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Abstract

Auditory steady-state responses (ASSRs) represent the electrophysiological activity of the

auditory nervous system in response to a periodic acoustic stimulus. Spectrogram analysis

can reveal the frequency and phase information entrained in ASSRs. Clinically, the ASSR is

used to detect abnormalities in electroencephalographs obtained from schizophrenia

patients, who show reduced power and phase locking of ASSRs. The neonatal ventral hip-

pocampal lesion (NVHL) rat is a widely used model to investigate the neurodevelopmental

mechanisms of schizophrenia. It has been established that NVHL rats exhibit several

schizophrenia-like behavioral and molecular abnormalities. However, no clear abnormalities

in ASSRs have been reported to date. The present study compared ASSRs of adult NVHL

and sham-operated rats. We inserted microelectrodes into the primary auditory cortex (A1)

or posterior auditory field (PAF) and recorded the local field potential (LFP) in response to

40- and 80-Hz click train stimuli. Spectrogram analysis was performed to obtain the mean

trial power (MTP) and phase-locking factor (PLF) of the click train-evoked LFPs. We found

that in the control animals, A1 showed a stronger MTP and PLF of ASSR than PAF, and

NVHL operation mainly impaired the ASSR in PAF. Analysis of spike activity also indicated

that NVHL operation extended the duration of tone-evoked responses in PAF neurons. Our

results reveal, for the first time, that NVHL may distinctly influence the neural activities of pri-

mary and non-primary fields of the auditory cortex.

Introduction

The disruption of neural synchronization and information integration is considered a key

pathological characteristic of schizophrenia [1]. Auditory steady-state responses (ASSRs) are

neural activities of the auditory nerve system in response to periodic acoustic stimuli that can

be used to test neural synchronization [2, 3]. ASSRs in patients with schizophrenia are typically

reduced in power or phase synchronization in response to a 40-Hz stimulation. This has been
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observed in first episode schizophrenia patients, in adolescents with a diagnosis of a psychotic

disorder, and in first-degree relatives of schizophrenia patients [4–8]. ASSR deficits in the

40-Hz range suggest the function of auditory cortex (AC) is disturbed in schizophrenia [9]. To

data, there have been several lines of evidence supporting that AC is damaged in the schizo-

phrenia patients. First, individuals with schizophrenia commonly show auditory symptoms

including auditory hallucinations. Second, magnetic resonance imaging studies have attrib-

uted the auditory symptoms in schizophrenia to the altered activation of the AC [10–13].

Third, loss of dendritic spines and alterations of synaptic signaling have been observed in the

AC of schizophrenia patients [14–15]. Thus, the AC is a worthy subject of schizophrenia

research.

The neonatal ventral hippocampal lesion (NVHL) rat is a widely used neurodevelopmental

animal model of schizophrenia [16]. The establishment of this model was inspired by the evi-

dence that schizophrenia patients show a lateral ventricular enlargement and hippocampal

changes. NVHL triggers numerous behavioral, molecular, and physiological changes in schizo-

phrenia patients. Although the direct projection from the hippocampus to the AC is not so

dense, there probably are some indirect projections bypassing the amygdala and the auditory

thalamus [17]. This possibility is implied by the fact that NVHL rats show abnormal behavioral

responses to acoustic stimuli [18]. NVHL rats also show several brain electrophysiological

abnormalities in the auditory evoked potential and sensory gating, similar to those observed in

schizophrenia [19–21]. However, previous studies on NVHL rats did not reveal ASSR deficits

common to schizophrenia patients [22, 23]. This may be attributed to the methodology of

ASSR recording used in most previous studies, involving electroencephalographs (EEGs)

obtained from the brain surface. Because the rat brain has a number of small functional divi-

sions, surface EEG recordings cannot differentiate between the detailed neural activities in dif-

ferent cortical regions. Therefore, it is necessary to use a more accurate method to examine

ASSRs in the cortex, particularly in the AC, which is considered an area of ASSR origin. Ana-

tomical and electrophysiological mapping studies have confirmed that the AC consists of pri-

mary and non-primary regions, which receive different thalamocortical projections and show

different neural responses to acoustic stimuli. Structural and functional differences between

the primary and non-primary AC might result in different ASSR characteristics and sensitivi-

ties to the NVHL. To examine this, we recorded local field potentials (LFPs) through micro-

electrodes in rat AC to investigate ASSR across the primary AC (A1) and posterior auditory

field (PAF), representative primary and non-primary regions, respectively. Our results demon-

strate that the power and phase-locking of LFP were significantly decreased in the PAF of

NVHL rats. The parameters of ASSR in the A1 were less affected by NVHL. These data suggest

that neural activity in the non-primary AC region correlates with abnormalities in ASSRs seen

in schizophrenia.

Materials and methods

Animals

All experimental protocols were approved by the China Medical University Animal Care and

Use Committee (permit number: 2014195) and were in strict accordance with the National

Institute of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No.

80–23) revised in 1996. All surgery and electrophysiological experiments were conducted

under anesthesia with maximum effort taken to reduce animal suffering. Pregnant Sprague—

Dawley rats were obtained from our animal facilities and housed in individual cages (50 × 35 ×
20 cm) with a 12-hour light-dark cycle. The animals were provided with a chow diet (Global

18% protein rodent diet; Maohua Biology, Xinmin, Liaoning, China) and water ad libitum.

ASSR in NVHL rats
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During the time leading up to parturition, care was taken to closely monitor but not overly dis-

turb the animals, at 12-hour intervals. The animal health and well-being was assessed by moni-

toring for signs of distress, including trembling, vocalization, changes in normal activity, and

changes in urine/fecal mass. Normal pre-labor and nesting behavior were also monitored.

Neonatal ventral hippocampal lesion

Seven-day-old male pups were randomly assigned to either the sham or NVHL groups. The

pups were anesthetized via hypothermia by placing the animal at a 0˚C chamber in a refrigera-

tor for 10–12 min. The anesthesia was considered complete, when the distal limbs were no lon-

ger pink and no spontaneous limb movement was observed. Thereafter, the pups were fixed

on a custom-made platform attached to a stereotaxic apparatus (SN-2N, Narishige, Japan). An

incision was made into the skin to expose the cranium, and two small holes (diameter: approx-

imately 1 mm) were drilled into the skull bone. A steel tube was implanted bilaterally into the

ventral hippocampus. The coordinates used were AP −3.0 mm, ML ±3.5 mm, and DV −5.0

mm. Ibotenic acid (3 μg in 0.3 μL, Sigma, St Louis, MO, USA), dissolved in 0.15 M phosphate

buffer saline (PBS, pH = 7.4) or vehicle (sham), was infused into the ventral hippocampus

through the implanted tube at a flow rate of 0.1 μL/min.

Rats were weaned on postnatal day 25 and moved to standard plastic cages (two per cage)

on postnatal day 49. To reduce stress, rats were handled daily until the commencement of the

electrophysiological recording experiments. Three days before the experiments, rats were

moved again, in order to be housed separately in single-occupancy Plexiglas cages.

Prepulse inhibition test

On postnatal day 65, we used the prepulse inhibition of the acoustic startle response (PPI) par-

adigm to examine whether NVHL rats showed schizophrenia-relevant behavioral deficits [24].

The PPI test is based on the phenomenon that a weak sound presented 30–500 ms before a

startling sound reduces the amplitude of the startle response. One session of the PPI test con-

sisted of seven stimuli delivered in a pseudorandom order: 1) pulse alone (100 dB sound pres-

sure level (SPL) white noise, 20 ms duration); 2) control (no stimulus); 3) and 4) prepulse

alone (72 or 68 dB, pure tone, 10 kHz, 20 ms duration); 5), 6), and 7) prepulse (72, 68, or 64

dB) each followed by a pulse with an inter-stimulus interval of 100 ms. A total of 10 presenta-

tions of each type was given with an inter-trial interval randomized between 20 and 30 s. Back-

ground noise intensity during the whole experiment was 60 dB SPL. The PPI was calculated

according to the formula 100 − 100% × (PPx/PA), in which PPx is the startle reactivity of the

10 PPI trials (separate for each individual prepulse intensity) and PA is the startle reactivity of

the pulse alone trials. The average PPI response over the three prepulse intensities was

analyzed.

Electrophysiological recordings

Surgical preparation. Upon reaching 350 ± 50 g of weight (around postnatal day 70), the

rats underwent surgery for performing electrophysiological recordings. The animals were

anesthetized by an intraperitoneal injection of urethane (1.5 g/kg) and supplementary doses

(0.5 g/kg) were administered as needed. Dexamethasone (0.25 mg/kg) was administered every

4 h to prevent brain edema. Atropine sulfate (0.1 mg/kg) was used to reduce the volume and

viscosity of bronchial secretions. An electric blanket was used to maintain a rectal temperature

of 37˚C. A custom-made metal block was implanted onto the rat’s skull to hold the head dur-

ing recording experiments. A craniotomy was performed above the area of the AC, for which

the coordinates used were AP −3.0 to −7.0 mm, ML 3 to 5 mm [25].

ASSR in NVHL rats
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Recording procedure. Electrophysiological recordings were conducted in an electrically

shielded, soundproof box soon after the surgery. During the recordings, the ear bars were

removed, and the rat’s head was held via the metal block implanted onto the skull. A single

epoxylite-insulated tungsten microelectrode (#575500, A-M systems, WA, USA) was posi-

tioned orthogonal to the brain surface. A motor-driven manipulator (SM-20, Narishige,

Tokyo, Japan) was used to insert the microelectrode 400–600 μm into the brain, corresponding

to the thalamorecipient layers III-IV. The signal was amplified with a differential amplifier

(RA16PA, TDT, Alachua, FL, USA). This analog signal was then digitized, amplified, and fil-

tered (1 and 300 Hz) using the RZ2 processor (TDT) to obtain LFPs. In some cases, neural dis-

charge signals (spike activity) could also be recorded from the electrode. To obtain a clear

spike activity signal, the electrode output was filtered by a 0.3–5 kHz bandpass filter, and spikes

were detected online by the threshold crossing and waveform templates. Data of the LFP wave-

forms and spike times were stored on a hard disk for offline analysis. After completing the

recording at one site, the electrode was withdrawn and moved horizontally 0.5–1 mm in a ran-

domized direction, avoiding vessel branches, to record at other sites. The entire recording ses-

sion lasted 24–36 h, during which 30–50 sites were sampled, evenly covering the A1 and PAF

of one hemisphere (Fig 1).

Acoustic stimuli

Sound stimuli were presented via a free-field speaker (K701, AKG, Austria) placed 50 cm away

from the contralateral ear. The sounds used to elicit and isolate a neuronal response were a set

of pure tones (160 ms duration, 5 ms linear rise/fall time) presented in a random sequence of

different frequencies, ranging from 128 Hz to 32 kHz on a logarithmic scale (0.06 octave fre-

quency interval and 1.5–3.0 s inter-stimulus interval), at 70 dB SPL. ASSRs were measured

using 500-ms click trains with 40- or 80-Hz repetition rate. The duration of each click was 1

ms with an amplitude of 70 dB SPL. One recording block consisted of 120 trials (60 trials of

40- and 80-Hz click trains each), which were randomly interleaved in inter-train intervals of

2–4 s.

Data analysis

To analyze tone-evoked responses, we set a time window from the stimulus onset to 50 ms

after stimulus cessation (0–550 ms). The maximum deflection during this time window was

the LFP amplitude. The best frequency (BF) of each recording site was estimated as the tonal

frequency evoking the maximum LFP amplitude. Click-evoked LFPs were filtered using a digi-

tal bandpass filter with a lower and higher cut-off frequency adjusted to 5 Hz below and above

the repetition rate of click train stimuli. The average evoked LFP power, mean trial power

(MTP), and phase-locking factor (PLF) were analyzed using a wavelet-based analysis algorithm

[26] implemented through custom-written MATLAB scripts. Wavelet analysis provides a

dynamic tradeoff between the resolutions of time and frequency domain, by using small tem-

poral widths for high frequencies and large temporal widths for low frequencies. Contrastingly,

the standard Fourier transformation uses a fixed temporal width for all frequencies. To obtain

MTP, we first computed the power of each individual trial LFP and then subtracted the mean

power during the baseline period (from −500 to 0 ms, relative to stimulus onset) from the

power of each trial. The PFL measures the synchronization of LFP phases across individual tri-

als at particular frequencies and time intervals.

Spike activities driven by pure tone stimuli were aligned with stimulus onset, to construct a

raster plot for each tone frequency. The peri-stimulus time histogram (PSTH), generated by

counting the spikes across the 125 trials of different frequencies, was computed in 1 ms bin

ASSR in NVHL rats
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width and smoothed by the Gaussian function with 5 ms standard deviation (SD). The thresh-

old to identify a significant response was set as the mean background spike rate (taken from

0.5 s preceding sound onset) ± 3 SD. Response duration was estimated by counting the PSTH

supra-threshold time bins.

Calibration of recording sites and histology

After completing the recording experiments, the AC surface was photographed with a digital

camera, and the photos were edited on a computer screen. The absolute scale and position of

the explored brain area was estimated with respect to the bregma, by using reference points,

which had been previously marked on the temporal bone. A coordinate grid was added onto

the photographs to guide and mark the sites of the recording electrode.

Following completion of imaging of the cortex, the rats were deeply anesthetized and their

brain fixed by 4% paraformaldehyde perfusion through the heart. The brain tissue from 3.30–

5.80 mm posterior to the bregma was cut into 40 μm thick coronal slices and stained with thio-

nin. An experimenter blinded to the electrophysiological results was responsible for evaluating

the extent of the lesions by examining the thionin-stained slices under the microscope. Sham-

operated rats with damage to the hippocampus and NVHL rats without successful hippocam-

pal lesions were excluded from further analysis. Fig 1 shows the histological results of the 6

NVHL rats used in the study with the greatest (black) and least (grey) extent of lesion.

Results

PPI of the acoustic startle response is disrupted in NVHL rats

The 6 NVHL rats used in this study showed a significant decrease in PPI compared with the 6

sham rats (Fig 2; p = 0.04, t test; Cohen’s d effect size = 1.33). This result indicates that our

NVHL method successfully resulted in a schizophrenia-like behavioral phenotype in the rats.

Identification of A1 and PAF

For each rat, we constructed a map of the recording sites (10–15 tracks/mm2) that covered the

A1 and PAF evenly and avoided blood vessels. Fig 3A and 3B show example maps of a sham

and NVHL rat. The relative positions of the A1 and PAF were determined according to the

characteristics of the BF (frequency of pure tone stimulus that evoked the maximum neural

response) distribution across the AC (i.e., tonotopic gradient). There was a reversal of the BF

Fig 1. Schematic drawing of coronal sections illustrating the lesions of NVHL rats, as determined by the examination of Nissl-stained

sections. Dark regions show the largest and grey regions show the smallest extent of damage across the 6 NVHL rats (on either side). Numbers

indicate the distance in mm from the bregma according to the rat brain atlas.

https://doi.org/10.1371/journal.pone.0192103.g001
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Fig 2. PPI in the NVHL and sham rats. NVHL rats showed a smaller PPI than sham rats. The inner line and edges of

the box represent the median, the 25, and 75 percentiles respectively, while the whiskers show the range as mean ± 3

SD. �p< 0.05, t test.

https://doi.org/10.1371/journal.pone.0192103.g002

Fig 3. (A) Sample case with 49 LFP recording sites in the A1 and PAF of a representative sham rat. Numbers show the BF in kHz of each recording site. Crosses

represent a site that had no response to pure tone stimuli. The boundary between the A1 and PAF (dashed curve) is estimated on the basis of the reversal of the BF

gradient. Along the dorsocaudal direction in the A1, there is a high-to-low BF gradient. This reverses to a low-to-high frequency gradient in the PAF. (B) Sample case

of one representative NVHL rat.

https://doi.org/10.1371/journal.pone.0192103.g003
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gradients between the A1 and PAF. The BF in the A1 changed from low to high along the dor-

soanterior direction, but this gradient changed to a dorsocaudal direction in the PAF (Fig 3A

and 3B). In total, we sampled 603 sites in the left AC of 6 sham rats (A1, n = 194; PAF, n = 93)

and 6 NVHL rats (A1, n = 224; PAF, n = 92). Within the 603 sites, we collected 486 LFPs

responsive to the presented sound stimuli (sham rats: A1, n = 165; PAF, n = 69; NVHL rats:

A1, n = 186; PAF, n = 66). The percentage of responsive sites in the A1 and PAF were similar

between the sham and NVHL rats.

Representative examples of LFPs in response to click trains in sham and

NVHL rats

As shown by the representative LFP waves recorded in the A1 of sham rats (Fig 4A and 4B),

the click trains of 40- and 80-Hz repetition rate could evoke a clear fluctuation in the LFP syn-

chronization with the stimulation rhythm. For each individual trial of LFP, we computed the

MTP and PLF to quantify the power and phase-locking of ASSR. The mean time—frequency

plots for MTP and PLF, averaged over 60 trials of 40- and 80-Hz stimulation are shown in Fig

4C–4F. Based on this, it is evident that the LFP of this recording site shows a strong MTP and

PLF at these stimulation frequencies (40 and 80 Hz).

An example of an LFP recorded in the PAF is shown in Fig 5. Compared with the LFPs of

the A1, the MTP and PLF of the PAF, particularly those elicited by the 80-Hz stimulation,

were obviously decreased. Representative LFPs of NVHL rats are shown in Fig 6 (A1) and Fig

7 (PAF). Both 40- and 80-Hz click trains evoked robust ASSRs in the A1 of NVHL rats, but

very weak in the PAF.

Comparison of the population data of the MTP and PLF between sham and

NVHL groups

Fig 8A shows the distribution of the 40-Hz MTP in the A1 and PAF for the sham and NVHL

groups separately. Within the groups, the mean MTP of the A1 was significantly higher than

that of the PAF (p< 0.01, t test; Cohen’s d effect size = 0.50 and 1.14). A comparison of the

sham and NVHL groups revealed that the MTP was similar in the A1 (p = 0.82, t test; Cohen’s

d effect size = 0.02), but significantly reduced in the PAF (p = 0.04, t test; Cohen’s d effect

size = 0.50). The mean MTP evoked by the 80-Hz stimulation was generally smaller than that

evoked by the 40-Hz one in both brain fields across the two groups (Fig 8B). A comparison of

the 80-Hz MTPs between the different brain fields also revealed that the PAF had a lower MTP

than the A1 in both sham and NVHL groups (p< 0.01, t test; Cohen’s d effect size = 0.48 and

0.95). In the NVHL rats, the 80-Hz MTP was reduced in the PAF (p = 0.04, t test; Cohen’s d

effect size = 0.49), but not in the A1.

The distribution of the 40- and 80-Hz PLFs are shown in Fig 8C and 8D. Consistent with

the results for the MTP, the A1 showed a stronger PLF than did the PAF, and the NVHL

caused a significant reduction of the PLF in the PAF.

Response duration of spike activity in sham and NVHL rats

We then investigated whether the reduction in ASSR, signified by the decreased synchroniza-

tion of the neural response, is related to an alteration in the sound integration time (the dura-

tion of the neural response). At some recording sites, we could record extracellular spike

activity from the same electrode while recording LFPs. In total, we collected 192 (134 A1, 58

PAF) and 176 (113 A1, 63 PAF) spike data for the sham and NVHL rats, respectively. We ana-

lyzed the spike responses to pure tone stimuli to estimate the duration of the neural response.

ASSR in NVHL rats
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Fig 9A and 9B show a representative example of spike activities recorded in the PAF of a sham

and NVHL rat, respectively. PSTH was constructed in Fig 9C and 9D, from which an evoked

response was identified using the threshold of mean + 2 SD of spontaneous spike rates. The

latency and rate of the peak response and the response duration were estimated. Comparing

the population data between the A1 and PAF neurons (Fig 9E), we found that the rate of peak

responses in the A1 was significantly higher than that in the PAF, while the peak latency and

response duration were shorter (p< 0.01, t test). This indicates that A1 neurons show a rapid

and transient response to a single stimulus, therefore can follow repetitive stimuli more closely.

This is consistent with the finding that ASSRs in the A1 were stronger than in the PAF. The

response duration of PAF neurons was significantly longer in the NVHL than in the sham rats

(p = 0.04, t test), while other parameters were similar between the two groups.

Discussion

Differences in ASSRs between the A1 and PAF

Most previous studies on recording ASSRs used brain surface EEG (8,22,23). In this study, we

recorded LFPs from the cortex. The merit of intracranial over surface recordings is the fine

spatial resolution. The disadvantage is that it is invasive, which limits its usage in humans.

Fig 4. Example of the A1-ASSR in a representative sham rat. (A) and (B): averaged LFPs in response to 40- and

80-Hz click trains. (C) and (D): time-frequency plots of the MTP at 40- and 80-Hz stimulation. (E) and (F): time-

frequency plots of the PLF at 40- and 80-Hz stimulation.

https://doi.org/10.1371/journal.pone.0192103.g004
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Using microelectrodes (tip diameter: <0.1 mm), we could isolate responses from the LFP and

map them to specific cortical regions. The LFP recorded within the cortex is the averaged sig-

nal from coherent postsynaptic excitatory potentials generated by pyramidal neurons [27, 28].

It has been estimated that the spatial origin of LFPs is in the range of 1 mm [28]. In our investi-

gation, we found that the MTP and PLF evoked by the 40- and 80-Hz click trains were both

lower in the PAF than in the A1. Such a result may reflect the anatomic and functional differ-

ences between the two AC regions. The A1, the core region of the AC, receives thalamocortical

projections from the lemniscal auditory thalamus. The PAF is a non-primary region and

receives non-lemniscal projections from the auditory thalamus [29]. The cells in the lemniscal

auditory thalamus have a narrow frequency tuning with short latencies and are tonotopically

arranged, whereas those in the non-lemniscal thalamus are not tonotopically organized

[30,31]. Consequently, PAF neurons show a broader frequency tuning, with longer and more

variable latencies, and a more rapid habituation to repetitive stimuli, compared to A1 neurons

[32–36]. The analysis of spike activity in this study also indicated that the response duration

and latency of the PAF neurons was longer than that of the A1 neurons. We have previously

examined the responses of single neurons to click trains in the AC of normal rats and found

that compared to A1 neurons, PAF neurons had a lower capability to synchronize with the

sound stimulation repetition rate [37]. Thus, the reduced ASSR in the PAF might be due to the

decreased synchronization of the local PAF neural circuitry. This property signifies that, rather

Fig 5. Example of the PAF-ASSR in a representative sham rat. The same format as Fig 4.

https://doi.org/10.1371/journal.pone.0192103.g005
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than representing the simple sound parameters, such as frequency or amplitude, with different

discharge rates, PAF neurons could have a longer sound-encoding time and therefore integrate

more acoustic information to generate selectivity for complex acoustic features, such as pitch

and timbre [37–39].

One caveat that should be mentioned is that our electrophysiological data were recorded

from anesthetized animals. Previous studies on both human and animal subjects have shown

that the ASSR is attenuated by anesthesia [40–44]. However, given that our data from the A1

and PAF were collected under the same anesthesia conditions, their comparison is still mean-

ingful. Nevertheless, caution should be taken when interpreting these results, as we cannot

completely exclude the possibility that the ASSRs of the A1 and PAF neurons are differently

attenuated by the anesthesia.

PAF dysfunction in NVHL rats

Our results showed that the PAF-ASSR was significantly reduced in NVHL rats, while the

A1-ASSR was less affected. This result suggests that NVHL mainly disrupts the neural network

operating in the non-primary AC. Anatomic studies have revealed that non-primary fields of

the AC receive projections from both the non-lemniscal medial geniculate body [36] and the

primary AC [45]. Non-primary AC outputs project to limbic and prefrontal brain areas, which

Fig 6. Example of the A1-ASSR in a representative NVHL rat. The same format as Fig 4.

https://doi.org/10.1371/journal.pone.0192103.g006
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are involved in attention, motivation and emotion [46, 47]. Thus, the non-primary fields of the

AC could play an important role in the integration of auditory inputs. The abnormalities of

the ASSR observed in the PAF indicate that auditory processing integration might be impaired

in the NVHL model. However, the representational functions undertaken by the A1 remain

intact. This possibility is supported by our result that, in NVHL rats, the response duration of

the PAF neurons was extended, but remained unchanged for the A1 neurons.

Some histopathological changes caused by the NVHL might contribute to the observed

effects on the ASSR. Histological studies have reported that the number of cortical neurons

was reduced in NVHL rats [16, 20, 48]. This might result from a disturbed thalamocortical

innervation [18,49,50]. Though no direct connection between the hippocampus and the AC

has been reported yet, indirect connections may exit via the circuits between the hippocampus,

the amygdala, and the auditory thalamus [17]. On the other hand, the medial auditory thala-

mus is adjacent to the lesioned area of the hippocampus [29], which could be destroyed by ibo-

tenate. It has been found that NVHL rats show calcium deposits in the medial auditory

thalamus [18,51]. Moreover, this calcification could also be caused by glial damage during the

neonatal period [52]. These histopathological changes might lead to inappropriate connectivity

within the thalamocortical pathways, particularly the ones involving the PAF. This possibility

needs to be investigated in the future by combining histological and electrophysiological

methods.

Fig 7. Example of the PAF-ASSR in a representative NVHL rat. The same format as Fig 4.

https://doi.org/10.1371/journal.pone.0192103.g007
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Conclusion

We found that the NVHL rat model exhibits a significantly reduced ASSR, a common phe-

nomenon observed in electrophysiological examinations of schizophrenia patients. EEG mea-

surements have consistently shown reductions in the power and phase-locking of ASSRs in

schizophrenia patients, particularly in the gamma band (30–100 Hz) [4–8]. A previous study

with NVHL rats did not find an obvious deficit in the 40-Hz ASSR [22]. In the present study,

we recorded LFPs in the AC of NVHL rats and found that the MTP and PLF of both the 40-

and 80-Hz ASSRs were reduced in the PAF. Our results provide robust evidence for consis-

tency between ASSRs recorded via an intracortical microelectrode and those recorded by scalp

Fig 8. Comparison of the MTP and PLF in different AC regions of the NVHL and sham rats. (A) and (B) Boxplots of the

MTP at 40- and 80-Hz stimulation. (C) and (D) Boxplots of the PLF at 40- and 80-Hz stimulation. The inner line and edges of

the box represent the median, the 25, and 75 percentiles respectively, whiskers show the range as mean ± 3 SD. �� p< 0.01, �

p< 0.05, t test.

https://doi.org/10.1371/journal.pone.0192103.g008
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EEG, thus bridging the gap between electrophysiological studies of animals and clinical exami-

nations of schizophrenia patients.
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