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ABSTRACT
We propose a deep learning workflow for the classification of hematoxylin and 

eosin stained histological whole-slide images of non-small-cell lung cancer. The 
workflow includes automatic extraction of meta-features for the characterization of 
the tumor. We show that the tissue-classification produces state-of-the-art results 
with an average F1-score of 83%. Manual supervision indicates that experts, in 
practice, accept a far higher percentage of predictions. Furthermore, the extracted 
meta-features are validated via visualization revealing relevant biomedical relations 
between the different tissue classes. In a hypothetical decision-support scenario, 
these meta-features can be used to discriminate the tumor response with regard 
to available treatment options with an estimated accuracy of 84%. This workflow 
supports large-scale analysis of tissue obtained in preclinical animal experiments, 
enables reproducible quantification of tissue classes and immune system markers, and 
paves the way towards discovery of novel features predicting response in translational 
immune-oncology research.

INTRODUCTION

Digital Pathology is a rapidly emerging field 
introducing modern image processing, computational 
analysis and machine learning algorithms to pathological 
workflows. In this context, whole-slide scanners are 
utilized to digitize microscopy images of stained 
histological tissue, resulting in gigapixel-sized images. 
State-of-the-art deep learning methods implemented for 
Graphics Processing Units use provide the necessary 
computational capacity to process the immense amount of 
data. From a biomedical perspective, a detailed analysis 
of tissue distribution and co-localization contributes 
objective and reproducible measures to characterize the 
tumor-micro-environment (TME). Quantifying these 
features is of particular interest in pre-clinical as well 
as clinical research in the field of immune-oncology. 
Although numerous clinical trials are ongoing and the 
effort in pre-clinical drug development is tremendous 

in academia as well as industry, only a small proportion 
of patients benefits from these innovative treatment 
strategies. The Single-Mouse-Trial (SMT) [1, 2] using 
patient derived xenografts (PDX) in humanized mice is 
a highly predictive screening approach for pre-clinical 
immune-oncology drug development. In this work, we 
provide an exceedingly automated analysis of whole-slide 
images from PDX models acting as a support system to 
categorize the tumor behavior and host immune system. 
In particular, we compare the tumor and immune system 
interaction under treatment with anti-PD-L1, anti-
CTLA4, and a combination thereof versus the untreated 
PDX model. As we consider a screening application, the 
amount of data on the technical side requires a semantic 
annotation framework, which aims at predicting output 
images of input size, and thereby drastically reduces 
redundancy compared to patchwise classification 
pipelines. Furthermore, a semantic scenario inherently 
considers a large pixel context, which is certainly relevant 
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in histological tissue classification. Realizations of 
semantic annotations are found in the fully-convolutional 
network (FCN) for semantic segmentation [3] and in the 
UNet [4] architecture where a coupling between a feature 
encoding part and a reconstruction part facilitates the 
prediction of highly detailed output maps. With this work, 
we propose a parameter-efficient network structure that is 
well-suited for fast and accurate semantic classification 
of tissue patterns by combining paradigms from various 
architectures. We use a custom histological dataset to 
benchmark the classification performance of our network 
in comparison to UNet and FCN. Afterwards, a trained 
network is applied to a SMT dataset to highlight the 
relevance of the extracted tissue parameters.

RESULTS

The network performance is evaluated in a cross-
validation setting. Results for the accuracy, processing time 
and memory consumption are compared. Furthermore, we 
present prediction samples to show basic properties of the 
predictions. For the SMT setting, we apply the HistoNet 
processing pipeline and compare the performance after 
an expert verification step. Visualizations are given to 
indicate the descriptiveness of the features and cross-
validation results for the diagnostic decision support are 
presented.

Tissue classification performance

Evaluation

We refer to Table 1 for an overview of the 
classification performances. All architectures achieve 
a gain of approximately 28% compared to a baseline 
experiment with a classical feature pipeline. The 
respective F1-scores lie between 82% and 84%. In terms 
of computational time, see Figure 1, the networks are 
very similar regarding the required time per image, with a 
slight advantage for the presented HistoNet architecture. 
However, significant differences exist with respect to 
the memory requirement of the network types. While 
these differences are not necessarily relevant in research, 
they may be crucial in deployment, since extensive 
memory consumption can strongly limit the achievable 
bandwidth in practice. Furthermore, the built-in option 
in the proposed architecture to draw multiple samples to 
increase the accuracy and identify areas of uncertainty is 
a very desirable feature. For that reason and with no clear 
performance advantages of the competing architectures, 
we conduct later experiments using our HistoNet model.

From visual inspection of the predicted tissue maps 
in Figure 2, we observe that even in difficult cases a 
majority of the tissue is labeled correctly. A variance floor 
is usually present at the boundaries of tissues, particularly 
between tumor (TUM) and mouse-stroma (MST), which 
is to be expected. Between the classes bloodvessels/-cells 

(BLC) and necrosis (NEC) a more systematic confusion 
is present, see the examples in Figure 2 and the confusion 
matrices in Figure 3. The detail view reveals that in 
several cases even very fine stroma structures are detected. 
Furthermore, despite the strong underrepresentation 
in the data, blood-vessels in the stroma region are well 
segmented beyond our expectation.

Single-mouse-trial analysis

In the SMT analysis, we apply the trained network 
to a large histological dataset and verify the use of the 
network by formulating a hypothetical diagnosis support 
problem. This setup represents a screening of different 
tumors and treatments. We compute meta-features from 
the predicted tissue-maps and CD45 images and analyze 
their distribution with respect to the expert’s diagnostic 
decision on the success of the treatment.
Visual inspection and error correction

As the neural network predicts human-interpretable 
maps of the tissue, a verification and correction step is 
conducted. Herein, the prediction variance map can be used 
as a guideline to identify areas of uncertain decisions. The 
inspection aims to correct large areas of mislabeled tissue to 
prevent error-propagation to the subsequent analysis, while 
we accept natural local uncertainties such as the tissue 
transitions between tumor – necrosis or tumor – mouse-
stroma. Figure 3 shows confusion matrices comparing the 
network predictions to the corrected tissue maps. Most 
confusions happen between the classes BLC – NEC due to 
hemorrhagic areas and between mouse-stroma and necrosis 
due to residual fiber-structures in necrotic areas. As this 
confusion occurred systematically, this enabled us to 
correct the BLC – NEC confusion mostly algorithmically 
utilizing the variance map of the predictions by relabeling 
the areas of variance to the NEC class, see Materials 
and Methods. In total, only 1.7% of the predicted pixels 
needed correction, i.e. in 98.3% of the area the default 
predictions were accepted by the expert. Additionally, as 
the classification task is an imbalanced problem, it is worth 
considering a F1-scoring with equal weight per class and 
this measure results in 89.4%. Regarding the CD45 data, 
only one of 71 instances required a minor correction due 
to a stain-artifact. Because of the consistent labeling, the 
verification and correction of the 71 H&E and CD45 image 
pairs took less than six hours.
Visualizations of reference 2D feature spaces

From the corrected prediction, we compute tissue 
meta-features according to the equations given in the 
Materials and Methods section. These features branch 
into the categories of absolute, relative, and isotype-
difference features. In a first analysis, we visualize 
selected feature combinations in 2D, shown in Figure 4. 
Measures of the isotype models, denoted by the blue 
star symbol are plotted for reference. Additionally, we 
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display a probabilistic assignment according to a Naive 
Bayes Classifier [5, 6] to indicate responsive (blue) and 
non-responsive (red) regions in the feature spaces, using 
a baseline classifier. Two of the strongest features, the 
absolute tumor (TUM) area vs. the relative TUM area in 
Figure 4A already separate a large portion of the samples. 
Particularly, the absolute TUM area (x-axis) indicates that 
a hard threshold between responder and non-responder 
models exists at approximately 0.45 × 108 px. Tumor 
areas larger than this threshold are all non-responsive to 
the treatment in this data.

The relative TUM area is not as distinctive but 
shares the property that tissues with less TUM content 
are more likely to be responsive. Consequently, a 
machine-learning boundary would separate the classes 
nearly linear along the image diagonal. An interesting 
dependency between the tumor- and necrosis-fraction of 
the tissue is illustrated in Figure 4B, where we observe an 
anti-proportional dependency between the relative TUM 
and NEC tissue. Herein, tumors with a high fraction of 
necrotic tissue and a low fraction of tumor are likely to 
have responded to the treatment, as the necrosis can be 
explained as decay of tumor tissue. Both constellations are 
good examples for the meta-features to reflect an intuition 
about biomedical dependencies. In Figure 4C, feature 
characteristics that measure the difference to the isotype, 
in this case for the stroma class are shown. Necessarily, the 
isotypes do not deviate from themselves and are therefore 
located on the x-axis (y = 0) in this plot. The computed 
decision boundary interprets large changes in the stroma 
tissue as a characteristic of responding models. Two 
isotype difference features are shown in Figure 4D, with 

the change in CD45 positive fraction vs. the change in 
overall tissue area. All isotypes collapse into the origin in 
this plot and as a more general observation, tumors with an 
increase in the overall area and a decrease in CD45 cells 
are likely non-responsive, while models with a decrease in 
the overall area and changes in CD45 cells are considered 
likely responsive by the Naive Bayes model. Additional 
visualizations are provided in the Supplementary Figures 
2 and 3. As 2D visualizations represent low-dimensional 
subspaces, they cannot be expected to cover the 
complexity of the relations in the data completely. In the 
following, we evaluate the performance in a classification 
task using a high-dimensional feature space, to obtain an 
estimate for a potential application scenario.
SMT decision support scenario

Data available for this scenario is relatively limited 
for ethical reasons, as each sample corresponds to a 
sacrificed animal in addition to the isotypes. With 51 
annotated samples for the decision-learning, we opt for 
established statistical methods that can handle a low number 
of samples. We estimate of the performance of the proposed 
processing pipeline in a decision support scenario, by 
reformulating the classification problem as a generalization 
task using a subset of the samples for learning and the 
remaining samples for inference and evaluation. We iterate 
these data splits ten times, such that each sample served in 
both roles and such that the individual splits approximate 
the true distribution of responders and non-responders, i.e. 
we perform a 10-fold cross-validation with stratified folds. 
In Table 2 we show the classification results for different 
classifiers [5, 7, 8]. The peak performance using a five 

Table 1: Summarized 5-fold cross-validation results of the tissue classification problem with eight 
distinct classes
Algorithm Precision (%) Recall (%) F1-Score (%)
Baseline 58.0 ± 4.9 55.6 ± 5.3 55.0 ± 5.3
FCN 84.0 ± 1.3 84.0 ± 1.3 84.0 ± 1.3
UNet 82.2 ± 2.1 82.8 ± 1.8 82.0 ± 2.0
Histonet 83.4 ± 1.3 82.8 ± 1.0 83.0 ± 1.2

Figure 1: Memory consumption and processing time per image patch. Measured on an Nvidia Titan X (Pascal) GPU Device.
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Table 2: Results of a 10-fold cross-validation classifying responding and non-responding patient-
derived xenograft models
Classifier Model Accuracy (%) AUC-ROC (%)
Baseline, Educated Guess 59.2 59.6
Baseline, Naïve Bayes [5, 6] 70.8 76.7
RBF-SVM [7, 19] 76.8 83.3
Linear SVM [20, 28] 78.5 83.8
Logistic Regression [7] 78.2 84.2
5-NN, Euclidean [5, 7, 8] 76.8 83.2
5-NN, Manhattan [5, 7, 8] 84.2 86.7

The educated guess baseline always predicts non-responsive according to the data distribution.

Figure 2: Prediction of the HistoNet architecture on an input sample (NSCLC PDX). Top, from left to right: input slide, 
prediction average map, variance map, corrected tissue map. Middle: detail view of a different slide (NSCLC PDX) with input (left) and 
prediction average map (right). In the variance map, light green as a mixture of green and yellow, corresponds to a confusion of BLC and 
NEC class. Bottom: CD45 example (left, NSCLC PDX) with corresponding stain color decomposition (right).
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Nearest-Neighbors Classifier and Manhattan-Distances 
achieves an average accuracy [7] of 84.2% and an average 
AUC-ROC [7] of 86.7%. Herein, we deploy a feature 
combination of absolute tumor area, relative tumor area, 
relative stroma area, and isotype-differences in the necrosis, 
CD45 area and overall area.

DISCUSSION

In this study, we present and evaluate a deep learning 
setup for the classification of PDX NSCLC tissue. It is 
demonstrated how interpretable network outputs – maps 
of the predicted tissue classes and prediction confidence – 

Figure 3: Confusion matrices of the manual corrections. Right: normalized to precision values. Left: normalized to recall values. 
Overall accuracy 98.3% (imbalanced), F1-score 89.4% (balanced).

Figure 4: Examples of different feature combinations. Colors denote the response to treatment, in blue: isotype, green: responder 
and red: non-responder. Shapes denote the treatment type, as star: isotype, square: PD-L1 blocker, triangle: CTLA4 blocker and circle: 
combined treatment. The background colors indicate a probabilistic assignment by a Naive Bayes Classifier.
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can be applied to an analysis of a large histological dataset. 
Focusing on remaining challenges regarding a tissue-
classification with fixed ground-truth, roughly 17% of the 
pixels are still predicted inaccurately, creating a need for 
manual supervision prior to subsequent processing steps. 
For the stroma class, we observed that the prediction of 
fine fiber-like structures is still prone to misclassification. 
Typically, the network predicts the surrounding tumor 
class instead which creates a small bias that likely is 
negligible, in practice. Another source of confusion arises 
from less represented classes: vacuoles, blood vessels/
cells and muscle. Vacuoles are often labeled as necrosis 
and vice-versa, a confusion that in some cases is uncritical 
and strongly depends on the definition of both structures, 
since advanced necrotic processes leave nothing but 
a diffuse plasma behind, which strongly matches the 
appearance of large vacuoles. Vice-versa, some of the 
larger annotated vacuoles may actually be the result of 
necrotic tissue decomposition. Furthermore, a confusion 
between blood-cells and necrosis may occur as a result 
of often co-located hemorrhagic areas. Retrospectively, 
the labeling of blood-vessels and hemorrhagic areas 
together in the blood-cells/vessels class likely caused 
this systematic misclassification. A correction would 
provide the characterization of the blood-vessel count, 
size and distribution as additional interesting biomarker 
for the tumor-micro-environment. Muscle tissue mostly 
appears as a very distinct structure, except for rare cases 
of inflammatory tissue from the necrosis or tumor class. 
Most of the confusions are likely the result of a strong 
underrepresentation and we see no further reason why 
these classes should not be recognized correctly, as the 
annotation database grows.

The characteristics of computed meta-features were 
inspected through visualization in low dimensional spaces 
and have shown to correspond to expected relations in the 
data. These feature spaces are only subspaces and cannot be 
expected to fully represent the complexity of the data. Higher 
dimensional models have a better potential to provide reliable 
solutions, however, they are not easy to visualize accurately 
- although manifold embedding techniques are sometimes 
applied for approximate impressions. For the purpose of 
reliable and reproducible results, a cross-validation is the 
more appropriate performance estimator, though.

In a hypothetical decision support setup, an accuracy 
of approx. 84% can be expected. Note that this result is to 
be taken as preliminary estimate due to two reasons: first, 
the relatively low number of samples, which we accept 
here for ethical reasons regarding animal sacrifice and the 
availability of tumor models, and second, the resulting 
over-engineering as this estimate uses a specific feature 
combination. Other suitable combinations operate with a 
performance difference between −3% and −6% which can 
still be considered as reasonable outcome.

In addition to the experiments describes here, we 
attempted to distinguish naturally occurring necrosis 

from treatment induced necrosis via textural image 
features – with negative result. Details are provided in the 
supplementary material along with a visualization of the 
texture feature embeddings, see Supplementary Figure 1. 

While digital pathology algorithms for lung-cancer 
WSIs are not deeply covered in literature, there is a variety 
of publications regarding breast cancer detection [9], 
grading [10, 11], and epithelial vs. stroma classification 
[12]. Besides the differences in organ, technical deviations 
exist, as [9] solves a binary classification problem (versus 
our eight-class problem) and [10, 11] work with ordinal 
data. Similar to our approach, [12] deploys a two-step 
processing involving deep learning feature generation 
and conventional classification. All four references use 
patchwise classification instead of semantic annotation, 
effectively limiting the spatial resolution [10] or 
resulting in a trade-off between network parameters and 
computational speed [9].

MATERIALS AND METHODS

Tissue classification dataset

For the training and evaluation of the network 
performance, we labeled data comprising six distinct tissue 
classes: tumor (TUM), stroma/connective tissue (MST), 
necrosis (NEC), blood-cells/-vessels/inbleeding (BLC), 
vacuoles (VAC) and muscle (MUS) plus an additional 
class of technical-artifacts (TAR) and a background 
(BGR) class. The images are extracts from 25 different 
hematoxylin and eosin (H&E) stained whole-slide images 
showing lung-cancer and breast-cancer tumors grown 
in patient-derived xenograft models. Note that despite 
the differences in tumor types, the tissue classes remain 
quite similar in appearance. Biomedical experts annotated 
representative regions-of-interest, each showing different 
combinations of tissues at a resolution of 2 µm/px. 
Figure 5A shows the distribution of annotated pixels per 
slide and indicates their internal class distribution. An 
example of the annotation quality is given in Figure 5B.
Preprocessing

We perform stain-normalization using the Reinhard 
method [13] to center the color distribution of all slides. 
However, during training, the stain-colors were augmented 
along the principal color components, computed from 
the distribution across all the available data. Thus, the 
network sees the same image patch in different artificial 
stain variations during each training iteration. Additional 
augmentations were implemented with random translation, 
flipping and rotation.
Baseline experiment

Classical solutions based on texture and color 
features have been proposed to address multi-class 
problems in histology [14, 15]. Therefore, as a baseline for 
our experiments, we run a classical pipeline with statistical 
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moments on RGB channels, greylevel co-occurrence 
features [16], local-binary patterns [17] and Tamura 
texture features [18] combined with different classification 
algorithms: support-vector machine [5, 19, 20] with 
various kernels and a random forest [5, 8, 14]. The ground 
truth for this patchwise setup was sampled from the 
semantic annotations and balanced among the different 
classes. The best configuration in terms of a weighted 
F1-score is a support-vector classifier with RBF kernel 
deploying the complete set of features.

Network architecture

In this section, we explain our motivation for 
designing the custom classification network architecture. 
Both reference architectures FCN and UNet have a 
comparable contracting path built from blocks following 
a double convolution, nonlinearity, pooling pattern for 
the feature generation. Their main difference lies in the 
expanding network path that recomposes a detailed 
multidimensional output. FCN proposes an upsampling 
operation from feature to output dimension followed by 
concatenation and a few classification layers, whereas 
UNet suggests iterative feature-upsampling, -conatenation, 
and -convolution cycles until the input resolution is 
reached. Because of the upsampling to full output size of 
each contributing network block, FCN suffers severely 
from memory constraints in practice, resulting in small 
batch-sizes for training and small region-of-interest 
sizes in application. However, there are only relatively 
few parameters connecting the features to the actual 
classification output. In contrast, UNet uses about twice the 
number of parameters for reconstruction in the additional 
convolution steps, but drastically reduces the memory 
consumption through its iterative upsampling strategy. 
Architectures that pay attention to efficiency specifically 
deploy 1 × 1 convolutions to compress the number of 

channels and filter redundant feature responses into a more 
compact representation. Convolutions with spatial context, 
i.e. 3 × 3 Semantic Tissue Segmentation 3 and larger, are 
preferred to operate in a compressed feature space to 
save parameters. For example, ResNet [21] controls the 
number of parameters with its bottleneck-pattern: 1. a 1 × 
1 convolution decreases the number of features, followed 
by 2. one or more 3 × 3 convolution layers and 3. a 1 × 
1 convolution for expanding the features to the original 
number of channels, which is necessary to compute the 
residual. Thus, the spatial convolution is performed in 
a compressed feature space, reducing the number of 
parameters and constraining the data-flow.

In their original implementations, neither FCN nor 
UNet had access to the residual learning concept [21] 
in which information can bypass each network block, 
as their function represents a deviation from the data 
flow through the network. Residual blocks enable the 
training of very deep architectures, since the concept 
of learning many small deviations from a mean data 
flow alleviates the problem of exploding or vanishing 
gradients. While the skip connections in UNet may have 
a similar effect, note that an entire subnetwork is by-
passed instead of a single block. At least in theory, the 
residual activations should be of low mean and variance, 
and regularization by Batch-Normalization [22] has often 
been applied to ensure this. Recently, a non-linearity 
with self-normalizing properties (SELU) [23] has been 
proposed, which together with L2-Regularization of the 
network weights, contributes another way to ensure 
a reasonably bounded distribution on the residual 
activations, but without the additional parameters of a 
Batch-Normalization layer. SELU activations depend 
on a specific version of Dropout [23, 24]. Therefore, 
with the inherent presence of Dropout layers we have an 
optional source of randomness during inference and can 
utilize this to sample multiple predictions for the same 

Figure 5: Two visualizations of the dataset distribution focused on the contribution from each WSI (A) and the class distribution (B). 
Colors in (B) represent the WSI origin. While we obtain a good balance of the labeled data per slide (A), the class-distribution (B) leads to 
a very imbalanced machine-learning task.
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patch. Instead of a single prediction, a mean and variance 
tissue map are computed. Specifically, the variance map 
helps to identify areas of uncertainty, which are located 
in areas where the Dropout of individual features leads 
to a change in prediction. It has been shown that this 
uncertainty correlates with the confusion of classes and 
may be used to optimize the labeling procedure [25].

In summary, the following design choices motivate 
our architecture:

▪  preferring residual blocks to facilitate a good 
gradient flow

▪  deploying bottleneck patterns for parameter 
efficiency

▪  inserting additional compression layers to 
balance feature concatenations

▪  controlling parameter spaces by regularization 
and self-normalizing non-linearities

▪  applying multi-objective learning to support 
domain-oriented learning

▪  optionally utilizing (Alpha-)Dropout during 
inference to sample multiple predictions

Following the above paradigms, we define the block 
structures in our architecture as a series of bottleneck 
blocks, as displayed in Figure 6.

The basic bottleneck block performs the compress 
– convolve – expand pattern in a residual function on 
the data path concluded by the self-normalizing SELU 
operation, while a reduce block contributes a strided 
convolution to decrease the spatial dimension. As a 
requirement of the SELU non-linearities, the regularizing 
dropout function is implemented as Alpha Dropout [23] 
inside the reduction blocks.

The network has two output paths. Semantic 
classification is achieved by compressing all feature levels 
via 1 × 1 convolutions followed by bilinear upsampling 
and concatenation right before the classifier, similar to the 
FCN architecture. The number of compression channels 

on each feature level is used to balance between coarse 
and detailed information, as indicated in the lower part 
of Figure 6. This output predicts a map of probabilities 
for each tissue class and is trained with a combination of 
categorical cross-entropy (CCE) loss and dice-distance 
loss (DDL). A second feature output of the last layer is 
implemented to directly predict the normalized tissue 
distribution in the input patch, as seen in the upper 
part in Figure 6. Herein, the normalization is implicitly 
achieved utilizing a Softmax non-linearity at the output. In 
conjunction with the true distribution, which can easily be 
computed on-the-fly from the semantic annotations, this 
output contributes a mean-square-error (MSE) loss. Thus, 
the final loss is the sum of the above loss contributions

L = LCCE + LDDL + LMSE,

which realize the paradigm of learning from multiple 
objectives. In the following, the proposed network is 
referred to as HistoNet.
Training and evaluation process

All networks pass a fivefold cross-validation (CV) 
scheme with fixed splits to ensure equal conditions 
for each algorithm. We chose the splits manually to 
balance the occurrence of rare classes among all folds. 
Furthermore, it is ensured that images from a particular 
patient or WSI are exclusive to a single split, i.e. test and 
training data are strictly separated with respect to the 
patients. As optimizer, we deployed Adam [26], with a 
learning rate of 5 × 10−4 and weight-decay 10−6.

Single-mouse-trial analysis workflow

Single-mouse-trial dataset

An initial dataset of single-mouse-trials comprises 
71 whole-slide images of hematoxylin and eosin (H&E) 
stained PDX non-small cell lung-cancer (NSCLC) tissue. 
The data is further subdivided into 17 groups in which 

Figure 6: Overview of the proposed pipeline. A ResNet-inspired feature generation path is used together with a simple reconstruction 
network using 1 × 1 convolutions as compression for feature balancing and reduced memory consumption.
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the same tumor model provides each of the following four 
treatments: 1. isotype, 2. anti-PD-L1, 3. anti-CTLA4 and 
4. combined anti-PD-L1 + anti-CTLA4 – providing 68 
slides. The remaining three slides are an additional isotype 
and two anti-PD-L1 treatments for one of the tumors. This 
set is referred to as H&E data and is used for the tissue-
class prediction. A second set of 71 whole-slide images 
consists of immunohistochemical staining using an anti-
human CD45 antibody for detection and diaminobenzidine 
for staining the detected cells. This subset is referred 
to as CD45 data and is used for immune-response 
characterization. An expert labeled all 53 treated tumors 
as either responding, or non-responding to the treatment 
or in two cases unknown. Following the current standard 
workflow, the labeling decision is based on the recordings 
from flow-cytometric analysis, reference values of the 
stroma content (qPCR) for the different tumor models, the 
tumor-volume development during the experiment, and 
the observation of the histology images.

Processing

All WSI undergo a foreground selection [27] and 
computed tissue areas are sampled grid-wise at 10× 
objective-magnification such that the resulting patches 
overlap with 25%. The H&E patches are normalized 
[13] using the normalization parameters of their 
respective slide and segmented via the proposed HistoNet 
architecture. Using the stochastic classification approach, 
five predictions are sampled and we compute an average 
prediction map and a prediction variance map. From the 
average prediction map we compute the final predicted 
label per pixel as the class with the highest probability. 
At overlapping borders of extracted patches, bilinear 
interpolation is applied to merge the predictions into a 
tissue map and a corresponding variance map. A color-
coding with the correspondences red: TUM, blue: MST, 
yellow: NEC, cyan: VAC, magenta: MUS and green: BLC 
is used for the six main classes, while TAR and BGR are 
mapped to black and white, respectively. Using a principal 
component analysis, the CD45 patches are destained into 
hemtoxylin-blue and diaminobencidine-brown component 
to provide a measure for the immune-interaction between 
the tumor and host immune-system.

Automated correction of the systematic BLC – 
NEC confusion

As mentioned, a systematic confusion of the NEC 
– BLC class was observed in the variance map. An 
automated correction selects areas of light-green in the 
variance map and relabels the selection to the necrosis 
class in the predicted tissue map. For the color channels  
Vr, Vg, Vb, of the variance map V, the selection is computed 

using the red to green ratio r V
V
r

g

= ∈( )0 35 0 7. , .  while Vb is 

required to be close to zero. The range is chosen 

empirically, but with the knowledge that a 50% mixture of 
yellow and green, corresponding to the confusion of BLC 
– NEC, would result in r = 0.5 and Vb = 0, exactly. A 
Gaussian Blur (σ = 5 px) is used to blend the selection 
smoothly into the tissue map.

Computation of tissue meta-features

While the learned mapping from raw image data 
to tissue classes is a function that is hard to analyze, the 
computed tissue maps are a concept which is easy to 
understand and can be efficiently verified by experts as an 
intermediate step. After verification, the tissue maps are 
used to compute meta-features to extract clinically/research 
relevant parameters of the tumor and its composition.

A first set of features simply summarizes the absolute 
area of a tissue class with label-id i ϵ {0, 1, …, L – 1}, given 
L distinct classes

f I x y i I x y i
P x y i

i
abs

x y

( ) = ( ) ( ) =
=
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,
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0
if

else

where P(x, y) is the prediction (or average prediction 
in the probabilistic case) of the network. The tissue area is 
then defined as summation of all major classes, omitting 
artifacts and background

A fi
i

= ∑
Relative measures of the tissue classes are computed 

as ratio of pixels per class divided by the tissue area.

f f
Ai

rel i
abs

( )
( )

=

Furthermore, we can relate the absolute or relative 
measures of the tissue to the corresponding isotype, by 
subtracting the respective isotype measure. Thus, this type 
of measure characterizes deviations in a feature under 
treatment conditions

∆ = −∗ ∗ ∗f f fi i i , ,isotype

wherein * indicates either relative (rel) or absolute 
(abs) features. These features mainly target an analysis of 
H&E-stained tissue. However, immunohistochemical 
stains can be treated in a similar way by measuring the 
positive class, typically in diaminobenzidine brown, and 
by normalizing it with the number of pixels of the counter-
stain, typically hematoxlyin-blue. Note that this feature, as 
well as the total area A, can be related to the isotype in the 
fashion of ∆ ∗fi  as well.

Diagnostic decision support

A selection of the proposed features is used to 
support the clinical/research relevant decision if the TME 
is influenced by the treatment. Applicable features are 
concatenated into a vector and are used in conjunction to 
learn the difference between the parameters of responsive 
and non-responsive tumor models. Furthermore, we 
utilize two-dimensional subspaces of selected features 
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to visualize decision boundaries of machine learning 
algorithms in the dataset. Since the individual features 
extend to rather different numeric ranges, we apply a 
min-max-normalization before the training of a Naive 
Bayes Classifier [8] for the visualization, or in case of 
the evaluation in later experiments a K-Nearest-Neighbor 
(KNN) classifier [7]. For the visualization, we decided for 
a Naïve Bayes approach as its decision boundaries have 
a simple structure and an inherently probabilistic nature 
resulting in smooth transitions between the class areas. 
In contrast, visualizations of a KNN algorithm (with K 
> 1) tend to result in decision boundaries, or probability 
plateaus, with the data rendered close-to, but not inside, 
the respective class area which appears counter-intuitive 
despite very good results in a cross-validation.

CONCLUSIONS

The proposed deep learning pipeline competes with 
state-of-the-art architectures at a F1-score of approximately 
83% on a histological dataset. Differences between the 
networks are visible in the computational efficiency 
regarding processing time and memory consumption and 
correspond to the design choices as expected. Sampling 
multiple predictions at inference time using dropout 
mechanics provides relevant insights to the network 
behavior and options to compensate the observed systematic 
BLC – NEC confusion semi-automatically. In practice, the 
relative tissue area requiring correction was rather low 
(approx. 2%) which might indicate that the network already 
operates close to an inter-observer-variability boundary.

With a high relevance for research and clinical 
applications, the proposed image analysis pipeline facilitates 
the quantification of important biomedical markers in a non-
destructive and therefore reproducible experimental setup. 
Deep learning features own a reputation of being hard to 
interpret. We partially circumvent this by computing an 
intermediate tissue map as a human-understandable and 
verifiable source of meta-features. These meta-features 
have shown to characterize properties of TMEs realistically 
and provide useful predictions in a machine-learning based 
decision support setting.

Future co-registration of H&E and IHC images 
would enable region-specific features measuring the 
co-localization of immune cells and tissue classes as a 
promising application case for this analysis.
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