TIR SMBG-TIR was associated with DR and albuminuria. 70

Macrovascular complications

DM with 

stroke

674 Prospective 

cohort

SMBG-J-

index

High GV was associated with 3-month cardiovascular composite outcome. 71

DM with 

ACS

327 Cohort study SMBG-SD High GV was an independent predictive factor for midterm MACE. 72

T2DM 2,275 Cross-sectional CGM-TIR CGM-TIR was associated with CIMT. 73

T2DM 6,225 Prospective 

cohort

CGM-TIR Lower TIR was associated with all cause and CVD mortality. 74

T2DM 445 Cross-sectional CGM-SD, 

MAGE, TIR

CGM-derived metrics were significantly associated with high arterial stiffness. 75

T2DM 853 Cross-sectional CGM-CV, 

TIR

Higher CGM-CV and lower CGM-TIR were associated with higher cf-PWV. 76

GV: glycemic variability, T2DM: type 2 diabetes mellitus, CGM: continuous glucose monitoring, TIR: time in range, DR: diabetic retinopathy, MAGE: mean 

amplitude of glycemic excursions, DPN: diabetic peripheral neuropathy, SD: standard deviation, RCT: randomized controlled trial, SMBG: self-monitoring of

blood glucose, ACS: acute coronary syndrome, MACE: major adverse cardiovascular events, CIMT: carotid intima-media thickness, CVD: cardiovascular dis-

ease, CV: coefficient of variation, cf-PWV: carotid-femoral pulse wave velocity

Table　4.　Effects of Hyperglycemic Agents on Glucose Variability.

Drug Comparator Subjects Main results Ref

Teneligliptin Placebo T2DM Compared with placebo, teneligliptin reduced TAR, CV, SD, and MAGE without 

increasing hypoglycemia.

84

Trelagliptin Alogliptin T2DM Trelagliptin and alogliptin reduced SD and MAGE without inducing hypoglycemia. 85

Sitagliptin Glimepiride T2DM MAGE decreased significantly in the sitagliptin group, but no significant difference was 

observed in the glimepiride group.

86

Vildagliptin Gliclazide T2DM SG and MODD were significantly lower in the vildagliptin group than in the gliclazide 

group, but MAGE was not significantly different between the two groups.

87

Empagliflozin Placebo T2DM Empagliflozin improved postprandial blood glucose levels and increased TIR without 

increasing TBR.

88

Dapagliflozin Placebo T2DM Compared with placebo, dapagliflozin improved postprandial glucose, TIR, MAGE, 

and HBGI. 

89

Canagliflozin Placebo T1DM Compared with placebo, canagliflozin improved daily mean glucose and SD assessed 

by SMBG, and increased TIR assessed by CGM.

90

Dapagliflozin Sitagliptin T2DM Sitalgliptin was superior to dapagliflozin in improving SD, MAGE and CONGA. 91

Degludec Glargine 

U-100

T2DM HbA1c was similar in both groups, degludec lowered episodes of severe hypoglycemia. 

Degludec was noninferior to glargine U-100 in terms of the incidence of CVD events.

92

Degludec Glargine 

U-300

T1DM SD for degludec was non-inferior to that for glargine U-300. TAR and TBR were 

shorter and longer, respectively, for degludec than glargine U-300.

93

Dulaglutide Glargine 

U-100

T2DM In combination with lispro, dulaglutide improved the proportion of CGM glucose values 

within the near-normoglycaemia range versus glargine U-100 without increasing TBR.

94

Ultra-rapid lispro Lispro T1DM Mealtime URLi improved postprandial glucose compared to mealtime lispro. Postmeal 

URLi resulted in similar postprandial glucose control to mealtime lispro.

95

Faster aspart Aspart T1DM Faster aspart improved postprandial glucose and reduced TBR compared to aspart. 96

TAR: time above range, CV: coefficient of variation, SD: standard deviation, MAGE: mean amplitude of glycemic excursions, SG: sensor glucose, MODD:

mean of daily differences, TIR: time in range, TBR: time below range, HBGI: high blood glucose index, SMBG: self-monitoring of blood glucose, CGM: contin-

uous glucose monitoring, T1DM: type 1 diabetes mellitus, CONGA: continuous overlapping net glycemic action, CVD: cardiovascular disease, URLi: ultra-rapid

lispro
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tidiabetic agents. Further studies are absolutely needed to in-

vestigate whether short-term GV improvement is directly as-

sociated with a reduced incidence of macrovascular compli-

cations.

As the duration of diabetes increases, the pancreatic β-cell

function decreases and the proportion of patients on insulin

increases (42). When starting insulin, it has been reported

that starting with basal insulin was associated with less

weight gain and hypoglycemia in comparison to starting

with prandial bolus insulin or pre-mixed insulin (109). For

basal insulin preparations, glargine U-300 and insulin de-

gludec provide more stable basal insulin compensation than

conventional basal insulin preparations, such as neutral pro-

tamine Hagedorn and glargine U-100 (110, 111). In fact, a

meta-analysis has shown that glargine U-300 and insulin de-

gludec reduced nocturnal hypoglycemia more than glargine

U-100 (112-114).

GLP-1RAs improve GV by stimulating insulin secretion

in a blood glucose-dependent manner and have a weight-loss

effect by inhibiting gastric emptying and suppressing appe-

tite (115). Oral GLP-1 RA, semaglutide, is also available

now. In comparison to glargine U-100, dulaglutide increases

the time in the normoglycemic range without increasing the

TBR (91). Moreover, the combination of basal insulin and

lixisenatide improved GV without increasing the risk of hy-

poglycemia (116). In addition, a meta-analysis has reported

that the combination of basal insulin and GLP-1RAs was as-

sociated with a lower risk of hypoglycemia and improved

glycemic control in comparison to multiple insulin injections

(MDI) (117). GLP-1 reduces oxidative stress and inflamma-

tion and improves the vascular endothelial func-

tion (115, 118, 119). Furthermore, GLP-1RAs reduce the

oxidative stress and vascular endothelial dysfunction induced

by hyperglycemia and hypoglycemia, suggesting that GLP-1

RAs themselves have a vasoprotective effect (115, 120).

Type 1 diabetes

MDI is the basic therapy in T1DM with reduced endoge-

nous insulin secretion. In Japan, SGLT-2is can be used in

combination with insulin therapy for T1DM. The admini-

stration of SGLT-2is in patients with T1DM has been re-

ported to significantly improve the TIR and GV without in-

creasing the TBR (121). Alternatively, the concomitant use

of SGLT-2is in patients with T1DM may increase the risk of

diabetic ketoacidosis (122), and careful consideration should

be given to indicated cases.

For basal insulin, insulin degludec and glargine U-300

provide more stable basal insulin compensation and are as-

sociated with a lower risk of nocturnal hypoglycemia in

comparison to glargine U-100 in T1DM (112, 113, 123-125).

Insulin lispro, insulin aspart, and insulin glulisine are used

as bolus insulin. In addition, insulin preparations, such as

ultra-rapid lispro (URLi) and faster aspart, which are added

to conventional insulin lispro and insulin aspart to accelerate

the rate of subcutaneous insulin absorption, can be used. In

comparison to insulin lispro, URLi improves postprandial

blood glucose levels and increases the daytime TIR, while

decreasing nighttime the TBR (95). Moreover, faster aspart

improves postprandial blood glucose levels more than insu-

lin aspart, while reducing the TBR (96). In addition, it has

been reported that continuous subcutaneous insulin infusion

(CSII) therapy improves glycemic control and QOL while

avoiding hypoglycemia, in comparison to frequent injection

therapy (126).

The use of real-time CGM and flash glucose monitoring

(FGM) reduces hypoglycemia and improves GV (127-129).

Regardless of the method of insulin administration (e.g.,

MDI or CSII), the use of real-time CGM improves the TIR

without increasing the TBR more than SMBG (130). There-

fore, CGM may be considered for GV suppression in both T

1DM and T2DM.

Conclusions

High GV is not only associated with diabetic complica-

tions but also may lead to hypoglycemia and a decreased

QOL (11-17). In T1DM, the use of newer ultra-rapid-acting

insulin preparations, such as URLi and faster aspart, im-

proves GV (95, 96). In T2DM, the use of GLP-1RAs or

SGLT-2is improves GV without increasing the risk of

hypoglycemia (88-90, 117). Furthermore, GLP-1RAs and

SGLT-2is have cardiovascular protective effects beyond

GV (107, 108, 115). In both T1DM and T2DM, the use of

real-time CGM or FGM improves GV, while avoiding hypo-

glycemia (126-128).

Various nonclinical and clinical studies have shown that

high GV increases the risk of hyperglycemia, excessive

blood glucose variability, and hypoglycemia, and subse-

quently induces oxidative stress, inflammation, platelet acti-

vation, and vascular endothelial dysfunction, which are asso-

ciated with diabetic complications (44-55). In fact, long-

term GV is associated with diabetic macrovascular compli-

cations (28-31, 65-67). However, reports on the relationship

between long-term and short-term GV and oxidative stress

are insufficient. Furthermore, there is no clear evidence of

the association between short-term GV and diabetic vascular

complications. Long-term prospective studies are needed to

clarify the role of GV in the development and progression

of diabetic complications.
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