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Mammals dominate modern terrestrial herbivore ecosystems, whereas extant

herbivorous reptiles are limited in diversity and body size. The evolution of rep-

tile herbivory and its relationship to mammalian diversification is poorly

understood with respect to climate and the roles of predation pressure and com-

petition for food resources. Here, we describe a giant fossil acrodontan lizard

recovered with a diverse mammal assemblage from the late middle Eocene

Pondaung Formation of Myanmar, which provides a historical test of factors

controlling body size in herbivorous squamates. We infer a predominately her-

bivorous feeding ecology for the new acrodontan based on dental anatomy,

phylogenetic relationships and body size. Ranking body masses for Pondaung

Formation vertebrates indicates that the lizard occupied a size niche among the

larger herbivores and was larger than most carnivorous mammals. Paleotem-

perature estimates of Pondaung Formation environments based on the body

size of the new lizard are approximately 2–58C higher than modern. These

results indicate that competitive exclusion and predation by mammals did not

restrict body size evolution in these herbivorous squamates, and elevated temp-

eratures relative to modern climates during the Paleogene greenhouse may

have resulted in the evolution of gigantism through elevated poikilothermic

metabolic rates and in response to increases in floral productivity.
1. Introduction
Modern terrestrial herbivore ecosystems are dominated by mammal faunas that

originated with the evolution of ungulate folivores during the middle Eocene

[1]. Conversely, herbivory is comparatively rare among extant squamates [2].

Squamates do not efficiently metabolize plant matter compared with mammals

[3], and digestion requires elevated body temperatures which are correlated to

large body size [2,4–6] and restriction to tropical climates for most taxa [7].

The relative roles of physiology and ecological pressures from mammals as

constraints on upper body size limits of herbivorous lizards are unknown, how-

ever. Direct and indirect interactions with ungulates and carnivorans are known

to limit distribution and densities of carnivorous squamates [8–10] and the lar-

gest extant herbivorous reptiles only occur in insular, mammal-free habitats

[3,11], suggesting competitive exclusion or predation pressure may limit maxi-

mum body sizes. Conversely, squamate body size can be affected by ambient

temperature and food resources [3,12], and maximum body sizes of extant

taxa may be limited by Holocene climatic maxima.

Fossil squamates generally demonstrate similar size and diversity patterns as

extant herbivores during the Cenozoic, but the squamate fossil record is poorly

sampled and generally restricted to the mid and high latitudes of North America
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Figure 1. Barbaturex morrisoni gen. et sp. nov. (a – d) Holotype (UCMP 142227), right dentary in medial (a), dorsal (b), lateral (c) and ventral (d ) views; (e – h)
NMMP-KU 1923, left dentary (retrodeformed cast) in lateral (e), dorsal ( f ), medial (g) and ventral (h) views; (i – j) NMMP-KU 1925, right dentary (cast) in lateral (i)
and medial ( j ) views; (k) UCMP 130290, posterior dentary tooth, in labial view; (l – m) UCMP 130292, parietal, in (l ) dorsal, ventral (m) views; (n – p) UCMP
170491, left anterior dentary in lateral (n), dorsal (o) and medial ( p) views. Abbreviations: Caf, articular facet for coronoid; Iaf, inferior alveolar foramen; Mg,
Meckelian groove; Pd, pleurodont dentition; Pp, parietal process of frontal; Spl, splenial; Vr, ventral ridges; Wf, wear facets.
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and Europe [13–16]. The relative paucity and geographical

restriction of the squamate fossil record confounds efforts to

examine the historical relationship between body size and

environment relative to faunal competition, climate and histori-

cal contingency in poikilothermic herbivores.

Here, we describe a giant acrodontan lizard from the rich,

low-latitude vertebrate fossil record of the late middle Eocene

Pondaung Formation of central Myanmar that includes

a diversity of eutherian mammals, turtles, squamates and cro-

codylians recovered from siliciclastic sediments representing

fluvial depositional environments [17–21]. Analysis of the

new acrodontan’s inferred diet and estimated body mass in

the context of the co-occurring fauna and in comparison to

modern vertebrate communities allows us test the relative

influences of mammalian competition versus climate regime

as a regulating mechanism of herbivorous reptile body size

by examining herbivore community structure in past and pre-

sent vertebrate ecosystems and by estimating minimum

paleotemperatures necessary to support a giant poikilothermic

herbivore based on the mass-specific metabolic relationship

between body size and climate in living herbivorous lizards.
2. Systematic paleontology
Squamata Oppel 1811

Iguania Cuvier 1817

Acrodonta Cope 1864 sensu Estes et al. 1988

Barbaturex morrisoni gen. et sp. nov.

(a) Etymology
Barbatus (L) ‘bearded’ þ rex, ‘king’, referring to the presence of

ventral ridges along the mandible and giant size of the taxon.

Species nomen honors Jim Morrison, vocalist and lizard king.

(b) Holotype
UCMP 142227 (University of California Museum of

Paleontology), partial right dentary (figure 1a–d).

(c) Referred specimens
UCMP 128388, anterior dentary; UCMP 128410, 130290,

130291, partial left dentaries; UCMP 130292, fused frontals
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Figure 2. Temporally calibrated phylogenetic interrelationships of Barbaturex
morrisoni relative to extant agamids based on morphological and molecular
data [2,27]. Interrelationships of Chamaeleonidae is based on [25]. Thick ver-
tical lines indicate known stratigraphic ranges. Name shades for extant taxa
indicate feeding ecology: grey, predominately insectivory/carnivory; black,
omnivory; bold, herbivory. First stratigraphic occurrence for agamines is
from [28], Physignathus from [29], Chamaeleonidae from [30] and Uromas-
tycinae from [31]. Divergence timing for the agamid total clade is from [32],
Leiolepis is from [24].
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assigned to the taxon on the basis of size; NMMP-KU

0092, partial left dentary; NMMP-KU 1923, partial left

dentary; NMMP-KU 1924–1926, partial right dentaries [20]

(figure 1e–p).

(d) Locality and horizon
The type locality is UCMP V96009, a locality number used to

designate a stratigraphically low purple mudstone under-

lying red beds at Thandaung kyitchaung [18,22], Pondaung

Formation, northwest of Mogaung village, Sagaing District,

Myanmar. Fossil-bearing beds of the Pondaung Formation

near the village of Bahin have been dated to 37.2+1.3 Ma.

[23]. Referred specimen localities are UCMP V96009,

V78090, PGN1, Kdw-42 (Kyawdaw area, [21]), Mgg-53A, B

(Mogaung area, [21]), Tmk-35, Pondaung Formation, Sagaing

District, Myanmar.

(e) Diagnosis and description
Large bodied acrodontan lizard (approx. 100 cm snout-vent

length¼ SVL) with a mandibular dental formula of two

anterior pleurodont teeth and more than 10 mid- and posterior

acrodont teeth. Posterior teeth are triangular with continuous

wear facets, and lack accessory cusps (figure 1e,k). Wide, tall,

anteromedially oriented ridges are present on the ventral

margin of the anterior mandible (figure 1a–j), the dentary pos-

sesses a deep ventral extension below the Meckelian groove

(figure 1a,g,j), the angular is fused to the dentary (see the

electronic supplementary material, figure S1), the inferior

alveolar foramen is formed by the dentary dorsally and sple-

nial ventrally (figure 1j), the posterior mylohyoid foramen is

absent, the Mecklian groove passes ventrally beneath the pos-

terior margin of the mandibular symphysis, the anterior

margin of the coronoid articular facet is just posterior to last

tooth position (figure 1a,g,j), the parietal processes of the fron-

tal are reduced and contribute less than 50 per cent of the

posterior orbital margin (figure 1l,m). Additional descriptions

are provided in the electronic supplementary material.
3. Material and methods
(a) Phylogenetic analysis
Molecular and morphological data provide disparate hypotheses

of the interrelationships of acrodontans, which limit the ability to

resolve the phylogenetic status of fossil taxa [24]. To determine

the interrelationships of Barbaturex to extant acrodontans sensu
[25], we coded all preserved characters for the only extensive mor-

phological phylogenetic analysis of constituent taxa [26]. Because

Barbaturex remains preserve only a small fraction of described

characters (5/122), we estimated the phylogenetic position of

the taxon by optimizing character distributions onto tree topolo-

gies derived from combined morphological and molecular

sequence data [2,27] (figure 2) and only molecular sequence data

[33,34] (see the electronic supplementary material, figure S2).

Phylogenetic position of Barbaturex was estimated by optimizing

character distributions using Mesquite v. 2.75 [35]. Character cod-

ings for Barbaturex based on the matrix of [26] are as follows: 57(1),

58(0), 59(0), 65(2), 66(0).

(b) Body size estimation
We estimated maximum body size measured as SVL in mm for

Barbaturex by reduced major axis linear regression of natural

log transformed measurements of SVL onto natural log
transformed dentary lengths measured in a straight line from

the anterior tip of the element to the posterior margin of the lat-

eral coronoid process in mm for extant acrodontans (see the

electronic supplementary material, table S1) using PAST v. 2.16

[36]. The resultant equation (LN SVL ¼ 1.115*LN dentary

length þ 1.34, R2 ¼ 0.89) was used to estimate body mass

based on the general lizard SVL-mass equation of BM ¼

0.031*SVL2.98 [4].

(c) Body mass comparisons
To examine the status of Barbaturex within the Pondaung ver-

tebrate fauna, we ranked body masses of terrestrial herbivores,

omnivores and carnivores and compared them to ranked masses

for extant faunas that include the largest extant herbivorous squa-

mates. Body masses were obtained from literature references (see

the electronic supplementary material, tables S2–S5). Taxonomic

and geographical range data for all extant mammals for compari-

sons with living herbivorous squamates is from [37], and body

masses are from [38]. Maximum body mass reports and estimates

for the largest extant herbivorous squamates, as well as Pondaung

Formation mammalian body masses, are listed in the electronic

supplementary material. Island endemic squamates [39,40] from

faunas lacking folivorous mammals could not be compared with

the Pondaung fauna, and completely arboreal, nocturnal and gran-

ivorous mammal taxa were not included in this analysis as their

ecologies are not directly comparable to the examined squamates.

(d) Paleotemperature estimation
Body size scales predictably with environmental temperature for

a given mass-specific metabolic rate in poikilotherms [41,42].
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We derived paleotemperatures as minimum mean annual temp-

erature (MAT) for the Pondaung Formation from body size

estimates of Barbaturex based on the relationship between SVL

and minimum MAT for the largest living herbivorous squamates

(see the electronic supplementary material, table S6) using the

metabolic scaling equation from [42]:

MAPT = MAT + 3a100C
log10(SVLB/SVLC)

log10Q10

� �
;

where MAPT is mean annual paleotemperature, SVLB is SVL for

Barbaturex, SVLC is SVL for Cyclura nubila, MAT is minimum

mean annual temperature within the geographical range of

C. nubila (24.68C), a is the metabolic scaling exponent of 0.33

[41], and Q10 is a mass-specific metabolic rate of 2–3 for reptiles

[43]. We use C. nubila because it is the largest extant herbivorous

lizard [5,7] and scaling the size-temperature model on it best fits

the size-temperature distributions for other herbivorous taxa

(figure 4).
 20130665
4. Results and discussion
We assign Barbaturex to crown Acrodonta relative to priscaga-

mines and more fragmentary stem taxa based on the character

combination of reduced numbers of pleurodont anterior teeth,

acrodont cheek dentition with deep, continuous interdental

grooves and reduction of the splenial to the posterior region

of the dentary [25,26,44–46]. Character optimization results

in monophyly of Barbaturex þ Uromastycinae for both mor-

phological and molecular topologies, with tree lengths one to

two steps shorter than all other alternate topologies based on

the morphological þmolecular scaffold (figure 2) and two to

four steps shorter on the molecular scaffold (see the electronic

supplementary material, figure S2). Character support for this

hypothesis includes the absence of the posterior mylohyoid

foramen and the ventral orientation of the Meckelian groove

at the anterior tip of the dentary (figure 1p). The presence of

two pleurodont dentary teeth [32] and a shortened parietal pro-

cess of the frontal are additionally shared by the clade

consisting of Uromastycinae, Barbaturex, and Leiolepis (figure 2).

The stratigraphic occurrence of Barbaturex is consistent with

our hypothesis of interrelationships (figure 2). The oldest fossil

records of unambiguous crown acrodontans consist of uro-

mastycines from the early Eocene of Europe and Asia [31,47],

Barbaturex in the late middle Eocene of Asia and possibly the

lineage including extant Leiolepis from the late Eocene of

North America [24]. The first occurrence of the clade including

agamines, draconines and amphibolurines may be early

middle Eocene [32], but the late middle Eocene age of the Pon-

daung record precedes the first occurrences of crown members

of this clade, which are early Neogene in age, consistent with

molecular divergence estimates [48].

We estimate a SVL of 981 mm+107 mm, and a mean

body mass of 26.7 kg (range of 36.9–18.9 kg) for Barbaturex
based on the relationship of dentary length to body size

in extant taxa. Barbaturex was over twice as long as the largest

extant agamid [7], and estimated body sizes are larger than

all extant and known fossil terrestrial lizards with the excep-

tion of extant Varanus komodoensis [49] and extinct V. priscus
and Chianghsia nankangensis [50–53].

Body size, dental morphology and phylogenetic rela-

tionships of Barbaturex allow for inference of feeding ecology.

Large body size is correlated to herbivory in squamates

[5,54], except for the largest varanids, which are carnivores
[10,55,56]. Barbaturex lacks dental adaptations for carnivory

including recurved, serrated and laterally compressed teeth

[57]. Instead, it possesses an acrodont dentition with precise

shearing occlusion as indicated by continuous wear facets on

mandibular dentition (figure 1). The same occlusal mechanism

facilitates herbivory in extant agamids [58,59], and tooth crown

morphology in Barbaturex is most similar to herbivorous adult

Hydrosaurus. Herbivorous agamids will consume animal

protein [60], and omnivorous agamids consume both plants

and insects [61]. It is probable that Barbaturex would have

opportunistically preyed on invertebrates; however, prey

size scales with body size in carnivorous lizards, including

iguanians [62] and large body size in Barbaturex probably

precluded insectivory as a major component of feeding

ecology, at least in mature individuals. The phylogenetic inter-

relationships of Barbaturex relative to crown agamids are also

consistent with herbivorous feeding habits. Optimization of

feeding habits on crown acrodontan phylogeny demonstrates

that Barbaturex is nested within an omnivorous to herbivorous

clade as the sister taxon to fully herbivorous Uromastycinae

and bracketed by omnivorous Leiolepis (see figure 3 and

electronic supplementary material, figure S2).

Body mass of Barbaturex falls approximately in the middle

of size ranges for the Pondaung ungulate guild (figure 3a),

and is larger than estimated body masses [63] for the smal-

ler perissodactyls and most artiodactyls. The position of

Barbaturex within the body mass distribution of the Pondaung

vertebrate fauna is unique relative to extant herbivorous squa-

mates. In all three examined modern faunas, there is no overlap

in body mass between ungulate herbivores and squamates.

Instead, squamate body masses are far smaller and fall

within a range of carnivorous mammals, omnivores and non-

ruminant herbivores for all modern faunas, including those

from open, xeric environments (figure 3b), and both dry and

wet forested environments (figure 3c,d). Difference in body

size of Barbaturex relative to extant lizards cannot be explained

by differences in ungulate body mass because Pondaung ungu-

lates are both larger and smaller than extant taxa. Instead, body

mass overlap between Barbaturex and Pondaung Formation

mammals indicates that direct competitive exclusion or preda-

tion pressure did not restrict body size of these herbivorous

squamates, despite differences in metabolic rate and dietary

efficiency between poikilothermic and homeothermic herbi-

vores. Similarly, indirect depression of biomass and diversity

in extant squamates by environmental modification of ungu-

lates does not appear to have been present in the Pondaung

ecosystem based on both size and numbers of recovered

specimens of Barbaturex.

Based on the relationship of maximum body size to mini-

mum MAT in extant herbivorous squamates, Barbaturex at

981 mm SVL would require minimum MATs of 27.0–28.48C
(range¼ 26.0–29.98C for SVL range of 874–1088 mm) to main-

tain efficient metabolism (figure 4). The late middle Eocene was

an interval of cooling from the Middle Eocene climatic opti-

mum [64], but included ice-free poles and extremely warm

sea surface temperatures (SSTs) of 22.4–20.58C at 658S [65]

during the temporal interval spanning the radiometric age esti-

mates of the Pondaung Formation [23]. Model latitudinal SST

gradients for the middle Eocene indicate higher SSTs by 68C
relative to modern at a paleolatitude of 138 N [65, figure 3], con-

sistent with MAT differences of approximately 2–58C for

Myanmar in the region of locality UCMP V96009 between

the late middle Eocene and modern [66].
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Figure 3. Ranked body masses of Pondaung Formation vertebrates compared with ranked masses of modern faunas that include the largest extant herbivorous
squamates. (a) Barbaturex morrisoni, Pondaung Formation, Myanmar; (b) Uromastyx aegypticus, North Africa and Middle East; (c) Hydrosaurus amboinensis, Philippines;
(d) Ctenosaura similis, Central America. Colours are: black, ungulates; grey, carnivorous mammals; green, squamates; white, insectivores and non-ungulate herbivores.
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Elevated middle Eocene MATs would have allowed for

the evolution of large body sizes for a given mass-specific meta-

bolic rate, as inferred for other giant early Paleogene squamates

[42], and would have resulted in greater floral productivity than

modern ecosystems at low latitudes [67]. Larger body sizes pro-

duce increased thermal inertia and may have resulted in

elevated temperature-dependent metabolic processes, includ-

ing digestive efficiency and nutrient uptake [68]. Increased

plant productivity affects body size in extant herbivorous igua-

nians [69], and the comparatively wider range of Pondaung

Formation ungulate body mass relative to modern faunas also

suggests high primary productivity (figure 3).

Convergent gigantism in Barbaturex and other Cenozoic

squamates [42,53] as components of diverse vertebrate eco-

systems demonstrates a greater past ecological breadth and

diversity than expected from surveying extant herpetofaunas.

These discoveries indicate that hypotheses of competitive advan-

tage in extant mammals due to elevated metabolic processes are

probably artefacts of modern climate and should not be used as

models for inferring historical patterns of diversification and

dominance in non-analogue deep time climates.
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en Europe. Mèm. Mus. Natn. Hist. Nat. 192, 1 – 399.

15. Smith KT. 2009 A new lizard assemblage from the
earliest Eocene (zone Wa0) of the Bighorn Basin,
Wyoming, USA: biogeography during the warmest
interval of the Cenozoic. J. Syst. Palaeo. 7,
299 – 358. (doi:10.1017/S1477201909002752)

16. Smith KT. 2011 The evolution of mid-latitude faunas
during the Eocene: late Eocene lizards of the
Medicine Pole Hills reconsidered. Bull. Peab. Mus.
Nat. Hist. 52, 3 – 105. (doi:10.3374/014.052.0101)

17. Tsubamoto T, Egi N, Takai M, Shigehara N, Aung
AK, Thein T, Soe AN, Tun ST. 2000 A preliminary
report on the Eocene mammals of the Pondaung
fauna, Myanmar. Asian Paleoprimatol. 1, 29 – 101.

18. Hutchison JH, Holroyd PA, Ciochon RL. 2004 A
preliminary report on Southeast Asia’s oldest Cenozoic
turtle fauna from the late middle Eocene Pondaung
formation, Myanmar. Asiatic Herp. Res. 10, 38 – 52.

19. Head JJ, Holroyd PA, Hutchison JH, Ciochon RL.
2005 First report of snakes (Serpentes) from the late
middle Eocene Pondaung formation, Myanmar.
J. Vert. Paleontol. 25, 246 – 250. (doi:10.1671/0272-
4634(2005)025[0246:FROSSF]2.0.CO;2)

20. Tsubamoto T, Egi N, Takai M. 2006 Notes of fish,
reptilian, and several fragmentary mammalian
dental fossils from the Pondaung Formation. Asian
Paleoprimatol. 4, 98 – 110.

21. Tsubamoto T et al. 2006 A summary of the
Pondaung fossil expeditions. Asian Paleoprimatol. 4,
1 – 66.

22. Gunnell GF, Ciochon RL, Gingerich PD, Holroyd PA.
2002 New assessment of Pondaungia and
Amphipithecus (Primates) from the late middle
Eocene of Myanmar, with a comment on
‘Amphipithecidae’. Contrib. Mus. Paleo. Univ. Mich.
30, 337 – 372.

23. Tsubamoto T, Takai M, Shigehara N, Egi N, Soe
Thura T, Aung AK, Maung M, Dahhara T, Suzuki H.
2002 Fission-track zircon age of the Eocene
Pondaung Formation, Myanmar. J. Hum. Evol. 42,
361 – 369. (doi:10.1006/jhev.2001.0543)

24. Smith KT. 2011 On the phylogenetic affinity of the
extinct acrodontan lizard Tinosaurus. In Tropical
vertebrates in a changing world (ed. K-L
Schuchmann), pp. 9 – 27. Bonn, Germany:
Zoologisches Forschungsmuseum Alexander
Koening.

25. Gauthier JA, Kearney M, Maisano JA, Rieppel O,
Behlke ADB. 2012 Assembling the squamate tree of
life: perspectives from the phenotype and the fossil
record. Bull. Peabody Mus. Nat. Hist. 53, 3 – 308.
(doi:10.3374/014.053.0101)

26. Moody SM. 1980 Phylogenetic and historical
biogeographical relationships of the genera in the
family Agamidae (Reptilia: Lacertilia) [dissertation].
Ann Arbor, MI: University of Michigan.

27. Honda M, Ota H, Kobayashi M, Nabhitabhata J,
Yong H-S, Sengoku S, Hikida T. 2000 Phylogenetic
relationships of the family Agamidae (Reptilia:
Iguania) inferred from Mitochondrial DNA
sequences. Zool. Sci. 17, 527 – 537.

28. Pickford M, Andrews P. 1981 The Tinderet Miocene
sequence in Kenya. J. Hum. Evol. 10, 11 – 33.
(doi:10.1016/S0047-2484(81)80023-1)
29. Covacevich J, Couper P, Molnar RE, Witten G, Young
W. 1990 Miocene dragons from Riversleigh: new
data on the history of the family Agamidae
(Reptilia: Squamata) in Australia. Mem. Queens.
Mus. 29, 339 – 360.
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