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Motion Artifact Reduction Using a Convolutional  
Neural Network for Dynamic Contrast Enhanced  

MR Imaging of the Liver

Daiki Tamada*, Marie-Luise Kromrey, Shintaro Ichikawa, Hiroshi Onishi,  
and Utaroh Motosugi

Purpose: To improve the quality of images obtained via dynamic contrast enhanced MRI (DCE-MRI), 
which contain motion artifacts and blurring using a deep learning approach.
Materials and Methods: A multi-channel convolutional neural network-based method is proposed for 
reducing the motion artifacts and blurring caused by respiratory motion in images obtained via DCE-MRI 
of the liver. The training datasets for the neural network included images with and without respiration-in-
duced motion artifacts or blurring, and the distortions were generated by simulating the phase error in 
k-space. Patient studies were conducted using a multi-phase T1-weighted spoiled gradient echo sequence for 
the liver, which contained breath-hold failures occurring during data acquisition. The trained network was 
applied to the acquired images to analyze the filtering performance, and the intensities and contrast ratios 
before and after denoising were compared via Bland–Altman plots.
Results: The proposed network was found to be significantly reducing the magnitude of the artifacts and 
blurring induced by respiratory motion, and the contrast ratios of the images after processing via the net-
work were consistent with those of the unprocessed images.
Conclusion: A deep learning-based method for removing motion artifacts in images obtained via DCE-MRI 
of the liver was demonstrated and validated.
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Introduction
Dynamic contrast enhanced magnetic resonance imaging 
(DCE-MRI) of the liver is widely used for detecting hepatic 
lesions and distinguishing malignant from benign lesions. 
However, such images often suffer from motion artifacts due 
to unpredictable respiration, dyspnea, or mismatches in 
k-space caused by rapid injection of the contrast agent.1,2 In 
DCE-MRI, a series of T1-weighted MR images is obtained 
after the intravenous injection of a gadolinium-based MR 
contrast agent, such as gadoxetic acid. However, acquiring 
appropriate datasets for arterial phase DCE-MR images is 
difficult owing to the limited scan time available in the first 

pass of the contrast agent. Furthermore, it has been reported 
that transient dyspnea can be caused by gadoxetic acid at a 
non-negligible frequency,1,2 which results in degraded image 
quality due to respiratory motion-related artifacts such as 
blurring and ghosting.3 Especially, coherent ghosting origi-
nating from the anterior abdominal wall decrease the diag-
nostic value of the images.4

Recently, many strategies have been proposed to avoid 
motion artifacts in DCE-MRI. Of these, fast acquisition strate-
gies using compressed sensing may provide the simplest way to 
avoid motion artifacts in liver imaging.5–7 Compressed sensing 
is an acquisition and reconstruction technique based on the spar-
sity of the signal, and the k-space undersampling results in a 
shorter scan time. Zhang et al.6 demonstrated that DCE-MRI 
with a high acceleration factor of 7.2 using compressed sensing 
provides significantly better image quality than conventional 
parallel imaging. Other approaches include data acquisition 
without breath-holding (free-breathing method) using respira-
tory triggering and respiratory triggered DCE-MRI, which is an 
effective technique to reduce motion artifacts in the case of 
patients who are unable to suspend their respiration.4,8 In these 
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approaches, sequence acquisitions are triggered based on res-
piratory tracings or navigator echoes, and typically provide a 
one-dimensional projection of the abdominal images. Chavhan 
et al. and Vasanawala et al. found that the image quality in 
acquisitions with navigator echoes under free-breathing condi-
tions is significantly improved. Although triggering based 
approaches successfully reduce the motion artifacts, it is not 
possible to appropriately time arterial phase image acquisition 
due to the long scan times required to acquire an entire dataset. 
In addition, miss-triggers often occur in the case of unstable 
patient respiration, which cause artifacts and blurring of the 
images. Recently, a radial trajectory acquisition method with 
compressed sensing was proposed,9,10 which enabled high-tem-
poral resolution imaging without breath-holding in DCE-MRI. 
However, the image quality of the radial acquisition without 
breath-holding was worse than that with breath-holding even 
though the clinical usefulness of the radial trajectory acquisition 
has been demonstrated in many papers.11–13

Post-processing artifact reduction techniques using deep 
learning approaches have also been proposed. Deep learning, 
which is used in complex non-linear processing applications, 
is a machine learning technique that relies on a neural net-
work with a large number of hidden layers. Han et al.14 pro-
posed a denoising algorithm using a multi-resolution 
convolutional network called “U-Net” to remove the streak 
artifacts induced in images obtained via radial acquisition. In 
addition, aliasing artifact reduction has been demonstrated in 
several papers as an alternative to compressed sensing recon-
struction.15–17 The results of several feasibility studies of 
motion artifact reduction in the imaging of brain,18–20 
abdomen,21 and cervical spine22 have also been reported. 
Although these post-processing techniques have been studied 
extensively, no study has ever demonstrated practical artifact 
reduction in DCE-MRI of the liver.

In this study, a motion artifact reduction method was 
developed based on a convolutional network (Motion artifact 
reduction method based on convolutional neural network 
[MARC]) for DCE-MRI of the liver, which that removes 
motion artifacts from input MR images. Both simulations 
and experiments were conducted to demonstrate the validity 
of the proposed algorithm.

Materials and Methods
Network architecture
In this paper, a MARC with multi-channel images is proposed, 
as shown in Fig. 1. It is based on the network originally pro-
posed by Zhang et al.23 for Gaussian denoising, JPEG 
deblocking, and super-resolution of natural images. A patch-
wise approach was adopted for training the MARC. The patch-
wise training has advantages in extracting large training 
datasets from limited images and has efficient memory usage 
on host PCs and GPUs. Residual learning approach was 
adopted to achieve effective training of the network.24 The net-
work relies on two-dimensional convolutions, batch normali-
zations, and rectified linear units (ReLU) to extract the artifact 
components from images with artifacts. To utilize the struc-
tural similarity of the multi-contrast images, a seven-layer 
patched image with varying contrast was used as the input to 
the network. The layers corresponded to the temporal phases 
acquired in a time-series with multi-phase sequence. In the 
first layer, 64 filters with kernel size of 3 × 3, and ReLU as an 
activation function, were applied to the input layer, which had 
seven channels. Then, 64 filters with kernel size of 3 × 3, fol-
lowed by batch normalization and ReLU, were used in the 
convolution layers. The number of convolution layers (Nconv) 
was determined as shown in the subsection “Analysis”. In the 
last layer, seven filters with a kernel size of 3 ́  3 with 64 chan-
nels were used. Finally, a seven-channel image was predicted 
as the output of the network. The total number of parameters 
was 268423. Artifact-reduced images could then be generated 
by subtracting the predicted image from the input. The devel-
oped network can be used for images of arbitrary size in the 
same way as conventional convolution filters.

Imaging
Following the Institutional Review Board approval, patient 
studies were conducted from May 15th through June 30th, 
2018. All patients underwent DCE-MRI for the purpose of 
screening or diagnosis of hepatocellular carcinomas. MR 
images were acquired using a 3T MR750 system (GE Health-
care, Waukesha, WI, USA); a whole-body coil and a 32-channel 
torso array were used for radio-frequency (RF) transmission 

Fig. 1 Network architecture for the proposed convolutional neural network, two-dimensional convolutions, batch normalizations, and 
ReLU. The network predicts the artifact component from an input dataset. The number of convolution layers in the network was deter-
mined by simulation-based method. ReLU, rectified linear unit.
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and receiving, and self-calibrated parallel imaging (Autocali-
brating Reconstruction for Cartesian sampling [ARC]) was 
used with an acceleration factor of 2 × 2. A 3D T1-weighted 
spoiled gradient echo sequence with a dual-echo bipolar 
readout and variable density Cartesian undersampling (differ-
ential subsampling with Cartesian ordering [DISCO]) was 
used for the acquisition,25 along with an elliptical-centric tra-
jectory with pseudo-randomized sorting in ky − kz. Dixon-
based reconstruction method was used to suppress fat signals.26 
A total of seven temporal phase images, including pre-contrast 
and six arterial phases, were obtained using gadolinium con-
trast with end-expiration breath-holdings of 10 and 21 s. The 
standard dose (0.025 mmol/kg) of contrast agent (EOB Pri-
movist, Bayer HealthCare, Osaka, Japan) was injected at the 
rate of 1 mL/s followed by a 20-mL saline flush using a power 
injector. The arterial phase scan was started 30 s after the start 
of the injection. The acquired k-space datasets were recon-
structed using a view-sharing approach between the phases 
and a two-point Dixon method to separate the water and fat 
components. The following imaging parameters were used: 
flip angle = 12°, receiver bandwidth = ±167 kHz, TR = 3.9 ms, 
TE = 1.1/2.2 ms, acquisition matrix size = 320 × 192, FOV = 
340 × 340 mm2, total number of slices = 56, slice thickness = 
3.6 mm. The acquired images were cropped to a matrix size of 
320 × 280 after zero-filling to 320 × 320.

For the network training, arterial phase images were suc-
cessfully acquired without artifact from 14 patients (M/F, 
mean age: 51, range: 34–69) selected by a radiologist with  
3 years of experience in abdominal. In addition, 20 patients 
(M/F, mean age: 65, range: 46–79) were retrospectively 
included for the volunteer experiments. The patients for the 
volunteer experiments were randomly selected from a series of 
132 patients, excluding those selected for the network training.

Respiration-induced artifact simulation
A respiration-induced artifact was simulated by adding simu-
lated errors to the k-space datasets generated from the 
 magnitude-only image. The training; required the  preparation 
of pairs of input and output of the network, namely, images  
with and without motion artifact. In the case of abdominal 

imaging, it is difficult to obtain such pairs from the experi-
mental imaging because respiratory motion induces a mis-
registration between them. Therefore, the datasets were 
generated based on simulation with a simple assumption, as 
described below. Generally, a breath-holding failure causes 
phase errors in the k-space, which results in an artifact along 
the phase-encoding direction. In this study, rigid motion 
along the anterior–posterior direction was assumed for the 
simplicity, as shown in Fig. 2. In this case, the phase error 
was induced in the phase-encoding direction and was propor-
tional to the motion shift. Motion during readout can be 
neglected because it is performed within a millisecond order. 
Then, the in-phase and out-of-phase MR signals, which are 
derived from water and fat components and have phase error 
f, can be expressed as follows:
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where SI and SO are the in-phase and out-of-phase signals, 
respectively, without the phase error; S ′ I and S ′ O are the cor-
responding signals with the phase error, and kx, ky represent 
the k-space co-ordinate (−π < kx < π, −π < ky < π) in the 
readout and the phase-encoding directions, respectively. 
Finally, k-space of the water signal (Sw) with the phase error 
can be expressed as follows:
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where F is the Fourier operator, and Iw denotes the water 
image. Hence, artifact simulation can be implemented by 
simply adding the phase error components to the k-space of 
the water image. In this study, the k-space datasets were gen-
erated from magnitude-only water images. To simulate the 
background B0 inhomogeneity, the magnitude images were 

Fig. 2 (Left) Example of a simulation of 
the respiratory motion artifact by adding 
phase errors along the phase-encoding 
direction in k-space. (Right) The k-space 
and image datasets before and after add-
ing simulated phase errors.
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multiplied by B0 distributions derived from polynomial func-
tions up to the third order as below.
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where cij are linear combination coefficients, and x and y are 
the spatial coordinates. The coefficients cij were determined 
randomly so that the peak-to-peak value of the B0 distribu-
tion was within ±5 ppm (±4.4 radian).

To generate a motion artifact in the MR images, we used 
two kinds of phase error patterns: periodic and random. Gen-
erally, severe coherent ghosting artifacts are observed along 
the phase-encoding direction. Although there are several fac-
tors that generate artifacts in the acquired images during 
DCE-MRI including respiratory, voluntary motion, pulsatile 
arterial flow, view-sharing failure, and unfolding failure,3,27 
the artifact from the abdominal wall in the phase-encoding 
direction is mainly recognizable. In the case of centric-order 
acquisitions, the phase mismatching in the k-space results in 
high-frequency and coherent ghosting. An error pattern using 
simple sine wave with random frequency, phase, and dura-
tion was used to simulate the ghosting artifact. It was assumed 
that motion oscillations caused by breath-hold failures 
occurred after a delay as the scan time proceeded. The phase 
error can be expressed as follows:
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where D denotes the significance of motion, a is the period 
of the sine wave which determines the frequency, b is the 
phase of the sine wave, and ky0, (0 < ky0 < p) is the delay time 
for the phase error. In this study, the values of D (from 0 to 
20 px, which equals 2.4–2.6 cm depending on the FOV), a 
(from 0.1 to 5 Hz), b (from 0 to p/4), and ky0 (from p/10 to 

p/2) were selected randomly. The period a was determined 
such that it covered the normal respiratory frequency  
for adults and elderly adults, which is generally within 
0.2–0.7 Hz.28 In addition to the periodic error, random phase 
error pattern was also used to simulate non-periodic irreg-
ular motion as follows. First, the number of phase-encoding 
lines, which have the phase error, was randomly determined as 
between 10 and 50% of all phase-encoding lines except at the 
center region of the k-space (– p/10 < ky0 £ p/10). Then, the 
significance of the error was determined randomly line-by-line 
in the same manner as used for the periodic phase error.

Network training
The processing was implemented in MATLAB 2018b 
(The MathWorks, Inc., Natick, MA, USA) on a worksta-
tion running Ubuntu 16.04 LTS (Canonical Ltd., London, 
UK) with an Intel Xeon CPU E5-2630, 128 GB DDR3 
RAM (Intel Corporation, Santa Clara, CA, USA), and an 
NVIDIA Quadro P5000 graphics card (NVIDIA Corporation, 
Santa Clara, CA, USA).

The data processing sequence used in this study is sum-
marized in Fig 3. Training datasets containing patches with 
simulated artifact and residual components were generated 
using multi-phase magnitude-only ground truth (GT) images 
(readout [RO] × phase-encoding [PE] × slice-encoding [SL] ´ 
Phase: 320 ´ 280 ´ 56 ´ 7) acquired from 14 patients. For 
creating the multi-phase slices (320 ´ 280 ´ 7) of the images, 
127730 patches 48 ´ 48 ´ 7 in size were randomly cropped as 
illustrated in Fig. 4. The resulting patches that contained only 
background signals were removed from the training datasets. 
Images with simulated artifact were generated using the refer-
ence images, as explained in the previous subsection. The 
patches with simulated artifact, which were used as inputs to 
the MARC, were cropped from the images with simulated arti-
fact using the same method as that for the reference patches. 
Finally, residual patches, which were the output of the 

Fig. 3 Process diagram of the network training. The datasets for the input and output were generated from the GT images. Images with 
simulated artifact were calculated using the respiratory motion simulation with the GT images. The residual images were derived from the 
subtraction of the images with simulated artifact from the GT images. Finally, patches for the input and output were generated by cropping 
these images. The training was performed using the pair of patches. GT, ground truth; MARC, Motion artifact reduction method based on 
convolutional neural network.
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network, were generated by subtracting the reference patches 
from the artifact patches. All patches were normalized by 
dividing them by the maximum value of the images with 
simulated artifact.

Network training was performed using Keras with Ten-
sorFlow backend (Google, Mountain View, CA, USA), and 
the network was optimized using the Adam algorithm with 
an initial learning rate of 0.001.29 The optimization was con-
ducted with a mini-batch of 64 patches. A total of 100 epochs 
with an early-stopping patience of 10 epochs was completed 
for convergence purposes. The L1 loss function was used as 
the residual component between the simulated artifact 
patches and the outputs were assumed to be sparse.
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where Iart represents the patches with simulated artifact, Iout 
represents the outputs predicted using the MARC, and N is 
the number of data points. Validation for L1 loss was per-
formed using K-fold cross validation (K = 3).

The Nconv used in the network was determined by maxi-
mizing the structural similarity (SSIM) index between the 
GT and artifact-reduced patches of the validation datasets. 
Here, the SSIM index is a quality metric used for measuring 
the similarity between two images, and is defined as 
follows:
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where, Iref and Iden are input and artifact-reduced patches, m is 
the mean intensity, s denotes the standard deviation (SD), 
and c1 and c2 are constants. In this study, the values of c1 and 
c2 were as reported by Wang et al.30 The number of patients 

used for the training versus the L1 loss with 100-epoch 
training was plotted to investigate the relationship between 
the size of the training datasets and the training performance. 
The training datasets with 95359 data were generated from 
11 patients, whereas 32371 patches for the validation data-
sets were obtained from another three patients.

Analysis
To demonstrate the performance of the MARC in reducing the 
artifacts in the DCE-MR images acquired during unsuccessful 
breath-holding, the following experiments were conducted 
using the data from the 20 patients in the study as shown in Fig. 5. 
The acquired images were directly inputted to the MARC  
to generate the predicted residual and artifact-reduced images. 
The processing using the MARC was performed with an image-
wise approach. All the images were normalized using the max-
imum value of the acquired images for each patient. To identify 
biases in the intensities and liver-to-aorta contrast between the 
reference and artifact-reduced images, a Bland–Altman anal-
ysis, which plots the differences between the two images versus 
their average, was used in which the intensities were obtained 
from the central slice in each phase. The Bland–Altman analysis 
for the intensities was conducted in the subgroups of high (mean 
intensity ³ 0.46) and low (mean intensity < 0.46) intensities. For 
convenience, half of the maximum mean intensity (0.46) was 
used as the threshold. The mean signal intensities of the liver 
and aorta were measured by manually marking the ROI on 
the MR images, and the ROI of the right lobe of the liver was 
carefully placed to exclude vessels. The same ROIs were 
applied to all other phases of the images. The quality of 
images before and after applying the MARC were visually 
evaluated by two radiologists (readers A and B) with 11 and 
3 years of experience in abdominal radiology, respectively, 
who were unaware of whether each image was generated 

Fig. 4 Data processing for the train-
ing. The images with simulated artifact 
were generated from the GT images. 
Residual images were calculated by sub-
tracting the reference patches from the 
patches the simulated artifact. A total of 
127730 patches were generated by ran-
domly cropping small images from the 
acquired image. GT, ground truth.
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Fig. 5 Process diagram of volunteer experiments using volunteers. Bland–Altman analysis, visual evaluation, sharpness evaluation, and 
signal-to-noise ratio (SNR) measurement were performed for the artifact and the artifact-reduced images. The artifact-reduced images were 
the subtraction of the predicted residual components from the acquired images. Sharpness of the images was quantified using the line 
spread function approach. MARC, Motion artifact reduction method based on convolutional neural network.

before or after the MARC was applied. The radiologist eval-
uated the images using a five-point scale based on the signifi-
cance of the artifacts (1 = no artifact; 2 = mild artifacts; 3 = 
moderate artifacts; 4 = severe artifacts; 5 = non-diagnostic), 
as shown in Fig. 6. The evaluation was performed phase-by-
phase for the 20 patients and resulted in 140 samples. To 
evaluate the improvement in the scores after using the 
MARC, the cases with artifact scores of >1 for the acquired 
images were analyzed statistically using the Wilcoxon signed 
rank test. As a result, 37 samples were excluded. The readers 
evaluated the images twice (A1, A2, B1 and B2) in a rand-
omized order with a week’s interval between the two evalua-
tions. Inter- and intra-observer agreements were calculated 
by Cohen’s kappa statistics with 95% confidence intervals. 
The calculation for the intra-observer agreement was per-
formed based on A1 versus A2 and B1 versus B2. The inter-
observer agreement was calculated separately for the first 
and second evaluations. Kappa <0.20 was regarded as indi-
cating poor; 0.21–0.40 fair; 0.41–0.60, moderate; and >0.60, 
good agreement in this study. To confirm the validity of the 
anatomical structure after applying the MARC, the artifact-
reduced images in the arterial phase were compared with 
those without the motion artifact, which were obtained from 
separate MR examinations performed 71 days apart in the 
same patients. The same sequence and imaging parameters 
were used for the acquisition. To evaluate the sharpness of 
the images, full width at half maximum (FWHM) of the line 
spread function (LSF)31 were compared between the acquired 
and artifact-reduced images. The LSF derived from the edge 
response roughly characterizes the spatial resolution of the 
images. The edge response was obtained by fitting the one-
dimensional profile measured across the liver to the hepatic 
vein with the error function expressed as below.

 
ERF ¢

¢

( ) =

=
-

¢
-òx e dt

x
x x

x
t2

0

0

2

p

s

,  (1)

where x is the spatial position of the profile, x0 is the edge 
position, and s denotes the SD for the error function. 
Then, the LSF can be defined as the deviation of the error 
function.
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Finally, the FWHM can be calculated as below.

 FWHM = 2 2 2ln s  (3)

The profiles with length of 20 px were extracted manu-
ally from the acquired images. The signal intensity of the 
profiles was normalized to the range [−1, 1]. The fitting was 
implemented using the non-linear least-squares method to 
determine the parameters of x0 and s. The squared norm of 
the residual <0.1 was considered as the convergence crite-
rion because the LSF approach is sensitive to signal-to-
noise ratios of the profiles. The profiles that did not meet the 
criterion were excluded from the analysis. The range for s 
was limited from 0 to 25 px to prevent divergence of the 
parameters. Signal-to-noise ratios of the artifact and the 
artifact-reduced images were measured. The ROIs for the 
measurement were placed on the right lobe. The signal-to-
noise ratios (SNRs) were calculated by dividing the signal 
intensities by the SDs of the same ROIs. The measured 
values of the FWHM and SNR were analyzed using the 
paired t-test.

Results
The changes in the mean and SD (μ) of the SSIM index 
between the reference and artifact-reduced images are plotted 
against Nconv in Fig. 7a, and the results show that the network 
with Nconv of >4 exhibited a better SSIM index, whereas net-
works with Nconv <4 had a poor SSIM index. In this study, an 
Nconv of seven was adopted in the experiments as this value 
maximized the SSIM index (mean: 0.91, μ: 0.07). Figure 7b 
shows the number of patients used for the training versus the 
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Fig. 6 Example images for five-point scale 
grading based on the significance of the 
artifacts (1 = no artifact; 2 = mild artifacts; 
3 = moderate artifacts; 4 = severe artifacts; 
5 = non-diagnostic).

Fig. 7 (a) SSIM changes depending on the number of layers (Nconv). The highest SSIM (0.91) was obtained with Nconv of 7. (b) Validation 
loss, training loss, and sample size were plotted against the number of patients. Smaller loss was observed as the sample size and number 
of patients increased. (c and d) The L1 loss decreased in both the (c) training and (d) validation datasets as the number of epochs increased. 
The training was implemented three times to perform K-fold validation with K = 3. No further decrease was visually observed after  
70 epochs. The training was terminated by early stopping in 80 epochs. Error bars on the validation loss represent the standard deviation 
for K-fold cross validation. SSIM, structural similarity.

training and validation losses, and the sample size. The 
results implied that stable convergence was achieved when 
the sample size was three or more although the training with 
few patients gave inappropriate convergence. The training 

was successfully terminated by early stopping in 70 epochs, as 
shown in Fig. 7c and 7d. The features using the trained net-
work extracted from the 1st, 4th, and 8th intermediate layers 
corresponding to specific input and output are shown in Fig. 8. 
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Fig. 8 Features extracted from the 1st, 4th, and 
8th layers of the developed network correspond-
ing to specific input and output. Low- and high- 
frequency components were observed in the 
lower layers. On the other hands, an artifact-like 
pattern was extracted from the higher layer.

Fig. 9 Bland–Altman plots for (a) the intensities and (b) the liver-to-aorta contrast ratio between the reference and artifact-reduced images 
in the validation dataset. The mean difference in the intensities was 0.00 (95% CI, −0.04 to 0.04) in the areas corresponding to mean 
intensity of <0.46 and −0.02 (95% CI, −0.14 to 0.10) in the parts with mean intensity of ≥0.46. Mean difference in the contrast ratio was 
0.00 (95% CI, −0.02 to 0.02). These results indicated that there were no systematic errors in the contrast ratios, whereas the intensities of 
the artifact-reduced images were lower than that of the reference images owing to the effect of artifact reduction, especially in the area 
with high signal intensities. CI, confidence interval; CV, coefficient of variation.

a b

Higher frequency ghosting-like patterns were extracted from 
the input in the 8th layer.

Figure 9a and 9b show the Bland–Altman plots of the 
intensities and liver-to-aorta contrast ratios between the ref-
erence and artifact-reduced images. The differences in the 
intensities between the two images (mean difference = 0.04 

(95% confidence interval [CI], −0.04 to 0.04) for mean intensity 
<0.46 and mean difference = −0.02 (95% CI, −0.14 to 0.10) 
for mean intensity ³0.46) were heterogeneously distributed, 
depending on the mean intensity. The intensities of the arti-
fact-reduced images were lower than that of the references 
by 15% on average, which can be seen in the high signal 
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Table 1 Mean scores of the artifact for the acquired and arti-
fact-reduced images. 

A1 A2 B1 B2

Acquired 3.23 3.22 3.14 3.15

Artifact-reduced 2.86 2.85 2.59 2.62

P = 0.0250 P = 0.0230 P = 0.0012 P = 0.0020
The evaluation was performed twice by each of the two radiologists 
(A1, A2, B1 and B2) in  randomized-order

Fig. 10 Examples of artifact reduction with MARC for patient data from the datasets that were not used for the training or validation. The 
motion artifacts in the images (upper row) were reduced (lower row) using the MARC. The residual components are shown in the middle 
row. MARC, Motion artifact reduction method based on convolutional neural network.

intensity areas shown in Fig. 9a. A Bland–Altman plot of the 
liver-to-aorta contrast ratio (Fig. 9b) showed no systematic 
errors in contrast between the two images.

As shown in Table 1, the image quality of the artifact-
reduced images [mean (SD) score = 3.14–3.23] was signifi-
cantly better (P < 0.05) than that of the acquired images [mean 
(SD) score = 2.59–2.86] in the evaluations by all readers 
because respiratory motion-related artifacts (Fig. 10 top row) 
were reduced by applying MARC (Fig. 10 bottom row). The 
middle row in Fig. 10 shows the extracted residual components 
for the input images. The MARC caused no significant change 
in image quality in the case of score of 1. The inter- and intra-
observer agreements are shown in Table 2. Intra-observer reli-
ability was good for all readers. The inter-observer agreements 
were good or moderate. FWHMs and SNRs of the acquired 
and artifact-reduced images are shown in Fig. 11. There was no 
significant difference in the SNR, whereas the image sharpness 
was improved significantly after applying the MARC.

The images with and without breath-hold failure are 
shown in Fig. 12a and 12b. The motion artifact in Fig. 12b 
was partially reduced using MARC, as shown in Fig. 12c. 
This result indicated that there was no loss of critical ana-
tomical details, and no additional blurring was observed 
although moderate artifact on the right lobe remained.

Discussion
In this paper, an algorithm to reduce the number of motion-
related artifacts after data acquisition was developed using a 
deep convolutional network, and was then used to extract 

artifacts from local multi-channel patch images. The network 
was trained using reference MR images acquired with appro-
priate breath-holding, and noisy images were generated by 
adding phase error to the reference images. The number of 
convolution layers in the network was semi-optimized in the 
simulation. Once trained, the network was applied to MR 
images of patients who failed to hold their breath during the 
data acquisition. The results of the experimental studies dem-
onstrate that the MARC successfully extracted the residual 

Table 2 Intra- and inter-observer reliability of the visual evaluation. 

Acquired Artifact-reduced
Intra-observer Kappa [95% CI] Kappa [95% CI]
Reader A 0.75 [0.66–0.84] 0.77 [0.70–0.86]
Reader B 0.95 [0.91–0.99] 0.93 [0.87–0.97]
Inter-observer
A1 versus B1 0.68 [0.59–0.78] 0.80 [0.72–0.88]
A2 versus B2 0.59 [0.48–0.69] 0.65 [0.55–0.74]
The analyses were performed using Cohen’s kappa statistics with 
95% confidence intervals. CI, confidence interval.
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components of the images and reduced the amount of motion 
artifacts and blurring without affecting the contrast and SNR 
of the images. However, further research is required to verify 
the accuracy of quantitative imaging after applying the 
MARC. No study has ever attempted to demonstrate blind 
artifact reduction in abdominal imaging, although many 
motion correction algorithms with navigator echoes or res-
piratory signal have been proposed.8,32,33 In these approaches, 
additional RF pulses and/or longer scan time are required to 
fill the k-space signal whereas MARC enables motion reduc-
tion without sequence modification or additional scan time. 
The processing time for one slice was 4 ms, resulting in 
approximately 650 ms for processing all slices of one patient. 
This computational cost is acceptable for practical clinical 
use compared with previous studies using retrospective 
approaches.34–36 Although the processing was implemented 
off-line with the workstation used for the training, the algo-
rithm can be executed on the reconstruction machine of the 
scanner.

In the MRI of the liver, DCE-MRI is mandatory to identify 
hypervascular lesions, including hepatocellular carcinoma,37,38 
and to distinguish malignant from benign lesions. At present, 
almost all DCE-MR images of the liver are acquired with a 3D 
gradient echo sequence owing to its high spatial resolution and 
fast acquisition time within a single breath-hold. Despite recent 
advances in imaging techniques that improve the image 
quality,39,40 it remains difficult to acquire uniformly high quality 
DCE-MRI images without respiratory motion-related artifacts. 
In terms of reducing motion artifacts, the unpredictability of a 
patient’s breath-holding ability is the biggest challenge to over-
come, as the patients who will fail to hold their breath are not 
known in advance. One advantage of the proposed MARC 
algorithm is that it is able to reduce the magnitude of artifacts 
in images that have been already acquired, which will have a 
significant impact on the efficacy of clinical MR.

In this study, an optimal Nconv of seven was selected 
based on the SSIM indexes of the reference image and the 
artifact-reduced image after applying MARC. The low SSIM 

Fig. 11 FWHMs and SNRs of the 
images with and without the MARC. 
The FWHM was derived from the 
line spread function which was esti-
mated from the one-dimensional 
profile across the liver to the hepatic 
vein. SNR was calculated by placing 
ROIs on the right robe. FWHM of the 
artifact-reduced images was signifi-
cantly reduced compared with that 
of the images without the applica-
tion of MARC. There was no signif-
icant difference in SNR between the 
images with and without the appli-
cation of MARC. FWHM, full width 
at half maximum; MARC, Motion 
artifact reduction method based on 
convolutional neural network; SNR, 
signal-to-noise ratio.

Fig. 12 Gadoxetic acid-enhanced 
arterial phase MR images obtained 
in two separate examinations. (a) 
The arterial phase image acquired 
in the first examination, in which 
the patient succeeded in holding the 
breath. (b) The arterial phase image 
acquired in another examination  
1 month later, in which the patient 
failed to hold the breath. (c) The 
artifact-reduced image of (b). These 
images were acquired with the same 
imaging parameters.
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index observed for small values of Nconv was thought to be 
due to the difficulty in modeling the features of the input 
datasets with only a small number of layers. On the other 
hand, a slight decrease in the SSIM index was observed for 
Nconv of >12. This result implies that overfitting of the net-
work occurred using too many layers. To overcome this 
problem, a larger number of learning datasets and/or regu-
larization and optimization of a more complicated network 
will be required.

Several other network architectures have been proposed 
for the denoising of MRI images. For example, U-Net,41 
which consists of upsampling and downsampling layers with 
skipped connections, is a widely used fully convolutional 
network for the segmentation,42 reconstruction, and 
denoising43 of medical images. This architecture, which was 
originally designed for biomedical image segmentation, uses multi- 
resolution features instead of a max-pooling approach to 
implement segmentation with high localization accuracy. 
Most of the artifacts observed in MR images, such as motion, 
aliasing, or streak artifacts, are distributed globally in the 
image domain because the noise and errors usually contami-
nate the k-space domain. It is known that because U-Net 
using the whole image has a large receptive field, these arti-
facts can be effectively removed using global structural infor-
mation. Generative Adversarial Networks (GANs),44 which 
are comprised of two networks, called the generator and dis-
criminator, are another promising approach for denoising 
MR images. Yang et al.16 proposed a network to remove 
aliasing artifacts in compressed sensing MRI using a GAN-
based network with a U-Net generator. We used patched 
images instead of a full-size image because of the difficulty 
in implementing appropriate training with limited number of 
datasets as well as owing to computational limitation. How-
ever, we believe this approach is reasonable because the pat-
tern of artifact due to respiratory motion looks similar in 
every patch, even though the respiratory artifact is distributed 
globally. Although it should be studied further in the future, 
we consider that MARC from the patched image can be gen-
eralized to a full-size image from our results. Recently, the 
AUtomated TransfOrm by Manifold APproximation 
(AUTOMAP) method, which uses full connection and con-
volution layers, was proposed for MRI reconstruction.45 The 
AUTOMAP method directly transforms the domain from the 
k-space to the image space, and thus enables highly flexible 
reconstruction for arbitrary k-space trajectories. Three-
dimensional convolutional neural networks (CNNs) which 
are network architectures for 3D images,46,47 are also a prom-
ising method. However, these networks require large number 
of parameters, huge memory on GPUs and host computers, 
and long computational time for training and hyperparameter 
tuning. Therefore, it is still challenging to apply these 
approaches in practical applications. These network architec-
tures may be combined to achieve more spatial and temporal 
resolution. It is anticipated that further studies will be con-
ducted on the use of deep learning strategies in MRI.

Limitations
The limitations of this study are as follows. First, clinical 

significance was not fully assessed. Although the image quality 
appeared to improve in almost all cases, it will be necessary to 
confirm that no anatomical/pathological details were removed 
by MARC before this approach can be clinically applied. 
Second, simple centric acquisition ordering was assumed 
when generating the training datasets, which means that 
MARC can only be applied to a limited sequence. Additional 
training will be necessary before MARC can be generalized to 
more pulse sequences and vendors because the appearance of 
artifact depends on the sequence and its parameters such as 
TR, TE, and acquisition order. Because it is difficult to obtain 
pairs of images with and without artifacts to train the filter, we 
used simulation-based images as the images with artifact. 
There was a concern whether the training was appropriate to 
reduce the artifact in the real MR images. Fortunately, the 
results indicated that our approach worked even with images 
obtained from real patients, although the simulation model 
used in this study assumed simple rigid motion of the body. 
Therefore, realistic simulation including non-rigid and 3D 
motion can offer further improvement of our algorithm 
because it could be challenging to remove artifact induced by 
a complicated situation. Dataset generation based on numer-
ical phantoms could be a promising solution.48,49 Wissmann et 
al.48,49 proposed a simulation with deformable and four-dimen-
sional motion model for cardiac imaging. More practical arti-
fact simulation can be achieved by utilizing these approaches 
although the computation cost to generate datasets of large 
size may be high. Moreover, the artifact was simulated in the 
k-space data generated from images for clinical use. Simula-
tion with the original k-space data may offer different results. 
We need further researches to reveal which approach would be 
appropriate for artifact simulation. The proposed filter was 
trained with the datasets of patients who were referred for an 
MRI for the purpose of hepatocellular carcinoma (HCC) 
screening. Because the background liver of these patients is 
typically cirrhotic, the filter may not be applicable to a liver 
without chronic liver disease. To show the clinical usefulness, 
investigation of lesion detectability will be required as a future 
study.

The research on diagnostic performance using deep 
learning-based filters has not been performed sufficiently in 
spite of considerable effort spent for the development of 
algorithms. Our approach can provide additional structures 
and texture to the input images using the information learned 
from the trained datasets. Further research on diagnostic per-
formance will be required to prove the clinical validity.

Conclusion
In this study, a deep learning-based network was developed to 
remove motion artifacts in DCE-MRI images. The results of 
the experiments showed that the proposed network effectively 
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removed the motion artifacts from the images. These results 
indicate that the deep learning-based network has the potential 
to also remove unpredictable motion artifacts from images.
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