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Abstract: Pharmacological profile of phytochemicals has attracted much attention to their use
in disease therapy. Since cancer is a major problem for public health with high mortality and
morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural
products. Flavonoids comprise a large family of natural products with different categories. Chrysin
is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great
potential in treating different disorders, due to possessing biological and therapeutic activities,
such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years,
the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a
mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different
cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of
transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin
are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents
and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks
of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc.
This updated review will provide a direction for further studies in evaluating the anti-tumor activity
of chrysin.

Keywords: chrysin; cancer therapy; nanoparticle; flavonoid; chemotherapy

1. Introduction

Average living standards and access to sufficient healthcare have led to an increase in life
expectancy in most regions of the world [1,2]. Although communicable disease-related deaths have
been reduced as a result of medical improvements, we have witnessed a 40% increase in cancer-related
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deaths in recent years. It seems that the number of patients with cancer will increase in the future,
and there will be up to 13 million cancer-related deaths by 2030. There are different problems in
providing effective cancer therapy, such as the insufficiency of currently applied treatments, lack of early
diagnosis, and poor understanding of signaling networks involved in cancer malignancy. In spite of
significant attempts in knowing factors contributing to cancer progression, there is not still an effective
treatment for cancer [3–5]. This is due to the fact that each cancer type has its own features; for instance,
cancer cells are different in terms of proliferation, metastasis, and dependence on molecular pathways.
Furthermore, cancer cells can obtain resistance to currently applied chemotherapeutic agents [6,7].
Therefore, a novel agent capable of suppressing cancer growth and metastasis and preventing drug
resistance is important. In the present review, we aim to reveal the anti-tumor activity of chrysin, as a
naturally occurring compound against different cancers. We discuss the various molecular pathways
that are affected by chrysin in cancer to direct further studies for investigating more signaling networks.
In addition, we describe the role of chrysin in overcoming drug resistance in cancer therapy, which is
a major problem in the clinic. Finally, we provide strategies in promoting the anti-tumor activity of
chrysin using nanoparticles to enhance bioavailability and therapeutic effects of chrysin.

2. Role of Natural Products in Cancer Therapy

Nature is a rich source of compounds with different pharmacological activities [8–12]. The special
view towards nature is due to the presence of anti-tumor agents with low toxicity, and capable of
suppressing a wide variety of cancers [13–18]. Furthermore, natural products are more affordable
compared to synthetic drugs. It seems that newly introduced anti-tumor drugs have high similarity to
natural anti-tumor compounds. Therefore, identifying novel phytochemicals, making changes in their
structure to promote their therapeutic effect, and introducing into the market can be considered as a
new way in effective cancer therapy. Newly published experiments have clearly demonstrated the
potential of phytochemicals in cancer therapy. The proliferation of cancer cells is suppressed upon the
administration of natural anti-tumor compounds [19,20]. Apoptosis and cell cycle arrest can be induced
via p53 up-regulation [21]. Based on the fact that poor bioavailability is one of the drawbacks of
natural products, using nanoscale delivery systems can exponentially promote their anti-tumor activity
against cancer cells for both in vitro and in vivo experiments [22–24]. In cancer cells, checkpoint gene
expression enhances that provides uncontrolled growth. It has been reported that the administration
of natural products is correlated with a decrease in checkpoint expression, and subsequent decrease in
proliferation of cancer cells [25]. DNA damage, as well as the activation of both intrinsic and extrinsic
pathways of apoptosis, occur during natural product administration in cancer therapy [26]. It is
worth mentioning that naturally occurring compounds can promote the efficiency of chemotherapeutic
agents in cancer therapy [27–29]. For instance, quercetin sensitizes prostate cancer cells to paclitaxel
chemotherapy by enhancing reactive oxygen species (ROS) production, stimulation of endoplasmic
reticulum (ER) stress, and activation of apoptosis [30]. Molecular pathways. such as MAPK and JNK,
are regulated by natural products in apoptosis induction [31]. In addition to proliferation, migration,
and invasion of cancer cells can be negatively targeted by natural products [32–34]. Increasing evidence
confirms the role of epithelial-to-mesenchymal transition (EMT) in cancer metastasis [35–37]. Natural
products are capable of suppressing the migration of cancer cells by EMT inhibition via down-regulation
of upstream molecular pathways, such as Snail and STAT3 [38–40].

Taking everything into account, studies agree with the fact that natural products are versatile
compounds in cancer therapy, and due to their capacity in targeting various molecular pathways in
cancer therapy [41–45], they can be considered as potential agents in the field of cancer therapy. In the
next sections, we focus on chrysin as an efficient anti-tumor agent in different cancers.

3. Chrysin: An Overview of Chemistry, Sources, and Pharmacokinetics

Flavonoids are the largest group of plant secondary metabolites with favorable health-promoting
effects [46–49]. The interest in flavonoids has been increased, since these valuable compounds act
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through various physiological mechanisms and affect a wide variety of signaling networks. Dietary
intake of flavonoids is estimated to be 50 and 800 mg per day [50,51]. Chrysin is a hydroxylated
flavonoid belonging to flavone class, and is extensively found in sources, such as honey, propolis,
and plant species [52,53]. Noteworthy, chrysin occurs in natural sources with different concentrations.
For instance, the concentration of chrysin in honeydew honey is 0.10 mg/kg, while it has a higher
concentration (5.3 mg/kg) in forest honeys [54]. The content of chrysin in propolis is estimated to be
25 g/L [55]. Chrysin concentration in mushrooms is at the range of 0.17–0.34 mg/kg [56]. The IUPAC
name of chrysin is 5,7-dihydroxy-2-phenyl-4H-chromen4-one and 5,7-dihydroxyflavone. Figure 1
demonstrates the chemical structure of chrysin. The chrysin structure has similarities and differences
with the flavonoid family. Structurally, chrysin has two benzene rings (A and B) with one oxygen
consisting of a heterocyclic ring. Chrysin lacks a 3-carbon hydroxyl group, but it has 2–3 double-bound
carbon with a carbonyl group attached to 4th carbon. The chemical structure of chrysin demonstrates
that it has –OH group at 5th and 7th carbon atoms. There is a difference in the structure of chrysin and
other flavonoids, so that chrysin does not possess any oxygenation in ring B (Figure 1). It has been
reported that changes in ring A of chrysin account for the generation of different derivatives of chrysin,
such as wogonin, baicalein, and oroxylin [57].
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Accumulating data demonstrates that poor absorption, rapid metabolism, and systemic elimination
are responsible for poor bioavailability of chrysin in humans that, subsequently, restrict its therapeutic
effects [58]. It is worth mentioning that oxidation in intestinal and hepatic cells is not responsible for
the metabolism of chrysin in the body. In contrast, conjugation pathways, such as glucuronidation
and sulfation catalyze chrysin. Enzymes, such as P-PST, M-PST, and UGT1A6, contribute to the
metabolism of chrysin, and their high affinity for chrysin can justify the poor bioavailability of this
natural compound. Clinical studies have shown that the plasma concentration of chrysin following
oral administration is very low [59]. Notably, serum concentrations of chrysin have not been reported
yet, but it can be predicted based on other flavonoids. Since flavonoid aglycones demonstrate serum
concentration as low as 1 µmol/L [60], the serum concentration of chrysin would be at the range
of nanomolar. The studies related to the absorption of chrysin demonstrate that its sulfation and
glucuronidation limit the absorption of this valuable compound in the intestine. MRP2 transporters
are involved in the efflux of chrysin metabolites from the intestine, and in the lumen, sulfatases and
glucuronidases hydrolyze metabolites into chrysin. This leads to the emergence of chrysin in stool,



Biomolecules 2020, 10, 1374 4 of 39

but high contents of chrysin in stool demonstrates that it has low absorption [61]. Some strategies have
been applied in promoting bioavailability and absorption of chrysin, such as using nanoscale delivery
systems [62].

4. Chrysin and Its Pharmacological Activities

In previous sections, we provided explanations about the role of natural products in cancer therapy,
and then, we introduced the chemistry and pharmacokinetics of chrysin. In this section, we aim to
describe the pharmacological activities of chrysin, based on the newly published article—which is
summarized in Table 1.

Increasing evidence demonstrates that chrysin possesses health-promoting effects, including
antioxidant [63,64], anti-inflammatory [65], anti-diabetes [66], neuroprotective [67], hepatoprotective [68],
cardioprotective [69], lipid-lowering effect [70], etc. These therapeutic effects have made chrysin as
a suitable option in disease therapy. Non-alcoholic fatty liver disease (NAFLD) is one of the most
common metabolic disorders, and to date, natural products have shown great potential in the alleviation
of NAFLD. Similarly, a recently recorded article has revealed that chrysin administration (25, 50,
and 100 mg/kg) alleviates NAFLD in rats via reducing serum fasting glucose that subsequently
improves insulin resistance and dyslipidemia. Noteworthy, chrysin can significantly diminish liver
weight by reducing hepatic free fatty acids, triglyceride, and cholesterol content. Anti-inflammatory
and antioxidant activities of chrysin are also involved in the amelioration of NAFLD via decreasing
lobular inflammation, steatosis, and carbonyl content [71]. Many reports demonstrate that chrysin
can be beneficial in reducing acetaminophen-mediated hepatotoxicity in rats. In this regard,
chrysin reduces levels of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α)
and interleukin-2 (IL-2). The ameliorative effect of chrysin on acetaminophen-mediated hepatotoxicity
seems to be dose-dependent with more therapeutic effects at higher concentrations [72]. In addition to
hepatoprotective activity, chrysin has shown potential neuroprotective effects. One of the complications
causing neuronal cell death is ischemic-reperfusion (I/R) injury. Inflammation and oxidative stress
are two main mechanisms involved in I/R injury [73–75]. Chrysin administration (10 and 20 mg/kg)
reduces pro-inflammatory factors (TNF-α, IL-1β, and IL-6) and oxidative stress to alleviate cerebral
I/R injury. Investigation of molecular pathways reveals that the induction of the PI3K/Akt signaling
pathway by chrysin contributes to a reduction in oxidative stress and inflammation during cerebral I/R
injury [76]. The inhibitory effect of chrysin on inflammation and oxidative stress is also important in
Parkinson’s disease (PD) treatment [77]. Chrysin (25, 50, and 100 mg/kg) improves cognitive capacity,
inflammation, and apoptosis to ameliorate traumatic brain injury (TBI) [78]. Overall, the literature
confirms the health-promoting and therapeutic effects of chrysin that are important in disease therapy,
and the effect of this valuable compound on molecular pathways (Figure 2) [79–82]. In the next sections,
we specifically discuss the role of chrysin in cancer therapy [83,84].
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Table 1. Various pharmacological activities of chrysin in treating diseases.

Therapeutic
Effect/Disease

In Vitro/
In Vivo

Cell Line/Animal
Model

Dose (In
Vivo)/Concentration

(In Vitro)

Duration of
Experiment

Administration
Route Outcomes Refs

Anti-hypertension In vivo Rat 100 mg/kg 18 weeks Oral
administration

Decreasing systolic and diastolic pressures
Reducing insulin, angiotensin II and

tiacylglycerols levels
[85]

Neuroprotective In vivo Rat 10 and 30 mg/kg 8 weeks Oral gavage
Improving memory impairment
Enhancing neuronal cell survival

Reducing hippocampal neurogenesis depletion
[86]

Neuroprotective In vivo Rat 10, 30, and 100 mg/kg 3 weeks Oral
administration

Enhancing GPx activity and number of surviving
cells in hippocampus

Reducing MDA, NO and PGE2 levels
Improving passive avoidance memory

[87]

Cardioprotective In vitro Cardiomyocyte 10, 50, and 100 µM 3 h -

Decreasing aluminium-phosphide-mediated
oxidative stress

Reducing mitochondrial damage
Improving mitochondrial function

[88]

Renoprotective
Hepatoprotective In vivo Rat 100 mg/kg - -

Reinforcing antioxidant defense system via
up-regulating GSH and SOD activities

Reducing lipid peroxidation
Decreasing inflammation via TNF-α

down-regulation

[89]

Renoprotective
Hepatoprotective In vivo Rat 25 and 50 mg/kg 7 days Oral

administration

Reducing AST, ALT, ALP, urea, creatinine, MDA
and hepatorenal deterioration

Enhancing SOD, CAT, and GPx activities
Apoptosis inhibition via Bcl-2 up-regulation and Bax

down-regulation
Reducing inflammation via NF-κB down-regulation

[90]

Anti-diabetic In vitro Chorioretinal
endothelial cells 1, 3, 10, 30, and 50 µM 24 h - Reducing Akt, ERK, MMP-2, and VEGF expressions [91]

Anti-diabetic In vivo Rat model of type I
diabetes 50 and 100 mg/kg 28 days Oral gavage Reducing oxidative stress index

Enhancing glutathione levels [92]

Gastric healing In vivo Mouse model of gastric
ulcer via ethanol 10, 50, and 100 mg/kg 7 and 14 days Oral

administration

Apoptosis inhibition via caspase-3 down-regulation
Reducing macroscopic lesions

Enhancing catalase activity
Improving inflammation via COX-2

down-regulation

[93]
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5. Chrysin and Cancer

5.1. Breast Cancer

Breast cancer is the most common and malignant cancer in women [94–96]. Recurrence
and chemoresistance have restricted the efficacy of currently applied treatment in breast cancer
therapy [97–100]. Natural products have demonstrated an excellent inhibitory effect on both
proliferation and metastasis of breast cancer [101–104]. A combination of chrysin and silibinin is
beneficial in suppressing breast cancer malignancy via decreasing cancer proliferation. Furthermore,
chrysin and silibinin induced cell cycle arrest via down-regulation of cyclin D1 and hTERT [105].
The epidermal growth factor receptor (EGFR) is considered as a potential target in cancer therapy [106].
Standard chemotherapy reduces the replication of cancer cells, but EGFR inhibitors are capable of
cancer proliferation and survival [107]. Therefore, using EGFR inhibitors, such as antibody-based
immunoconjugates, monoclonal antibodies, antisense oligonucleotides, and small molecules is preferred
to chemotherapy [108]. A new derivative of chrysin known as CHM-04 has been synthesized with
affinity to EGFR. It seems that CHM-04 is a potent inhibitor of EGFR with more efficiency compared
to chemotherapeutic agents in suppressing cancer malignancy. In triple-negative breast cancer cells
treated with chrysin, sphere formation ability, proliferation, and migration are substantially suppressed
that can be attributed to the inhibitory effect of CHM-04 on EGFR [109].

Low oxygen level is known as hypoxia, and is a common feature of solid tumors. Increasing
evidence demonstrates that hypoxia is responsible for the growth and progression of cancer cells,
and it is one of the best targets in cancer therapy [110–112]. Noteworthy, clinical studies revealed the
relationship between hypoxia and cancer progression and metastasis [113,114]. In hypoxia, vascular
endothelial growth factor (VEGF) is induced that promotes proliferation and invasion of cancer
cells. Furthermore, hypoxia adaptation is mediated by hypoxia-inducible factor-1 (HIF-1) that is an
efficient target in cancer therapy. In addition to HIF-1, other molecular pathways, such as signal
transducer and activator of transcription 3 (STAT3), play a key role in hypoxia-mediated VEGF gene
expression [115–118]. Administration of chrysin is associated with the disruption of hypoxia-induced
VEGF gene expression. Moreover, chrysin is capable of reducing STAT3 phosphorylation in hypoxic
conditions without affecting the HIF-1α protein level. In vitro and in vivo experiments agree with the
fact that chrysin is a potent agent in suppressing metastasis and proliferation of breast cancer cells
during hypoxic conditions, since chrysin abrogated lung metastasis of breast cancer cells [119].

Increasing evidence demonstrates that combination therapy is of interest in promoting the
anti-tumor activity of agents. Although chrysin has demonstrated great potential in suppressing
proliferation and metastasis of cancer cells, its anti-tumor activity can be promoted by combination
therapy. Metformin, as an anti-diabetic agent, has been applied in cancer therapy, due to its capacity in
inhibiting proliferation, metastasis, and induction of apoptosis, and cell cycle arrest [120,121]. It seems
that combination therapy of breast cancer cells using chrysin and metformin exerts a synergistic effect
and is more efficient compared to chrysin alone. Cyclin D1 and hTERT are down-regulated by chrysin
and metformin in breast cancer therapy [122].

5.2. Lung Cancer

International Agency for Research on Cancer has considered nickel as one of the carcinogenic
agents [123–125]. Exposing to nickel-containing compounds is correlated with the risk of lung cancer
development [126,127]. Enhancing ROS levels, inflammation induction, epigenetic gene regulation, and
stimulation of signaling pathways are positively affected by nickel in cancer development [128–130].
Furthermore, activation of toll-like receptors (TLRs) is associated with cancer development [131,132].
The nuclear factor-kappaB (NF-κB) signaling pathway promotes inflammation and cancer
progression [133]. A report has evaluated and compared the efficiency of five natural products, including
quercetin, chrysin, curcumin, apigenin, and luteolin. Among them, quercetin and chrysin demonstrated
the highest efficacy in lung cancer treatment. A combination of quercetin and chrysin reduced levels
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of pro-inflammatory factors, such as IL-1β, Il-6, TNF-α, and IL-10, via NF-κB down-regulation.
Furthermore, chrysin and quercetin decreased expressions of Myd88 and TLR4, as well as MMP-9,
to suppress the viability and metastasis of lung cancer cells [134].

5.3. Prostate Cancer

Prostate cancer (PC) is one of the most common cancers in men that is responsible for 21% of cancer
cases and 8% of cancer-related deaths in the United States [135–137]. Chemotherapy, radiotherapy,
and prostatectomy are strategies in PC therapy, but recurrence and resistance of PC cells are problems,
requiring novel strategies in PC therapy [138,139]. Increasing evidence demonstrates that PI3K/Akt
and MAPK signaling pathways account for an increase in proliferation and metastasis of cancer cells,
and their inhibition is important in cancer therapy [140–143]. In PC cells, chrysin down-regulates
the expression of the PI3K/Akt pathway to interrupt the proliferation of PC cells. Furthermore,
MAPK down-regulation by chrysin leads to a decrease in PC proliferation. Chrysin is able to induce
apoptosis in PC cells via mitochondrial dysfunction, so that after chrysin administration, an increase
occurs in levels of ROS that, subsequently, impairs the integrity of the mitochondrial membrane, leading
to cytochrome C release and apoptosis induction [144]. Noteworthy, in addition to mitochondria,
ER can also participate in apoptosis. The primary role of ER is to preserve cell homeostasis and ensuring
the correct conformation of proteins. ER stress occurs when levels of unfolded proteins exceed from
the capacity of ER. This leads to the activation of unfolded protein response (UPR) that, subsequently,
stimulates PRKR-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), and 78 kDa
glucose-regulated protein (GRP78) [145–148]. Chrysin administration also impairs ER homeostasis to
induce ER-mediated apoptosis in PC cells [144].

5.4. Ovarian Cancer

Ovarian cancer (OC) is the fifth leading cause of death in women, and is considered one of the
most lethal gynecologic cancers [135,149]. Based on the experiments performed in the field of OC
treatment, it seems that phytochemicals are potential therapeutic agents in this case [150,151]. In the
previous section, we discussed that mitochondrial dysfunction leads to apoptosis induction [152].
Upon chrysin administration, an increase occurs in levels of ROS and cytoplasmic Ca2+ that mediate
apoptosis induction in OC cells [153]. However, this study provides controversial results about
the role of molecular pathways that needs to be explored in further studies. Accumulating data
demonstrates that the PI3K/Akt signaling pathway contributes to cancer proliferation and metastasis.
PI3K/Akt inhibition has been suggested in different experiments as a promising strategy in cancer
therapy [154–156]. However, a previous study has shown that chrysin suppresses OC malignancy via
PI3K/Akt and MAPK induction [153]. Therefore, further studies are required to shed some light on
this area.

5.5. Gastric Cancer

Gastric cancer (GC) is the third leading cause of cancer death, with 783,000 deaths in 2018 [157–160].
Different factors are involved in GC progression, and ten-eleven translocation (TET) enzyme is one of
them. TET enzymes contribute to the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine
(5hmC) and participate in epigenetic modification [161]. Studies show the role of TET enzymes in GC
development. For instance, TET1-mediated demethylation stimulates the aggressive behavior of GC
cells [162]. TET2 exerts RASSF1A methylation to affect malignant cell activity [163]. Furthermore,
down-regulation of TET3 has been shown in GC [164]. The effect of chrysin on GC cells has been
investigated in vitro and in vivo. In MKN45 cells, chrysin promotes the expression of TET1 and 5hmC
to stimulate apoptosis and disrupt migration and invasion of GC cells. Furthermore, TET1 deletion by
CRISPR/Cas9 system in a mouse model leads to the development of GC, and chrysin administration
can be considered as a promising strategy in GC suppression [165].
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One of the properties of phytochemicals is their capability to regulate microRNA (miR)
expression [166,167]. Briefly, miRs are non-coding parts of the genome that are not transcribed
into protein [168]. Cellular mechanisms, such as proliferation, migration, differentiation, etc., are tightly
regulated by miRs [169]. Disturbance in miR expression leads to the emergence of pathological
conditions, particularly cancer [170,171]. Chrysin is capable of promoting the expression of miR-9 and
Let-7a as onco-suppressor factors in cancer to inhibit the proliferation of GC cells. Using nanoparticles
can significantly promote the ability of chrysin in enhancing miR-9 expression [172].

5.6. Cervical Cancer

Cervical cancer is one of the most common malignancies diagnosed in women [173–175].
Chronic infection with high-risk human papillomavirus and inherited polymorphism of cytokine genes
are involved in cervical cancer emergence [176–180]. Hence, enhanced levels of cytokines participate in
cervical cancer progression. Furthermore, EMT-related metastasis provides a poor prognosis of patients
with cervical cancer [181]. Hence, anti-tumor compounds with a modulatory effect on inflammation can
be beneficial in suppressing cervical cancer metastasis. Exposing cervical cancer cells into transforming
growth factor-beta (TGF-β) is associated with enhanced levels of TNF-α, inflammation, and metastasis.
As a consequence of inflammation, NF-κB is activated that induces Twist/EMT axis in cervical cancer
metastasis. Chrysin (5, 10 and 20 µM) suppresses the aggressive behavior of cervical cancer cells in
a dose-dependent manner. Down-regulation of NF-κB, and subsequent decrease in Twist/EMT are
mediated by chrysin administration, negatively affecting cervical cancer metastasis [182].

Scutellaria discolor Colebr is a well-known medicinal plant species with therapeutic effects
in treating different diseases [183]. There have been efforts in revealing bioactive compounds in
this plant that are responsible for its pharmacological activities, particularly cancer. It has been
reported that chrysin is the major bioactive component of this plant that provides the anti-tumor
activity against cervical cancer cells. Induction of cell cycle arrest and apoptosis via up-regulation of
caspase-3, caspase-9, and Bax are mediated by chrysin. Moreover, chrysin impairs the proper function
of mitochondria via providing mitochondrial membrane depolarization, leading to reduced viability
of cervical cancer cells [184].

5.7. Liver Cancer

Studies are in line with the fact that cancer cells are different from normal cells in terms of
metabolism [185]. Aerobic glycolysis, or the Warburg effect, is one of the hallmarks of cancer that
was first recognized in 1920 by Otto Heinrich Warburg [186]. In this process, regardless of oxygen
levels, glucose is converted into lactate to meet the needs of cancer cells into energy, leading to their
uncontrolled proliferation [187]. Different factors have been recognized to participate in changing
the metabolism of cancer cells from the Krebs cycle to glycolysis, and hexokinases (HKs) are one of
them [188,189]. A large body of evidence shows the important role of HK-2 in the Warburg effect
in different cancers [190–193]. Chrysin administration (15, 30, and 60 mM) reduces the expression
of HK-2 in hepatocellular carcinoma (HCC) cells to impair glucose uptake and lactate production.
In addition to glycolysis metabolism impairment, the inhibitory effect of chrysin on HK-2 leads to
apoptosis, so that chrysin disrupts the interaction of HK-2 and VDAC-1 on mitochondria that releases
Bax from mitochondrial into the cytoplasm, leading to apoptosis induction. Notably, tumor xenografts
treated with chrysin demonstrated a decrease in HK-2 levels in tissues [194].

The main pathway that is followed by chrysin in suppressing liver cancer survival is apoptosis
induction. In this way, chrysin substantially enhances levels of ROS that, subsequently, disturbs
mitochondrial function. Disruption in the integrity of the mitochondrial membrane leads to cytochrome
C release into the cytoplasm, resulting in apoptotic cell death [195].

Increasing evidence is in agreement with the fact that the STAT3 signaling pathway participates
in the proliferation and invasion of HCC cells [196–199]. Inhibition of STAT3 by anti-cancer agents
is important in effective HCC therapy [200–202]. In HCC cells exposed to chrysin, a decrease occurs
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in sphere formation capacity. Investigation of molecular pathways reveals that STAT3 undergoes
down-regulation upon chrysin administration. Notably, an upstream modulator of STAT3 known
as SHP-1 is up-regulated by chrysin, and consequently, it decreases expression of STAT3, leading to
inhibited sphere formation [203].

5.8. Melanoma

Melanoma is a highly resistant and malignant tumor of the skin that is responsible for about
3% of all cancer cases. Over the past decades, we have witnessed an increase in the occurrence of
melanoma. Although melanoma accounts for 4% of all skin cancer cases, its aggressiveness and
malignancy have led to comprising 80% of all deaths from skin cancer [204]. Melanoma, at the first
stages, can be treated with surgery, but in an advanced stage, it metastasizes into other sites, making its
treatment more complex [205–207]. Plant derived-natural compounds can be considered as potential
agents in melanoma therapy, due to their ability in apoptosis and cell cycle induction, and inhibiting
migration [208–210]. Chrysin is a potent agent in melanoma therapy, and this ability has been approved
in vitro and in vivo. Chrysin stimulates apoptosis and cell cycle arrest (G2/M phase) in a dose-dependent
manner. In tumor xenografts, chrysin decreases tumor growth by 60% after 14 days of treatment, while
this number enhances to 70% after 21 days of treatment. Noteworthy, in melanoma therapy, chrysin
promotes cytotoxicity activity of natural killer cells, macrophages, and cytotoxic T cells [211].

MMPs are involved in enhancing the invasion of cancer cells via extracellular matrix (ECM)
degradation [212,213]. MMP-2 and MMP-9 provide metastasis of cancer cells into distant organs
via degrading matrix collagen and basement membrane [214,215]. Chrysin (5–15 µM) suppresses
metastasis of melanoma cells via down-regulation of MMP-2. Furthermore, N-cadherin and E-cadherin
are respectively down-regulated and up-regulated upon chrysin administration in inhibiting melanoma
invasion [182]. In previous sections, we discussed the oncogene role of NF-κB and PI3K/Akt signaling
pathways in cancer. Chrysin treatment is associated with a decrease in expression of NF-κB and
PI3K/Akt to suppress melanoma proliferation [182].

5.9. Bladder Cancer

The second most common type of tract cancer in developed countries is bladder cancer. Its incidence
rate is around 400,000 cases, with approximately 160,000 death annually [135]. Chemotherapy is not
suggested in bladder cancer therapy, due to side effects and chemoresistance [216]. Novel strategies
can be developed for promoting the efficacy of chemotherapy in bladder cancer therapy, such as
using phytochemicals with anti-tumor activity [217,218]. On the other hand, molecular pathways,
such as STAT3 participate in bladder cancer progression [219]. STAT3 can individually promote
the proliferation of bladder cancer cells [220], or it may be targeted by upstream mediators, such as
Akt/ERK [221]. Administration of chrysin is correlated with an increase in ROS levels to down-regulate
STAT3 expression. Furthermore, chrysin activates the intrinsic pathway of apoptosis via caspase-3
and caspase-9 up-regulation. Anti-apoptotic factors, such as Bcl-2, Mcl-1, and Bcl-xl undergo
down-regulation by chrysin in bladder cancer cells. Notably, chrysin substantially diminishes survival
by ER stress induction via stimulating UPR, PERK, ATF4, and elF2α [222].

5.10. Colorectal Cancer

Colorectal cancer (CRC) is a heterogeneous disease with a rise in the incidence rate in recent
years. Both molecular and pathological properties determine the prognosis and response of CRC cells
into therapy [223,224]. 5-fluorouracil (5-FU) is extensively applied in treating patients with CRC, but
drug resistance and side effects have restricted its use [225,226]. Recently, chrysin has been considered
as a substitution for 5-FU in CRC therapy. Chrysin administration (5–50 µM) is associated with a
significant decrease in the viability of CRC cells [227]. An investigation into the molecular mechanisms
demonstrates that autophagy is affected by chrysin in CRC therapy. Autophagy is a “self-digestion”
process with stimulation upon stressful conditions, such as ER stress, mitochondrial damage, starvation,



Biomolecules 2020, 10, 1374 11 of 39

etc. [228,229]. Autophagic cell death is important in reducing the viability of cancer cells [230,231].
Chrysin enhances levels of light chain-3 II (LC-3II) to induce autophagy. Furthermore, by promoting
ROS generation, chrysin down-regulates the expression of the mammalian target of rapamycin (mTOR)
to stimulate autophagy, leading to a decrease in the viability of CRC cells [227].

It is worth mentioning that irradiation can improve the anti-tumor activity of chrysin against
colon cancer cells. Irradiation technology is able to promote biological properties or physical features
of biomolecules through structural modification [232–234]. Recently, chrysin and gamma irradiation
have been co-applied in colon cancer therapy. Irradiation substantially enhances the cytotoxic activity
of chrysin. This inhibitory effect against colon cancer cells is exerted via promoting ROS generation,
inducing mitochondrial dysfunction, activation of a caspase cascade (caspase-3 and caspase-9),
and stimulating cleavage of poly (adenosine diphosphate-ribose) polymerase (PARP) [235].

Peroxisome proliferator-activated receptor alpha (PPARα) is a crucial member of the superfamily
of nuclear hormone receptors with regulatory effects on migration, proliferation, metabolism,
etc. [236–239]. Increasing evidence demonstrates that using a specific ligand for stimulation of
PARPα is of interest in suppressing cancer growth [240,241]. On the other hand, cytochrome P450
(CYPs) enzymes contribute to drug metabolism and are found in different organs of the body, such
as lung, liver, etc. [242,243]. PARPα is able to regulate gene expression of CYPs, such as CYP3A4
and CYP2C8 [244]. Chrysin administration significantly enhances the expression of PARPα in cancer
cells. This leads to a significant reduction in expression of CYP2S1 and CYP1B1, leading to decreased
proliferation (cell cycle arrest) and migration of cancer cells [245].

A schematic summary on anti-tumor effects of chrysin in cancer is shown in Figure 3. Table 2 list
chrysin administration in treating various cancers.
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Table 2. Chrysin administration in treating various cancers.

Cancer Type In Vitro/
In Vivo Cell Line/Animal Model

Dose (In Vivo)/
Concentration
(In Vitro)

Period of
Experiment

Administration
Route Outcomes Refs

Prostate cancer In vitro DU145 and PC-3 cell lines 12.5, 25 and 50 µM - -

Induction of mitochondrion- and ER-mediated apoptosis
Cell cycle arrest
Down-regulation of MAPK and PI3K/Akt
signaling pathways
Impairing proliferation of PC cells

[144]

Gastric cancer In vitro
MKN45 cells
Mouse model of GC (created
by CRIPSR/Cas9)

10, 20, 40, 80 and
160 µM
20 mg/kg

12, 24 and 45 h
14 days Oral gavage

Suppressing migration
Apoptosis induction
Enhancing TET1 expression

[165]

Lung cancer In vitro A549 cells 2 and 5 µM 4 h -
Down-regulation of MyD88 and TLR4
Inhibition of inflammation via NF-κB down-regulation
Suppressing survival and metastasis

[134]

Cervical cancer In vitro HeLa cells 5, 10, 20 and 40 µM 0.5, 3, 6, 12 and
24 h -

Down-regulation of NF-κB signaling pathway
Inhibition of Twist/EMT axis
Suppressing metastasis of cervical cancer

[182]

Breast cancer In vitro T47D breast cancer cells 20, 40, 60, 80,
100 and 120 µM 48 h - Disrupting proliferation of cancer cells via down-regulation

of cyclin D1 and hTERT [105]

Hepatocellular
carcinoma

In vitro
In vivo

Normal human hepatic cell
LO2 and HepG2, Hep3B,
Huh-7, HCC-LM3, Bel-7402
and SMMC-7721
Tumor xenografts

15, 30, and 60 µM
30 mg/kg 24, 48 and 72 h Intraperitoneal

injection

Down-regulation of HK-2
Suppressing glycolysis
Apoptosis induction

[194]

Breast cancer
Cervical cancer In vitro HeLa cells

MCF-7 cells
15, 20, 25 and
30 µM 30 min -

Significant reduction in survival of cancer cells
Inducing both intrinsic and extrinsic apoptotic pathways
P53-dependent apoptosis

[246]

Ovarian cancer In vitro SKOV3 cell line 5, 10 and
20 µmol/L - -

Decreasing the viability of cancer cells in a
dose-dependent manner
Down-regulation of CK2α, CD133 and CD44
Suppressing sphere formation capability

[247]

Breast cancer In vitro MDA-MB-231 10 µM 24 and 48 h -
Inhibition of EGFR
Reducing migration, growth and sphere formation ability
of cancer cells

[109]
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Table 2. Cont.

Cancer Type In Vitro/
In Vivo Cell Line/Animal Model

Dose (In Vivo)/
Concentration
(In Vitro)

Period of
Experiment

Administration
Route Outcomes Refs

Breast cancer In vitro
In vivo

4T1 mouse breast cancer cells
Balb/c mice implanted with
4T1 cells

60–100 µM
250 mg/kg

30 min
18 days

Oral
administration

Suppressing lung metastasis
Down-regulation of VEGF, and STAT3
Inhibiting proliferation

[119]

Prostate cancer In vitro Human prostate cancer cell
line PC-3

10, 20, 30,
and 40 µM 24, 48 and 72 h -

Reducing the viability of cancer cells in a time- and
dose-dependent manner
Apoptosis induction

[248]

Cervical cancer In vitro

Human cervical epidermoid
carcinoma cell line ME180,
and human cervical
carcinoma cell lines HeLa,
BU25TK− and SiHa

0–160 mg/mL - -

Apoptosis induction via caspase-3, caspase-9, and Bax
up-regulation
Stimulating mitochondrial dysfunction
Cell cycle arrest induction

[184]

Liver cancer In vitro Hepatocellular
carcinoma cells 5–100 µM 15, 30, 45 and

60 min -
Mitochondrial dysfunction
Cytochrome c release into the cytoplasm
Apoptosis induction

[195]

Breast cancer In vitro MDA-MB-231 and
MCF-7 cells 3–12 µM - -

Reducing the viability of cancer cells
Apoptosis induction via capase-3 and caspase-7
up-regulation

[249]

Melanoma In vitro
In vivo

B16F10 cells
Melanoma-bearing mice

12.5, 25, 50,
and 100 µM
50 mg/kg

24 and 48 h
21 days -

Induction of cell cycle arrest at G2/m phase
Reducing tumor growth in vivo
Promoting the anti-tumor activity of immune cells, such as
macrophages and natural killer cells

[211]

Oral squamous
cell carcinoma In vitro Oral squamous carcinoma KB

cell line
1, 2, 4, 8, 16, and
32 µmol/L 24 h -

Suppressing proliferation in a dose-dependent manner
Apoptosis induction via capase-3 and caspase-7
up-regulation
Inducing mitochondrial dysfunction
Reducing the viability via down-regulation of PI3K/Akt
signaling pathways

[250]

Bladder cancer In vitro

Human bladder cancer cell
lines T-24 and 5637 and the
non-malignant immortalized
urothelial SV-HUC-1 cells

20, 40 and 80 µM 24 h -

Induction of ER stress via UPR activation
Stimulating intrinsic pathway of apoptosis via caspase-3
and caspase-9 up-regulation
Inhibition of STAT3 signaling pathway

[251]
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Table 2. Cont.

Cancer Type In Vitro/
In Vivo Cell Line/Animal Model

Dose (In Vivo)/
Concentration
(In Vitro)

Period of
Experiment

Administration
Route Outcomes Refs

Melanoma In vitro Human melanoma A375.S2
cell line 5, 10 and 15 µM 24 and 48 h -

Impairing metastasis via VEGF, MMP-2, and N-cadherin
down-regulation
Enhancing E-cadherin expression
Down-regulation of PI3K/Akt and NF-κB pathways in
suppressing cancer proliferation

[182]

Colorectal
cancer In vitro SW48, SW480, and SW620

CRC cells 5–50 µM 24 h -

Enhancing ROS generation
mTOR down-regulation
Elevating LC-3II levels
Autophagy induction
Impairing cancer cell viability

[227]

Breast cancer In vitro MCF-7 cells 20 and 30 µM 48 and 72 h -
Anti-proliferative activity in a dose- and time-dependent
manner
Apoptosis induction

[252]

Cervical cancer In vitro HeLa cells 0–10 µM 12–48 h - Stimulating apoptosis and cell cycle arrest
Down-regulation of COX-2 expression [253]

Colon cancer In vitro HT-29 cells 12.5, 25, 50, and
100 µg/mL - - Induction of apoptosis via mitochondrial dysfunction

Irradiation combined with chrysin exerts a synergistic effect [235]

Thyroid
carcinoma

In vitro
In vivo HTh7 and KAT18 cells 25, 50, and 75 µM

75 mg/kg
2–6 days
21 days Oral gavage Reducing the viability and growth via up-regulation of

Notch1 and its down-stream target, Hes1 [254]

Hepatocellular
carcinoma In vitro SMMC-7721 cells 10, 20 and 40 µM 24 and 48 h - Reducing sphere formation via STAT3 down-regulation [203]

Breast cancer In vitro MCF-7 cells 40 µM 8 h -
Decreasing cell viability by p53 activation through
ATM-ChK2 axis
Lack of DNA damage

[255]

Tongue
squamous cell
carcinoma

In vitro CAL-27 cells 5, 25, 55 and 80 µM 24 h - Apoptosis induction via caspase-3 and caspase-9
up-regulation [256]

Choriocarcinoma
cells In vitro JAR and JEG3 cells 0–100 µM 24 h -

Suppressing cell viability in a dose-dependent manner
Inducing cell death via promoting ROS production and
changing mitochondrial membrane potential

[257]
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Table 2. Cont.

Cancer Type In Vitro/
In Vivo Cell Line/Animal Model

Dose (In Vivo)/
Concentration
(In Vitro)

Period of
Experiment

Administration
Route Outcomes Refs

Colorectal
cancer In vitro HCT116 cells 20, 30, 40 and

50 µM 36 h -

Cell cycle arrest
Migration inhibition
PARPα up-regulation
CYP2S1 and CYP1B1 induction

[245]

Colon cancer In vitro
In vivo

CT26 cells
Allograft colon carcinoma
model

10–200 µg/mL
0–10 mg/kg

24 and 48 h
28 days

Oral
administration

Reducing tumor growth
Induction of apoptosis via caspase-3 and caspase-9
up-regulation

[258]
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6. Chrysin, Chemotherapy and Drug Resistance

Chemotherapy is an inevitable part of cancer therapy, but its potential has been restricted in
recent years, due to the resistance of cancer cells [259,260]. In fact, chemoresistance of cancer cells has
urged scientists to seek new anti-tumor agents [261]. Based on the role of natural products in cancer
treatment, they can be beneficial in sensitizing cancer cells into chemotherapy [262,263]. That is why
these valuable agents have been extensively co-administered with chemotherapeutic agents in cancer
therapy. Anti-tumor phytochemicals can suppress proliferation, metastasis, and malignant behavior of
cancer cells that are in favor of chemotherapeutic agents [102,264,265]. In this section, we provide a
discussion about the role of chrysin as a naturally occurring compound in reversing drug resistance.

Cisplatin is a well-known chemotherapeutic agent with clinical application. However, resistance is
the most important reason for treatment failure with this agent in the clinic [266,267]. Various molecular
pathways have been suggested to participate in cisplatin resistance, such as CLEC4M, miRs, lncRNAs,
etc. [268,269]. In respect to the high anti-tumor activity of chrysin, this plant derived-natural
compound can be advantageous in suppressing chemoresistance. Noteworthy, it has been reported
that selenium-containing chrysin and quercetin derivatives are potent agents in reversing cisplatin
resistance [270].

Docetaxel (DTX) is a commercially applied chemotherapeutic agent in treating lung cancer, breast
cancer, gastric cancer, etc. DTX stimulates apoptosis and cell cycle arrest via attaching β-tubulin into
microtubules and disrupting cancer growth [271]. Similar to other chemotherapeutic agents, cancer
cells are capable of obtaining resistance to DTX [272]. Moreover, the anti-tumor activity of DTX can
be improved by combinational therapy [273]. A combination of chrysin (20–100 µM) and DTX is
advantageous in suppressing the proliferation of cancer cells, and inducing growth delay in tumor
xenografts [274]. This is distributed to apoptosis induction by chrysin that, subsequently, sensitizes
cancer cells into DTX chemotherapy [274].

P53 is a key player in apoptosis induction. It stimulates apoptosis in both transcription-dependent
and transcription-independent manners. In the transcription-dependent pathway, down-stream genes
of p53 are regulated to induce apoptosis in cancer cells [275–277]. Furthermore, p53 is capable of
moving out of the nucleus, and interacting with mitochondria and its proteins, such as Bcl-2 and
Bcl-xl, in apoptosis induction [278]. In liver cancer cells exposed to chrysin and cisplatin, an increase
occurs in phosphorylation and accumulation of p53 via ERK1/2 up-regulation. Consequently, apoptotic
factors, such as Bax and DR5, undergo up-regulation, while a decrease occurs in the expression of
anti-apoptotic factor Bcl-2. The intrinsic pathway of apoptosis is activated via caspase-8 activation.
Chrysin and cisplatin also induce the extrinsic pathway of apoptosis via releasing cytochrome C into
the cytoplasm and activating caspase-9 [279].

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important signaling pathway involved
in antioxidant activity against oxidative stress and other kinds of stresses [280–282]. Recently, much
attention has been directed towards the role of Nrf2 in the chemoresistance of cancer cells [283].
Nrf2 follows different routes in exerting chemoresistance, such as enhancing expression of CD99 [284],
inhibiting DNA damage [285], and reducing oxidative stress-mediated damage [286]. Therefore,
Nrf2 inhibition is important in reducing chemoresistance. Chrysin administration (10 and 20 mM)
promotes the sensitivity of cancer cells into doxorubicin chemotherapy. Further analysis reveals that
Nrf2 undergoes down-regulation by chrysin in cancer cells. Furthermore, in reducing Nrf2 expression,
chrysin down-regulates the expression of ERK and PI3K/Akt pathways—leading to an increase in the
efficiency of doxorubicin in chemotherapy [287].

7. Chrysin-Loaded Nanoparticles in Cancer Therapy

Micelles have attracted much attention in cancer therapy, due to their potential to deliver
anti-tumor agents [288,289]. Self-assembled micelles are amphiphilic copolymers with size at the
range of 10–100 nm. Micelles have high cellular uptake and passive targeting functions to tumor
known as enhanced permeability [290,291]. Recently, chrysin- and docetaxel-loaded micelles have been
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applied in enhancing the efficacy of chemotherapy. This co-delivery by micelles exerts a synergistic
effect on chemotherapy and effectively suppresses migration and invasion of cancer stem cells.
Chrysin- and docetaxel-loaded micelles enhance levels of ROS to impair cancer stem cell viability.
Notably, enhanced the anti-tumor activity of chrysin and docetaxel against cancer cells is due to their
enhanced accumulation in cancer cells by micelles [292]. Polymeric micelles have also been designed
in co-delivery of chrysin and methotrexate in the chemotherapy of breast cancer cells. The idea of
using a chemotherapeutic agent with a natural anti-tumor agent is that this combination is important
in sensitizing cancer cells into chemotherapy. Using nanoparticles promotes cytotoxicity against cancer
cells via enhancing cellular uptake. Based on the small size of polymeric micelles (around 55 nm),
they can escape from macrophages and kidney filtration to reach into the tumor site, providing targeted
delivery of anti-tumor compounds [293].

Another study has applied polyurea dendrimers for delivery of chrysin in ovarian cancer therapy.
Polyurea dendrimers are three-dimensional polymers with urea moieties in the backbone and peripheral
amine groups. They possess various beneficial properties, including water-solubility, biocompatibility,
biodegradability, and pH-sensitivity, making them suitable options in drug delivery [294]. Furthermore,
as cancer cells overexpress folate receptors on their surface [295,296], surface functionalization of
nanoparticles with folate can be advantageous in enhancing cellular uptake of these nanoparticles
and providing selective targeting. Chrysin- and selenium-loaded dendrimers are capable of induction
of oxidative stress and reducing the viability of OC cells. Furthermore, they demonstrate no toxicity
against normal cells that can be attributed to using folate for the functionalization of dendrimers [297].

Polymeric nanoparticles possess a core-shell structure that self-assemble in an aqueous medium.
The hydrophilic shell is responsible for preserving the stability of nanoparticle, and the hydrophobic core
encapsulates anti-tumor drug. Synthetic polymers, including poly (e-caprolactone) (PCL), polyglycolide
(PGA), and polylactides (PLA), are applied in biomedical applications, due to their features, such
as biocompatibility, high permeability, predictable degradation kinetics, etc., that are important in
the field of biomedicine [298–300]. However, crystallinity and low biodegradation are drawbacks
of PCL that can be solved using monomers. Poly (ethylene glycol) (PEG) is a safe, flexible, and
hydrophilic agent approved by the Food and Drug Administration (FDA) that can be used internally
in the human body [298,301–303]. Chrysin-loaded polymeric nanoparticles have been applied in breast
cancer therapy. The results demonstrate that targeted delivery of chrysin at the tumor site by polymeric
nanoparticles leads to enhanced anti-tumor activity, due to enhanced cellular uptake [304].

Nanoparticles can provide a platform for co-loading of chrysin with other natural anti-tumor
compounds, such as curcumin. Briefly, curcumin is isolated from the rhizome of curcuma longa and
has potent anti-tumor activity against different cancer cells [305]. Using nanoparticles can significantly
enhance the bioavailability and therapeutic effects of curcumin [306]. Curcumin- and chrysin-loaded
PLGA-PEG nanoparticles have been designed in CRC therapy. This co-loading exerts a synergistic effect
and enhances the cytotoxicity of these phytochemicals against CRC cells [307]. Studies demonstrate
that telomerase activity is associated with enhanced proliferation and invasion of cancer cells. Catalytic
domain (hTERT) participates in telomerase gene overexpression that has been reported in CRC [308,309].
Chrysin- and curcumin-loaded nanoparticles effectively down-regulate the expression of hTERT in
suppressing the progression of CRC cells [307]. In addition to the anti-proliferative activity via hTERT
down-regulation, chrysin- and curcumin-loaded nanoparticles can suppress metastasis of cancer cells
via reducing expressions of MMP-2 and MMP-9 [310].

Several homologous proteins known as tissue inhibitors of metalloproteinase (TIMPs) can regulate
the activity of MMPs. TIMP-1 and TIMP-2 are capable of reducing the expression of MMP-2 and
MMP-9 in suppressing metastasis and migration of cancer cells [311]. Chrysin- and curcumin-loaded
nanoparticles significantly promote the expression of TIMP-1 and TIMP-2 to exert a reduction in
melanoma invasion [310]. Taking everything into account, studies agree with the fact that nanoparticles
can enhance the anti-tumor activity of chrysin against cancer cells [62,312–316]. Nanoparticles can
provide a platform for the co-delivery of chrysin and other anti-tumor agents that is important in
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promoting its inhibitory effect against cancer cells (Figure 4) (Table 3). Further studies can focus on
developing other types of nanocarriers, such as carbon nanotubes, liposomes, etc., for delivery of
chrysin in cancer therapy.
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Table 3. Chrysin-loaded nanoparticles in cancer therapy.

Nanovehicle Cancer
Type

In Vitro/
In Vivo Cell Line/Animal Model Particle Size

(nm)
Zeta Potential
(mV)

Encapsulation
Efficiency (%) Outcomes Refs

Micelle Colorectal
cancer In vitro

Human-derived epithelial
colorectal cancer cell lines
HT-29

72–142 +10.1 77 (Docetaxel)
44 (chrysin)

Enhanced cellular uptake
Effective inhibition of cancer stem cell migration [292]

Polymeric
micelles

Breast
cancer In vitro MCF-7 cells 55 −2.7

87.6
(methotrexate)
86.5 (chrysin)

Enhancing efficacy of chrysin and methotrexate in
breast cancer therapy via promoting cellular uptake [293]

Dendrimer Ovarian
cancer In vitro

Serous carcinoma (OSC) cell
lines (OVCAR3 HTB-161™ and
OVCAR8 CVCL_1629™) and a
clear cell carcinoma (OCCC)
cell line (ES2 CRL-1978™)

- - -

Selective targeting of cancer cells by folate
functionalization of dendrimers
High cellular uptake
Remarkable decrease in survival of cancer cells

[297]

Polymeric
nanoparticles

Breast
cancer In vitro T47D breast cancer cell line 75 - 99.89 Higher cytotoxicity against breast cancer cells

compared to chrysin alone [304]

PLGA-PEG
nanoparticles

Breast
cancer In vitro T47-D breast cancer cell line 20–75 - 70 High cytotoxicity

Excellent cellular uptake and encapsulation efficiency [317]

PLGA-PEG
nanoparticles

Colorectal
cancer In vitro SW480 cells 50–140 nm -

Higher cytotoxicity compared to chrysin and
curcumin alone
hTERT down-regulation

[307]

PLGA-PEG
nanoparticles Melanoma In vivo C57B16 mice bearing B16F10

melanoma tumours 285 −3.7 78.27 (curcumin)
83.5 (chrysin)

Enhancing expression of TIMP-1 and TIMP-2
Down-regulation of MMP-2 and MMP-9
Suppressing metastasis of cancer cells

[310]

Solid lipid
nanoparticles

Breast
cancer In vitro MCF-7 cells Below 500 −20 to −47 More than 90% High stability and promoting the anti-tumor activity

of chrysin [312]

PLGA-PEG
nanoparticles

Breast
cancer In vitro T47D cells 70–300 - 99.89 Accumulation in breast cancer cells

High cytotoxicity [318]

PLGA-PEG
nanoparticles

Breast
cancer In vitro MDA-MB-231 cells 305 −3.8 80.22 (curcumin)

85.25 (chrysin)

Synergistic effect
Cell cycle arrest at G2/M phase
Apoptosis induction
Up-regulation of miR-132 and miR-502c

[319]

Copolymer
nanoparticle Lung cancer In vitro

In vivo

A549 cells
Mice bearing an A549-derived
tumor

77 −2.22 46.96 Enhanced cytotoxicity
More potential in exerting tumor growth delay [320]

Micelle Breast
cancer In vitro MCF-7 cells 152–420 −21.6 52–89 Promoting bioavailability of chrysin

Exerting a 5-fold increase in anti-tumor activity [321]

PLGA-PEG
nanoparticles

Gastric
cancer In vitro AGS cells 70–300 - 98.6 Decreasing cell survival via down-regulation of

miR-18a, miR-21, and miR-221 [322]
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8. Conclusions and Remarks

In the present review, we provided a mechanistic review of chrysin and its underlying mechanisms
for anti-tumor activity [323–325]. Noteworthy, chrysin derivatives have also shown potential anti-tumor
activity [326–329], showing that future studies can focus on chemical modification of chrysin structure
in improving its bioavailability, anti-tumor activity, etc. Although chemical modification is a promising
strategy in promoting the anti-tumor activity of chrysin, it seems that nanoscale delivery systems,
such as polymeric nanoparticles, liposomes, solid lipid nanoparticles, etc., can also be considered in
promoting cellular uptake of chrysin and enhancing its anti-tumor activity.

Chrysin affects various molecular pathways and mechanisms in cancer therapy. Apoptosis is
the most well-known target of chrysin in cancer therapy, and both intrinsic and extrinsic pathways
of apoptosis are induced by chrysin in cancer cells. Disrupting homeostasis of mitochondria and ER
are followed by chrysin in apoptosis induction in cancer cells. Autophagy is another programmed
cell death that is activated by chrysin in cancer therapy. As autophagy has a dual role in cancer,
meaning it may suppress cancer progression, or may function as a pro-survival factor in promoting the
proliferation of cancer cells [330–333], much attention should be directed towards the regulation of
autophagy by chrysin in cancer therapy. It has been reported that chrysin induces autophagy in cancer
therapy, showing the anti-tumor role of autophagy. However, more studies will reveal a relationship
between chrysin and autophagy in cancer therapy. In terms of molecular pathways, oncogenic ones,
such as STAT3, NF-κB, and PI3K, that are involved in cancer growth and metastasis, are suppressed
upon chrysin administration. MiRs are also potential targets of chrysin in cancer therapy that their
expression is regulated. Noteworthy, since studies have shown that chrysin is capable of modulating
the expression of miRs, further studies can focus on evaluating the effect of chrysin on other types of
non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs).

Another potential application of chrysin is in suppressing chemoresistance. One of the major
challenges in the field of chemotherapy is the resistance of cancer cells into the inhibitory effect
of currently applied chemotherapeutic agents. Chrysin induces apoptosis to sensitize cancer cells
into chemotherapy. Moreover, molecular pathways, such as Nrf2, that induce chemoresistance,
are suppressed via chrysin. Further studies can focus on revealing other molecular pathways, such as
miRs in chemoresistance, and the role of chrysin in their regulation.

In fact, different aspects of cancer cells are affected by chrysin, including proliferation, metastasis,
and chemoresistance. These inhibitory effects are mediated via affecting both molecular pathways and
mechanisms that were comprehensively discussed in the main text. As poor bioavailability is one of
the drawbacks of chrysin in cancer therapy, a section was allotted to examine the role of nanoparticles
for promoting bioavailability and the therapeutic effects of chrysin in cancer therapy. It is worth
mentioning that these results were based on in vitro and in vivo experiments. Further studies can
focus on evaluating the role of chrysin in clinical studies, which is important for clinical translation
of chrysin.
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Abbreviations

ER endoplasmic reticulum
ROS reactive oxygen species
EMT epithelial-to-mesenchymal transition
NAFLD non-alcoholic fatty liver disease
TNF-α tumor necrosis factor-α
IL interleukin
I/R ischemic/reperfusion
PD Parkinson’s disease
TBI traumatic brain injury
Nrf2 nuclear factor erythroid 2-related factor 2
EGFR epidermal growth factor receptor
VEGF vascular endothelial growth factor
HIF-1 hypoxia-inducible factor-1
STAT3 signal transducer and activator of transcription 3
TLRs toll-like receptors
NF-κB nuclear factor-kappaB
PC prostate cancer
UPR unfolded protein response
PERK PRKR-like ER kinase
elF2α eukaryotic translation initiation factor 2α
GRP78 78 kDa glucose-regulated protein
OC ovarian cancer
GC gastric cancer
5mC 5-methylcytosine
5hmC 5-hydroxymethylcytosine
miR microRNA
TGF-β transforming growth factor-beta
HK hexokinase
HCC hepatocellular carcinoma
ECM extracellular matrix
5-FU 5-Fluorouracil
CRC colorectal cancer
LC-3II light chain-3II
mTOR mammalian target of rapamycin
PPARα Peroxisome proliferator-activated receptor alpha
CYP cytochrome C
DTX docetaxel
FDA Food and Drug Administration
TIMPs tissue inhibitors of metalloproteinases
lncRNAs long non-coding RNAs
circRNAs circular RNAs
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