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Abstract: Metabolomics has achieved great progress over the last 20 years, and it is currently con-
sidered a mature research field. As a result, the number of applications in toxicology, biomarker,
and drug discovery has also increased. Toxicometabolomics has emerged as a powerful strategy
to provide complementary information to study molecular-level toxic effects, which can be com-
bined with a wide range of toxicological assessments and models. The zebrafish model has gained
importance in recent decades as a bridging tool between in vitro assays and mammalian in vivo
studies in the field of toxicology. Furthermore, as this vertebrate model is a low-cost system and
features highly conserved metabolic pathways found in humans and mammalian models, it is a
promising tool for toxicometabolomics. This short review aims to introduce zebrafish researchers
interested in understanding the effects of chemical exposure using metabolomics to the challenges
and possibilities of the field, with a special focus on toxicometabolomics-based mass spectrometry.
The overall goal is to provide insights into analytical strategies to generate and identify high-quality
metabolomic experiments focusing on quality management systems (QMS) and the importance of
data reporting and sharing.

Keywords: zebrafish; metabolomics; mass spectrometry; analytical chemistry; quality assurance and
quality control

1. Introduction

Chemical safety is an emerging global concern due to the continuous growth of
chemicals being produced and released into the environment. Therefore, toxicological
assessments of short- and long-term exposure are crucial to evaluate the effects (inter alia
latent and transgenerational) of a wide range of chemicals on human and environmental
health [1]. As a result, in silico, in vitro and in vivo toxicological models are needed, as both
short-term toxicity and transgenerational studies in humans are challenging, especially
due to ethical constraints and critical confounding factors such as diet, different social
exposures, and long lifespan (e.g., studies of toxic effects of low-dose and mixtures of
chemicals) [2,3].

In this regard, the zebrafish (Danio rerio) (embryos, larvae, and adult fish) is a medium-
to-high-throughput vertebrate toxicological model that is routinely used to provide relevant
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information regarding the acute and long-term effects of xenobiotics [4–6]. It encompasses
multicellular biochemical processes and the conservation of several metabolic and phys-
iological processes also found in mammals (e.g., mitochondrial metabolism, the role of
lipid and glucose metabolism in embryonic development, endocrine axes regulating en-
ergy metabolism, physiology of the digestive system, etc.), illustrating the translational
relevance of the model to study the effects of chemicals on metabolic pathways [4,7,8].

In the last 20 years, metabolomics, the study of small endogenous organic molecules
(<1500 Da) in biological samples or organisms to find key metabolites in various biological
processes, has been used as a promising alternative and/or additional tool to traditional
toxicological assays [9,10]. Metabolic changes are dependent on several factors such as
diet, sex, and disease [10]. Thus, a high degree of controlled conditions in toxicological
models makes them suitable platforms for metabolomics with a wide range of applications,
including chemical grouping, the discovery of points of departure from benchmarking
dosing, and cross-species extrapolation of toxicity pathways [9,11]. For instance, metabo-
lites and hence pathways affected by xenobiotic exposure can provide data to support the
development of adverse outcome pathways (AOP). On the one hand, metabolite levels
could provide relevant mechanistic information underlying key events at the molecular
level [12]. However, in certain toxicological scenarios, specific metabolites could also be
essential causally linked components of a particular toxicity pathway and thus be directly
relevant as key events of the pathway. Read-across and grouping approaches based on
structural similarity using metabolomics have been successfully applied to reduce the
risk of uncertainty in the characterization of the toxicity profile of analog chemicals (e.g.,
3-aminopropanol and 2-aminoethanol) [13].

The combination of the zebrafish model and metabolomics has shown promising
results for toxicological and ecotoxicological applications (e.g., to study the effect of
endocrine-disrupting chemicals) and for investigations on the mechanisms of metabolic
diseases [4,9,14]. For instance, Ortiz-Villanueva et al. applied an untargeted metabolomics
approach to investigate the effect of three endocrine disruptors (bisphenol A, perfluo-
rooctane sulfonate and tributyltin) at sublethal doses on zebrafish embryos and found
that similar biochemical pathways were affected by these three chemicals [15]. Similarly,
perfluoroethercarboxylic acids (PFECA), a new generation of per- and polyfluoroalkyl sub-
stances (PFAS), were found to have similar metabolic profiles associated with the toxicity of
discontinued PFAS in zebrafish embryos [16]. Further discussion of omics approaches for
zebrafish as a screening model can be found in a recent review article by Lai et al. [5]. In this
study, Lai et al. divided the experimental approaches for environmental toxicant studies
into two major studies: transgenerational (epigenomics) and non-transgenerational studies
(transcriptomics, proteomics, and metabolomics) showing how metabolomics experiments
can generate complementary toxicity information that should be confirmed by functional
studies and molecular biological experiments for validation.

The number of studies including metabolomics in zebrafish has sharply increased
since 2011 (from four studies in 2011 to seventy in 2020 found in the PubMed database
(https://pubmed.ncbi.nlm.nih.gov/, accessed on 13 July 2021), with many of them already
indexed to the Zebrafish Information Network (ZFIN) (https://zfin.org/, accessed on 13
July 2021). Due to the complexity of data acquisition, processing, and interpretation, in
addition to an appropriate study design, a quality management system (QMS) needs to be
included and assessed during the entire metabolomics workflow. The current manuscript
will address the analytical challenges and QMS of the zebrafish model (embryo, larvae, and
adult fish) to demonstrate its application from a metabolomics perspective. Information
was collected from recent literature indexed to PubMed and ZFIN search engines using
combinations of the following keywords: metabolomics, lipidomics, zebrafish, and Danio
Rerio. Recent articles (>2017) focusing on mass spectrometry toxicological applications
using zebrafish were given preference. In addition, general metabolomics studies focusing
on QMS and data analysis applications were included to introduce zebrafish researchers to
the field and expand research on zebrafish toxicometabolomics.

https://pubmed.ncbi.nlm.nih.gov/
https://zfin.org/
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2. Experimental Design
2.1. Sample Collection

Different standardized fish toxicity test guidelines are available that could be useful
for designing experiments allowing the collection of samples for metabolomics analyses.
For example, Section 2 of the OECD’s (Organisation for Economic Co-operation and
Development) Test Guidelines lists a number of different frequently used fish test guidelines
(e.g., TGs 236, 210, 229, 234, and 203), often specifically tailored to the zebrafish as the model
organism. Combined, these available test guidelines provide opportunities for studying
both acute and chronic effects in all zebrafish life stages, ranging from embryos to larvae,
juveniles, and adults, as well as transgenerational assays. For example, the Fish Embryo
Acute Toxicity (FET) Test (TG 236) outlines an acute embryonic exposure design from
0–96 hpf, which covers the organogenesis period [17]. For zebrafish metabolomics studies,
short-term exposure effects could be assessed in terms of hours (e.g., 2.5–4 h; as described
in, e.g., TG 236 in embryos and TG 203 in adult fish) or medium- to long-term exposures
in the larval period (e.g., 3–7 days) [15,18–24]. For chronic exposure, test guidelines are
available for larval fish up to 30 days (e.g., TG 210) and for adult fish up to 20 or 60 days
(e.g., TGs 229 and 234), when individually dissected fish tissues (e.g., liver, brain, intestinal
samples, gonads) or blood samples could be analyzed [25–27].

2.1.1. Euthanasia

A number of recent zebrafish metabolomics studies report ice as the anesthetic [21,28–30]
and/or euthanasia [31] technique for adult zebrafish, larvae, and embryos. Euthanasia
by rapid cooling is at present not allowed in the EU legislation, but, for example, in the
United States, rapid chilling (2 to 4 ◦C, for 10–20 s) until loss of orientation and operculum
movements followed by holding times in ice-chilled water is acceptable for euthanasia
of zebrafish according to the Guidelines for the Euthanasia of Animals of the American
Veterinary Medical Association (AVMA). While adults can be held for a minimum of 10 min
in ice-chilled water, larvae of 4–7 days post-fertilization (dpf) should be kept for at least
20 min. However, rapid chilling alone has been shown not to be a reliable method for
euthanasia of embryos < 3 dpf [32].

A second commonly used method is euthanasia with an overdose of tricaine methane-
sulfonate (MS-222) [33–36]. MS-222 is an anesthetic approved by the United States Food and
Drug Administration (FDA) for temporary immobilization that is also used for euthanasia
of fish by immersion in an MS-222 buffered solution (e.g., 200 mg/L, pH 7–7.5) [32,37]. The
use of MS-222 to minimize suffering through suppression of the nervous system (inhibition
of sodium channels) is accepted when the fish is kept for at least 5 min in the solution
following the cessation of opercular movement and/or vestibulo-ocular reflex (EU Recom-
mendation 2007/526/EC) [37]. However, similar to rapid cooling, MS-222 has been shown
to be unreliable for euthanasia of early life stages [32]. Furthermore, MS-222 is rapidly me-
tabolized and it can also cause changes in endogenous metabolites (e.g., increased glucose,
catecholamines, and cortisol levels [37,38]). Therefore, more studies comparing MS-222
and rapid chilling methods for anesthesia and/or euthanasia are needed to understand
their effects for metabolomics studies.

In addition to methodological considerations primarily intended for minimizing
the potential effects of a selected euthanasia method on metabolomics profiles, ethical
considerations have become important as well and should ideally be balanced against
purely scientific arguments. While zebrafish embryos are not considered laboratory animals
for ethical purposes in Europe (EU Directive 2010/63/EU; EU Directive 2012/707/EU)
up to the free-feeding stage at 120 h post-fertilization (hpf), studies in adult fish require
approval from an ethical committee according to international laws [39]. The method used
for euthanasia must rapidly achieve unconsciousness and death with minimal pain and be
performed by certified personnel capable of recognizing and confirming the death.
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2.1.2. Metabolism Quenching

Sample collection and preparation should be performed as quickly as possible to
reduce the effect of additional metabolism and compound biotransformation [40]. Thus,
quenching strategies are essential to ensure that the detected metabolites reflect the
metabolism of the organism at the time of sampling. Importantly, for highly metabol-
ically active matrices, such as tissues, any remaining enzymatic activity should be stopped
by snap-freezing the sample with liquid nitrogen immediately after collection [40].

Although some metabolites, such as adenosine triphosphate (ATP) and glucose-6-
phosphate, can turnover in terms of seconds, which is almost impossible to avoid, sodium
metabisulfite and/or butylated hydroxytoluene can be added to reduce metabolite degrada-
tion [41]. It is worth mentioning that enzymatic and non-enzymatic lipid transformations
(hydrolysis, oxidation, interspecies conversion) during sample collection, storage, and
analytical steps are common processes that can produce misleading results (e.g., air oxida-
tion of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) [42], hydrolysis of
glycerophospholipids by phospholipases A1 and A2 can increase levels of lysoglycerophos-
pholipids and free fatty acid species [41], extraction with methanol/ethanol can lead to the
formation of exogenous phosphatidylmethanol and phosphatidylethanol species mediated
by phospholipase D [41,43]). As suggested by Ulmer et al. in a recent review on strategies
and consideration for addressing lipid changes, lipid stability studies should be included
during analytical method development [41]. The strategies mentioned in this latter work to
avoid degradation or turn-over of metabolites include sample handling at low temperature
(e.g., cold room), snap-freezing directly after collection, the use of additives to reduce enzy-
matic activity (e.g., 5 mM phenylmethanesulfonyl fluoride before sample extraction) and
antioxidants (e.g., butylated hydroxyanisole, ascorbic acid, transferrin, deferoxamine) [41].
Preferably, freeze–thaw cycles should be limited, and analysis should be performed on
fresh samples. However, analysis of fresh samples is often not feasible. Therefore, sam-
ples should be stored at −80 ◦C for as little time as possible and thawed only once for
analysis [44].

2.2. Normalization and Variability

As a result of the low sample volume, embryos and larvae are usually pooled by
treatment (e.g., control vs. exposed) for metabolomics analysis. Several studies re-
ported the number of pooled individuals per sample group (e.g., 30–400) instead of
weight [16,20–22,45,46]. Alternatively, Bai et al. performed metabolomics analysis in
168 hpf larvae using the weight of 25 mg per pooled sample group [47]. Dreier et al. nor-
malized lipid concentrations in pooled larval zebrafish samples (n = 12) by the protein
content in a targeted lipidomics study [34]. The authors mentioned that this normaliza-
tion was an important step due to the low accuracy of weighing low amounts of sample.
Untargeted metabolomics methods in zebrafish organs, e.g., pooled livers, also employed
protein normalization to calculate the solvent volume to reconstitute the dried extracts
before instrumental analysis [48]. However, there is not necessarily a strong linear corre-
lation between protein content and metabolites, which can result in unreliable data [49].
The addition of extraction solvent depending on the tissue weight (>5 mg) can be a good
strategy for pooled organs since they can still be measured with good accuracy using
analytical balances [49–51]. Additionally, importantly, recent studies show that male and
female zebrafish organs have different biochemical profiles. Pooling the samples using a
1:1 ratio based on sex can be challenging as females tend to be larger and could have an
impact on the overall weight of pooled samples [52]. Moreover, adult female livers have a
higher lipid content than males which is related to female reproductive function, and this
should be taken into consideration while focusing on this specific organ [53]. Therefore,
organ samples from males and females should preferably be processed as different groups
for metabolomics.

Complex organisms usually require more replicates than in vitro cell models to unveil
meaningful biological information [44,54]. However, animals in controlled environments
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(e.g., standardized diet, day–night cycle times, temperature environment) require a smaller
amount of replicates than epidemiological studies, but it is still advisable to keep the num-
ber of replicates to at least 6 per group [10,44]. For pooled embryos and larvae, a higher
number of biological replicates should be considered to account for weight differences (e.g.,
Teng et al. used 8 replicates per group (one hundred embryos at 96 hpf) to evaluate the
mechanisms of toxicity of a fungicide, flutolanil, on zebrafish development [24]). Neverthe-
less, pilot studies are crucial to estimate the variance originating from the analytical and
pre-analytical workflows and to assess the need for a higher number of biological and/or
technical replicates.

Trutschel et al. proposed an objective approach to determine variance at multiple
levels of a metabolomics workflow with a pilot study using a hierarchical experimental
design [55]. The authors used an experimental design with replicates at three levels
(instrumental analysis; σ2

instr, sample preparation; σ2
prep and biological σ2

bio) to determine
the minimum number of biological and technical (sample preparation and instrumental)
replicates required to detect statistically significant features with a power hierarchical type
of Student’s t-test. In addition, the authors also provided an R code to determine the
achievable power if the number of biological and technical replicates is limited to a specific
number based on pilot datasets.

2.3. Homogenization

Homogenization is a critical step for tissue samples [56]. Water and/or organic
solvents are usually added to zebrafish samples and homogenization is usually performed
using a bead beater with zirconium oxide beads (bead size 0.5 mm) for a few minutes (e.g.,
4–6 min) [20,57,58]. For tissue samples, two beat cycles of 40 s at 6500 Hz followed by
cooling in ice after each cycle can be sufficient to homogenize the samples [56]. For zebrafish
samples, most studies do not describe in detail these latter parameters and their influence on
the metabolite stability and sample homogenization. In addition to bead homogenization,
the sample can also be kept in an ultrasound bath for 10–15 min [15,20]. This latter step
should be carefully evaluated regarding the time, temperature, and frequency applied,
since it can cause metabolite degradation [59].

2.4. Metabolite Extraction

Even in early development stages, zebrafish embryos and larvae contain a diverse
and dynamic range of lipids (e.g., cholesterol, glycerophospholipids, triacylglycerols) and
polar metabolites that are supplied by the yolk (e.g., amino acids and fatty acids) until
approximately 120 hpf [60]. Extraction methods for untargeted metabolomics need to be
tailored to capture the various chemical classes within the metabolome. However, there
is no single extraction method that can cover the entire metabolome and lipidome. Some
classes will be overlooked, while others will be enriched [61]. Depending on the goal of the
study, the extraction can also be divided into “global” metabolomics [56], polar (primary)
metabolomics [62], and lipidomics [63], which can be further subdivided and tailored for
less abundant lipid classes, such as polyunsaturated fatty acids [64], steroids [65], or the
epilipidome [66].

In addition, the extraction method is highly dependent on the sample matrix and the
platform used for analysis. For instance, gas chromatography–mass spectrometry (GC-
MS)-based metabolomics often require a derivatization step (e.g., oximation followed by
silylation for a wide range of small polar metabolites [62] or single silylation for sterols [67])
after metabolite extraction to increase thermal stability and volatility. Sample preparation
for zebrafish metabolomics using GC-MS has been recently reviewed by Yan et al. [68].

For liquid chromatography–mass spectrometry (LC-MS) analysis, liquid extraction
(LE) is often used to extract and concentrate metabolites from zebrafish samples, as shown
in Table 1. Single-phase extraction by adding more of the same solvent used for protein
precipitation (e.g., methanol (MeOH) and/or acetonitrile (ACN) after removing the pre-
cipitate) is commonly applied [22,69]. However, to extract and dissolve non-polar lipids,
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a more apolar organic solvent, such as methyl tert-butyl ether (MTBE), dichloromethane
(CH2Cl2), or chloroform (CHCl3), is usually required [34,70]. Single-phase methods are
attractive because they reduce the time and complexity of the extraction, but they are
also subject to a higher matrix effect and a smaller detection range due to the polarity
diversity of the molecules in the metabolome (e.g., the LogP for citric acid is −1.64, while
the predicted LogP (XLogP) for lysophosphatidylcholine (18:0) and triacylglycerol (48:0)
are 6.6 and 22.1, respectively) [10,40,71,72].

In order to improve the efficiency of the extraction methods, two-phase LE or two-
step LE can be used to increase the range of extracted molecules (e.g., LogP from −10
to up to 25). Popular two-phase extraction techniques for untargeted metabolomics in-
clude the classic Bligh and Dyer (CHCl3/MeOH/H2O, 2/2/1.8, v/v/v) and Matyash et al.
(MTBE/MeOH/H2O, 10/3/2.5, v/v/v) extraction procedures [73,74]. The latter method
replaces CHCl3 for the less toxic MTBE, which also causes a change in the location of
the solvent layers (the organic layer is the upper phase for Matyash’s method) [10,75].
Two-phase extractions for a low amount of sample (e.g., 20 µL of plasma, 106 cells, 2.5 mg
of tissue) have been successfully applied using the above-mentioned (adapted) Bligh and
Dyer, and Matyash techniques to analyze each phase with different LC-MS methods se-
lected based on the LogP of the metabolites [54,76,77]. The successful application of these
methods shows that reproducible extractions for metabolomics can also be obtained with
low sample amounts.

Sample preparation methods based on single-phase separation for zebrafish samples
(Table 1) showed a clear tendency to favor polar metabolites detection, such as amino acids,
tricarboxylic acid (TCA) cycle metabolites, with some of them also detecting polar lipids
(e.g., acylcarnitines and some glycerophospholipids) [15,78], and interestingly, metabolites
from the arachidonic acid metabolism, such as leukotriene B4 and prostaglandin E2 [78].
These latter compounds should be carefully evaluated with as much evidence as possible
(reference standards, MS/MS spectra, retention time match, collision cross section values,
isotopic pattern, mass defect) when detected by untargeted methods since they are usually
present in low concentrations, and require specific analytical methods, including solid-
phase extraction (SPE) extraction [35,79,80].

Strategies using a two-step solvent extraction showed promising results in terms
of metabolite detection and data quality in untargeted methods for tissue samples [56].
Briefly, Want et al. extracted liver tissue samples using MeOH/H2O (1/1, v/v), followed
by centrifugation and the supernatant removal. Subsequently, the solid precipitate was
dissolved in CH2Cl2/MeOH (1/1, v/v) for the extraction of non-polar metabolites [56]. The
application of two-step solvent extraction is an attractive approach for tissue samples, but it
leads to an increased sample preparation time. The extraction requires two homogenization
steps since the extract is centrifuged after the first extraction of the polar metabolites.

In addition to LE, SPE methods can be necessary to concentrate specific classes present
in low concentrations, such as eicosanoids, oxylipins, and steroids [65,81]. Lebold et al.,
successfully applied an SPE method to fractionate three different lipid classes (i.e., sterols,
fatty acids, and prenol lipids) in zebrafish embryos (24 hpf) using a modified polymer-
based sorbent (strong anion exchange) [35]. Previously saponified samples with KOH
were loaded onto the cartridges and the analytes were eluted with formic acid, ACN,
and MeOH (5/47.5/47.5, v/v/v) based on hydrophobic (i.e., cholesterol), π–π bonding
(i.e., α-tocopherol) and ionic interactions (i.e., polyunsaturated fatty acids (PUFAs)). SPE
cartridges commonly used for lipid removal in fat-rich samples, such as Captiva-EMR
(Agilent Technologies, Santa Clara, USA), can also be applied in a two-step method for
extraction of polar and lipid metabolites. This latter cartridge traps lipids based on acyl
chains, allowing small molecules to be eluted in a cleaner extract, which would allow higher
concentration factors due to less interference of lipids. The second step includes the elution
of lipids, in a different fraction, with a stronger organic solvent, such as CHCl3. However,
its application for lipidomics and metabolomics workflow still needs to be evaluated, since
most of the non-commercial applications are used for food analysis [82].
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Table 1. Examples of recent studies using LC-MS metabolomics with zebrafish embryos, larvae, and tissues.

Collection Time Sample per
Replicate Quenching/Storage Extraction Solvent Analysis Reference

96 hpf * 30 pooled
individuals

Snap-frozen with
liquid nitrogen and

stored at −80 ◦C

1 mL (MeOH/ACN/H2 O,
40/40/20, v/v/v)

LC-HRMS
Mostly polar metabolites, e.g.,

amino acids, and
sugars

[20]

120 hpf 20 pooled
individuals

Snap-frozen with dry ice and
stored at −80 ◦C

1.7 mL (MeOH/H2 O/CHCl3,
9/5/3, v/v/v)

LC-HRMS
Mostly polar metabolites, e.g.,

amino acids and
organic acids

[15]

168 hpf
50 mg

(25 mg for metabolomics and 25
mg for lipidomics)

Not mentioned

Polar metabolites: 800 µL of
(MeOH/ACN/H2 O, 2/2/1,

v/v/v)
Lipids: 800 µL of −20 ◦C
CH2Cl2/MeOH (3/1, v/v)

LC-HRMS
Polar metabolites and lipids [47]

120 hpf 15 pooled
individuals Snap-frozen and stored at −80 ◦C

590 µL (MeOH/ H2 O/CHCl3,
15/15/29, v/v/v) +

10 uL of SPLASH LIPIDOMIX®)

2D-LC-HRMS
Lipids [70]

52 hpf * 10 pooled
individuals

Snap-frozen with liquid nitrogen
and stored at −80 ◦C

250 µL H2 O for homogenization.
Samples were freeze-dried and

extracted with 80% MeOH
(volume not specified).

LC-HRMS
Mostly polar metabolites, e.g.,
purine metabolism and some
lipids of the arachidonic acid

metabolism

[78]

144 hpf 20 pooled
individuals

10 µL of 13 mM
sodium

metabisulfite
450 µL of cold MeOH.

LC-MS/MS
Mostly polar metabolites, e.g.,

kynurenine pathway metabolites,
neurotransmitters

[18,19]

48 and
120 hpf

80 pooled
individuals Stored at −80 ◦C Each 20 µL sample was extracted

with 120 µL of cold 50% MeOH.

LC-HRMS
Mostly polar metabolites, e.g.,

amino acids
[46]
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Table 1. Cont.

Collection Time Sample per
Replicate Quenching/Storage Extraction Solvent Analysis Reference

120 hpf * 12 pooled
individuals Not mentioned

Samples were homogenized
in 1 mL H2 O +

unknown amount of CH2Cl2

LC-MS/MS
Lipids [34]

24, 48,
72, and
120 hpf

15 pooled
individuals Stored at −80 ◦C 300 µL (MeOH/H2 O, 80/20 v/v)

LC-HRMS
Mostly polar metabolites, e.g.,

choline, betaine,
methionine, glucose, and TCA

cycle metabolites.

[57]

144 hpf 30 pooled
individuals

Snap-frozen in
liquid

nitrogen
1 mL MeOH

LC-HRMS
Polar metabolites, e.g.,

nucleosides, amino acids, and
some lipid classes, e.g., sterol

lipids,
glycerophospholipids,

sphingolipids

[22]

172 hpf * 200 pooled individuals
(50 mg)

Snap-frozen in
liquid

nitrogen
400 µL (MeOH/H2 O, 4/1, v/v)

LC-HRMS
Polar metabolites, e.g., amino

acids lipids, e.g.,
glycerophospholipids,

arachidonic acid
metabolism

[69]

24, 48,
72, and
120 hpf

10–15 pooled individuals Stored at −80 ◦C

Saponification with alcoholic
KOH with 1% ascorbic acid. The
pH was adjusted to 2.5 with 12
mol/L HCl. Addition of 2.0 mL

of hexane.
Removed organic supernatant.

LC-HRMS(/MS)
Docosahexaenoic acid,
eicosapentaenoic acid,

Arachidonic acid, and Linoleic
acid

[57]
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Table 1. Cont.

Collection Time Sample per
Replicate Quenching/Storage Extraction Solvent Analysis Reference

24 hpf 10 pooled
individuals

Snap-frozen in
liquid nitrogen and stored at −80

◦C

SPE: Added samples to 2 mL 1%
ascorbic acid in EtOH and 1 mL
H2O. Saponification with 300 µL
saturated KOH. Neutralization

with
3 mol/L HCl to pH 7.5.

Lipids were extracted/separated
with Strata-X-A 33 mm
Polymeric Strong Anion

Exchange cartridges (200 mg/3
mL, Phenomenex) using different
combinations of organic solvents:
MeOH for Cholesterol, ACN for
α-tocopherol, FA/ MeOH/ACN

(5/47.5/47.5, v/v/v)
for PUFAs.

LC-Single Quadrupole (MS)
Free fatty acids

Commercial Amplex Red
Assay Kit (Life Technologies,

Carlsbad, CA)
Cholesterol

LC-Electrochemical Detection
α-tocopherol

[35]

24 and
36 hpf

200 and 100 pooled
individuals

Snap-frozen in
liquid nitrogen and stored at −80

◦C
3 mL 66% MeOH

LC-HRMS(MS)
Hydroxy-fatty acids, e.g.,

7-HDHA, 10-HDHA, 14-HDHA,
and

17-HDHA

[35]

72 and 168 hpf 15 pooled
individuals Stored at −80 ◦C

8µL/mg cold MeOH and
3.2µL/mg H2 O.

Added remaining solvents
(8µL/mg CHCl3 and 4µL/mg

H2 O) to the homogenates.
Final ratio: MeOH/H2 O/CHCl3

(2/1.8/2, v/v/v).
Dilution of upper layer 10-fold

and transfer to 1.5 mL vial.

LC-MS/MS
22 amino acids

+ 22 polar metabolites (e.g., urea,
betaine,

uridine, inosine,
xanthine)

[50]
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Table 1. Cont.

Collection Time Sample per
Replicate Quenching/Storage Extraction Solvent Analysis Reference

Adult zebrafish **

Intestines
(6 pooled

individuals)
50 mg

Not mentioned 400 µL of MeOH/H2 O (4/1, v/v)

LC-HRMS
Polar metabolites and lipids, e.g.,
fatty acids, glycerophospholipids,

carnitines

[29]

90 dpf
Liver

(4 pooled
individuals)

Snap-frozen and stored at −80 ◦C

Homogenized in approximately
1.2 mL of MeOH/H2 O (4/1, v/v).
Split into two fractions at a ratio

of 5/1 (v/v) to analyze
metabolites and lipids,

respectively.
Added MTBE, MeOH, and H2 O

to a final ratio of
MTBE/MeOH/H2 O (20/6/7,

v/v/v) to the lipid fraction.

LC-HRMS
Polar metabolites and

lipids
[48]

Adult zebrafish **
Liver

(8 pooled
individuals)

Snap-frozen in
liquid nitrogen and stored at −80

◦C

Homogenized with 800 µL of
MeOH and 200 µL of H2 O.

Collected 750 µL after
centrifugation.

Added another 200 µL H2 O and
400 µL CHCl3.

LC-HRMS
Mostly

glycerophospholipids, amino
acids, and
fatty acids.

[83]

* Approximated value. ** Exact fish age during collection not specified.



Metabolites 2021, 11, 635 11 of 24

2.5. Instrumental Analysis

The analysis of metabolites can be performed using untargeted, semi-targeted/
quantitative, and/or targeted/quantitative approaches. In most cases, an untargeted
method can be used as a first screening approach (e.g., hypothesis-generating), as this tech-
nique is less biased towards certain metabolite classes [10]. Untargeted methods can also
be combined with semi-targeted approaches if there is prior knowledge of which metabolic
pathways may be affected by a specific (exposure) condition. Once the metabolites of
interest have been annotated, a targeted method (hypothesis-driven) can be used in order
to detect changes in the concentration of specific metabolites using reference standards [10].
Metabolomics studies can be carried out using different analytical platforms including GC-
MS, nuclear magnetic resonance (NMR), LC-MS, or a combination of them (e.g., 1H-NMR
with LC-Orbitrap(MS)) [84]). An example of a multi-analytical platform used to study
metabolite differences in zebrafish liver is the work of Ong et al. [52]. The authors used a
combination of 1H-NMR for the analysis of monosaccharides, amino acids, and organic
acids, GC-MS for cholesterol and fatty acids, and LC-MS for the analysis of lipids. How-
ever, more recent zebrafish toxicometabolomics studies (≥2017) reported using LC-HRMS
(Orbitrap or QTOF) [15,28,29,31,33,36,48,51,85–88], followed by 1H-NMR [24,30,89–93] and
GC-HRMS [21,94], while multi-analytical platform studies remain scarce.

In LC-MS analysis, the combination of hydrophilic interaction liquid chromatography
(HILIC, e.g., bare silica, amide, diol, amido, zwitterionic columns) and reversed-phase
liquid chromatography (RPLC, e.g., C18, C8, C30 columns) methods is one the most
comprehensive strategies for untargeted metabolomics, providing a broad metabolite
coverage [95–97]. Currently, C18 columns with sub-2-µm particle size are often used for
untargeted metabolomics and lipidomics as a stand-alone technique, and rarely combined
with HILIC [22,23,31,36,48,51,83,85,87,88,98]. Furthermore, the complementarity of HILIC
to RPLC methods is a highly powerful strategy for polar metabolites that should not be
overlooked, especially when a multiplatform strategy is not employed [97,99]. Depending
on the stationary phase, HILIC columns can have different interaction mechanisms (e.g.,
hydrogen bonding, electrostatic interactions, hydrophilic partitioning) that can benefit the
retention of polar metabolites, which would elute close to the void time in RPLC columns,
and also allow the separation of lipids by the polarity of head groups [95,100]. Due to the
recent development of robust columns and increasing knowledge on how to manipulate
the retention of metabolites (e.g., solvent, salt modifiers, temperature, pH), amide and
aminopropyl HILIC columns have also been used in zebrafish metabolomics studies as a
stand-alone technique [15,20,28,86].

In addition, MS data can be acquired in positive and negative mode with electrospray
ionization (ESI+ and ESI−, respectively) which benefits both acidic and basic functional
groups [101]. Consequently, with the same chromatographic column, two datasets can
be obtained (ESI+ and ESI-). If two chromatographic columns are used (e.g., HILIC and
RPLC), four datasets are obtained which require parallel processing [97]. For instance,
Hu et al. used a combination of RPLC (C18)-based ACQUITY UPLC HSS T3 (100 × 2.1 mm,
1.8 µm) and HILIC-based ACQUITY UPLC BEH Amide (100 × 2.1 mm × 1.7 µm) columns,
both in positive ionization mode [87]. Keerthisinghe et al. used a HILIC Luna aminopropyl
column (150 × 10 mm, 3 µm) for polar metabolites in positive and negative ionization
modes and an RPLC (C18) Zorbax Eclipse Plus RRHD column (50 × 2.1 mm, 1.8 µm) in
positive mode for lipidomics [48]. Recently, Xu et al. analyzed zebrafish embryos using
different combinations of chromatographic methods to evaluate their metabolite cover-
age [70,102]. Their results highlighted the need for two methods, one HILIC based with
an XBridge Amide column (150 × 2.1 mm × 3.5 µm) in ESI+ and one pentafluorophenyl
Kinetex F5 column (150 × 2.1 mm × 2.6 µm) in ESI− to cover the polar metabolome (336
annotated metabolites) and one comprehensive two-dimensional (2D) liquid chromatogra-
phy method with an EVO C18 column (100 × 2.1 mm × 2.6 µm) and a BEH HILIC column
(50 × 2.1 mm × 1.7 µm) for comprehensive lipid profiling of zebrafish embryos (1784 an-
notated lipids). Nevertheless, 2D-LC analysis requires a long analysis time (approximately
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170 min for this later study), which can consequently be considered not particularly suitable
for large batches, solvent consumption, and sample stability.

Furthermore, the separation of isomers and isobars, and consequently, the acquisition
of well-resolved fragmentation spectra is a challenge especially for lipidomics applica-
tions [103,104]. In order to obtain a less time-consuming but comprehensive platform, ion
mobility spectrometry (IMS, a separation technique based on the mobility of ions through
a buffer gas under the influence of an electric field) has been successfully integrated into
LC-MS-based lipidomics and metabolomics workflows [96,105]. One of the key advantages
of the IMS technique is that it can separate ions in milliseconds based on their shape and
size, which is highly convenient for linking LC separations (minutes) and time-of-flight
(TOF)-MS detection (microseconds) for the separation of E/Z isomers, sn-positional iso-
mers, and increasing annotation confidence with the addition of collision cross section
values [104,105].

2.6. Data Analysis

Data derived from metabolomics workflows are of great complexity since it usually
englobes thousands of features (e.g., for LC-MS, an entity with an attributed m/z, retention
time, fragmentation spectra, and a response signal). The workflow for untargeted data
preprocessing includes several steps to obtain a feature signal response matrix (e.g., features
in rows vs. samples in columns). These steps are dependent on the instrument (e.g., GC-MS,
LC-MS, NMR) used to acquire the data. For MS-based instrumentation, if vendor-specific
software is not used, data files need to be converted to an open file format (e.g., mzML,
netCDF, ABF) to be further processed with open-source software packages, such as MS-
DIAL, XCMS, MZmine, and OpenMS [106,107]. The software can be used to perform peak
picking, deconvolution, alignment across samples, and in some cases, the same software
can perform metabolite annotation with experimental and/or in silico libraries (e.g., MS-
DIAL [108]). Peak picking, deconvolution, and alignment processes are performed to detect
ions in a specific region of interest above pre-defined instrumental noise levels, to handle
overlapping peaks, fragments and to align those signals across different samples.

Feature tables do not contain unique signals corresponding to a specific metabolite,
but also redundant features (e.g., different isotopes, charges, and adducts in soft ioniza-
tion techniques such as ESI and MALDI), background signals, etc. [109]. Computational
techniques can address the challenge of isotope and adduct annotation, including the
well-known R package CAMERA (based on peak grouping after retention time and peak
shape correlation to form groups of ions, followed by annotation of possible isotopes and
adducts) and the more recent web application MS-FLO (based on several parameters such
as peak height, retention time alignment and mass similarities to detect adducts, isotopes
and duplicate features in a preprocessed dataset) [109,110]. The number of software pack-
ages, databases for metabolite annotation, and processing tools increase every year, with
the most recent developments compiled in a review paper by Misra [107].

Following data preprocessing, data cleaning (feature reducing) (e.g., remove back-
ground ions and features with low precision and detectability), signal drift correction,
and imputation of missing values are commonly applied [111–113]. Then, data trans-
formation and statistical analysis (univariate and/or multivariate techniques) are per-
formed to identify relevant features for a specific condition, followed by further structure
elucidation and biological interpretation. Depending on the type of statistical analy-
sis (univariate/multivariate), different data pretreatment methods are necessary. Sta-
tistical analysis of metabolomics data is a complex workflow and requires tailored ap-
proaches. Recently, Blaise et al. published a comprehensive protocol for statistical analysis
of metabolomics data, including scaling, normalization, outlier detection, statistical tests,
power tests, and performance evaluation of models [114]. In addition, the authors made the
scripts (Python 3 with Jupyter Notebooks), tutorials, and data freely available on GitHub
(https://github.com/Gscorreia89/chemometrics-tutorials, accessed on 10 August 2021).

https://github.com/Gscorreia89/chemometrics-tutorials
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Importantly, independent of the data analysis workflow used, the Metabolomics
Society Data Analysis Task Group proposed minimum requirements when reporting
metabolomics data that can be used as a guideline for authors and reviewers. These
requirements include preprocessing parameters (e.g., peak picking, deconvolution, align-
ment), pre-treatment strategies (e.g., normalization, scaling, transformation, missing value
imputation, outlier detection), processing (e.g., model selected for analyzing data such as
principal component analysis (PCA)), post-processing (e.g., back-transformation, visualiza-
tion); validation (e.g., training, monitoring, and usage of a test set) [115]. However, they
were proposed in 2007 and an update is required considering the advances in software
and data sharing. For instance, interactive web-based computational laboratory notebooks
(e.g., Jupyter Notebook) and cloud computing have emerged as a possible solution for data
analysis transparency, open collaboration with the integration of codes, figures, tables, and
user-friendly interfaces [116].

3. Quality Management System

As of 2021, metabolomics is considered a mature discipline with more than two
decades of advancements in analytical workflows, software tools, and biological informa-
tion in different biological systems (e.g., in vitro cells, plants, bacteria, animals) [10,44]. In
parallel, guidelines to ensure data reliability and reproducibility have been proposed by
the Metabolomics Standards Initiative (MSI) and the metabolomics Quality Assurance and
Quality Control Consortium (mQACC) [117,118]. The MEtabolomics standaRds Initiative
in Toxicology (MERIT) was created in 2017 to describe practical guidelines and minimal re-
porting standards for regulators to interpret the quality of metabolomics data in the context
of regulatory toxicology [119]. Although the MERIT guidelines were not initially proposed
for academic research, the definitions of commonly used terms in metabolomics (e.g.,
process blanks, system suitability QC, interlaboratory QC, level of confidence in metabolite
annotation), scenarios for applications (e.g., metabolic points of departure (PODs), the
discovery of chemical mode(s) of action and molecular key events (KEs), chemical grouping
for read-across and cross-species extrapolation of toxicity pathways), data acquisition, and
management strategies were described in a detailed and comprehensive manner and their
use could be beneficial for toxicometabolomics research [119].

3.1. Quality Assurance (QA) and Quality Control (QC)

Data quality assessment includes quality assurance (QA) and quality control (QC)
measures to ensure data quality and reduce the risk of misinterpretation of results in a
biological context (Figure 1). QA procedures include the development and continuous
improvement of standard operating procedures for sample collection, preparation, data
acquisition, and data processing. QC activities are undertaken during and after the ex-
periment to monitor and report quality requirements. For metabolomics applications,
these include the acquisition of blank extraction samples, intra-study QC pooled samples
(e.g., mixed aliquots of biological samples representative of the entire sample set), spiking
of samples with internal labeled standards to assess precision during the analysis, and
reference materials for inter-laboratory and long-term studies [120]. However, there is
currently no agreement on which quality metrics should be used and reported.

The mQACC began to address the lack of guidelines and nomenclature by collecting
detailed information on QA and QC practices used by different laboratories using LC-
MS-based untargeted analysis [117]. Pooled QC samples were identified as one of the
most commonly applied quality measurements in untargeted LC-MS-based metabolomics
studies [117]. The importance of QC pooled samples for instrumental source conditioning,
carry-over assessments, data filtering, signal correction, and determination of precision has
been shown by recent software developments and applications [111,121,122].
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Figure 1. Quality management system strategies in the zebrafish metabolomics workflow.
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Furthermore, the main consensus that resulted from the mQACC consortium group
was the prospect of creating a set of minimum QA and QC practices for metabolomics.
Meanwhile, the current guidelines for QA/QC management processes proposed by
Broadhurst et al. can be used for zebrafish metabolomics studies, since they present good
application and reporting practices, including the use of system suitability samples, process
blanks (extraction blanks), pooled QC samples, QC conditioning samples, QC batch correc-
tion, and order of analytical batches [122]. Nevertheless, one of the most important aspects
of QA/QC practices is the description of data acquisition and processing strategies, which
includes feature-reducing strategies [115]. For instance, in the work of Broadhurst et al.,
the authors did not advise the use of pooled QC serial dilution to filter data based on
correlations, since it does not consider a non-linear response, but they mentioned that
further work is required to extend the use of this approach [122]. A recent application of the
QC dilution series and advanced filtering proposed by Sands et al. showed that dilution
QC series, besides its challenges (e.g., poor representation of low abundant metabolites,
correct models for a response, account for matrix effects), can be used to estimate the linear
range and analyte response and improve the data quality of global metabolic studies [123].

3.2. Level of Confidence in Metabolite Annotation

The importance of confidence in metabolite annotation for toxicometabolomics studies
was highlighted by Malinowska et al. [124]. The authors proposed a framework for
confidence levels required for metabolite annotation for different toxicological applications
(e.g., application of metabolomics to derive points of departure require a higher confidence
level in metabolite annotation than chemical grouping studies) using the earliest MSI
confidence levels (1–4) definition [125]. More recently, in the context of mass spectrometry-
based metabolomics, a simplified reporting workflow at the level of the processed data
was proposed by Alseekh et al. [126] including guidelines for sample collection, extraction,
storage, metabolite identification, and reporting (Figure 2). One of the main highlights
of the latter work is the minimum ontology for metabolite documentation in research
articles: analytical identifiers (retention time, theoretical monoisotopic mass, m/z of the
adduct detected, m/z error (in ppm), MS/MS fragments, representative chromatograms,
peak intensity, area for quantified data), and international identifiers for known metabolites
(e.g., HMDB, KEGG, PubChem, LIPID MAPS). The authors proposed identification levels
based on letters (A-D) with sublevels (i, ii, iii), as shown in Figure 2. However, these levels
of confidence reflect more on the basic LC-MS information (e.g., retention time, MS/MS
spectra) used to support the annotation rather than on the level of confidence based on the
metabolite complete structure level.

The Metabolite Identification Task Group of the Metabolomics Society suggests confi-
dence levels based on the metabolite complete structure level which in some cases requires
additional techniques (e.g., ozonolysis or photochemical derivatization to determine the
position of double bonds in glycerolipids). The MSI definition, within the metabolomics
area, can be more robust towards instrumental advancements and the combination of
different techniques to support annotation (e.g., the inclusion of collision cross section
values derived from ion mobility spectrometry resulted in a new rank for confidence levels
of identification of chemicals in environmental research [127]).

The lipidomics community adopted a shorthand notation to standardize lipid nomen-
clature that supports the combination of different MS-derived techniques. This latter
shorthand notation also reflects on the confidence levels [128]. For instance, sn positions
can be determined by both IMS and chromatographic separation which results in the same
confidence level for shorthand notation [129]. Often in MS-derived analysis, structure
information is limited to level C (known formula and structure, unknown stereoisomers),
hence it is important to document the information used to support annotation and use
evidence-based nomenclature for data transparency [126,129,130].
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Figure 2. Overview of confidence levels in compound annotation using different scales. The figure was adapted
from [125–128] and more detailed information about the mentioned confidence levels can be found in [124–129,131].

3.3. Data Sharing

The submission of metabolomics studies to open access repositories, such as Metabo-
Lights (https://www.ebi.ac.uk/metabolights/, accessed on 13 July 2021) and Metabolomics
Workbench (https://www.metabolomics workbench.org, accessed on 13 July 2021) is con-
sidered as the gold standard for metabolomics reporting [126]. While submission require-
ments would benefit from standardization, data submitted to open repositories contribute
to transparency and reproducibility [126,132]. Also, reanalysis of data can drive advances
in computational analysis and the discovery of metabolites that were not found in the
previous studies [133]. As of August 2021, there are 2418 metabolomics datasets pub-
licly available in MetaboLights (849), Metabolomics Workbench (1543), and Metabolomic
Repository Bordeaux (26) combined, which can be consulted via MetabolomeXchange
(http://www.metabolomexchange.org/, accessed on 13 July 2021). However, only 6
datasets using the keywords “zebrafish” or “Danio rerio” were found (Table 2). This indi-
cates that even though it is a highly recommended practice, articles applying metabolomics
to zebrafish are not often submitted to these data repositories.

https://www.ebi.ac.uk/metabolights/
https://www.metabolomics
http://www.metabolomexchange.org/
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Table 2. Zebrafish studies in publicly available repositories.

Title Study Sample Analytical
Technique

Example of Metabolite
Classes Detected * Repository Reference

Metabolomics
characterization of

zebrafish larvae
Research article Larvae RPLC-MS and

HILIC-MS

Hydroxy fatty acids,
tricarboxylic acids, short-chain FA,

folic acids, tetrahydrofolic acids

Metabolomics Workbench
(ST001670) [134]

Fasting wildtype, tfeb
-/- knockout, and lmna
-/- knockout metabolite

profiling of adult
zebrafish

Pilot study Kidney, heart,
muscle, and liver

RPLC-MS and
HILIC-MS - Metabolomics Workbench

(ST000584) -

Zebrafish
Metabolomics:

Model for
Environmental
Metal Toxicity

Seed
project Larvae NMR (1H, 700 MHz)

Acyl carnitines, Amino acids, Amino FA, Benzoic acids, Branched FA,
Carboximidic acids, Cholines,

Dialkylamines, Hydroxy FA, Imidazolines, Organic phosphoric acids,
Primary alcohols, Saturated FA,

Short-chain acids, Sulfones,
TCA acids, Tertiary amines

Metabolomics Workbench
(ST000365) -

Plasticizers as
obesogens in zebrafish

Feasibility
study Larvae RPLC-MS

Amino acids, Amino FA, Xanthines,
Butenolides, Benzoic acid esters,

Catecholamines, Dicarboxylic acids, Dipeptides, Hypoxanthines,
Monosaccharides, Phosphate esters, Pyrimidine

deoxyribonucleosides,
Pyrimidine ribonucleosides,

Pyrimidines, Short-chain acids, Sugar alcohols, Sulfonic acids, TCA
acids

Metabolomics Workbench
(ST000556)

Molecular
structural diversity of

mitochondrial
cardiolipins

Research article
Whole body
embryos and

adults, head, tail
RPLC-MS Cardiolipins (# of carbons 48–84) MetaboLights

(MTBLS636) [135]

Lipidomics dataset of
Danio rerio optic nerve

regeneration model
Data in Brief Adult optic nerve RPLC-MS

Acyl carnitines, Ceramides, Dihydroceramides, Ceramide
1-phosphates, Phytoceramides, Sterol esters, Cardiolipins,

Ubiquinones,
Diradylglycerols, Fatty acids,

Hexosylceramides,
Glycerophosphocholines,

Glycerophosphoethanolamines,
Glycerophosphoglycerols,
Glycerophosphoinositols,
Glycerophosphoserines,

Sphingomyelins, Triradylglycerols

Metabolomics Workbench
(ST001725) [136]

* The metabolite classes were obtained from RefMet [137].
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4. Conclusions and Perspectives

The specific debate of using omics data in the context of OECD test guidelines dates
back for more than a decade and started with assessing the potential added value of
transcriptomics data. From a toxicological perspective, metabolomics could provide a more
detailed understanding of toxic mechanisms of chemicals at a molecular level. The value
of metabolomics studies for different OECD fish test guidelines (e.g., TG 236, 210, 229, 234,
and 203), which typically focus on the measurement of apical endpoints such as mortality,
growth, and reproduction could become an important element of 21st century hazard and
risk assessment strategies. Furthermore, dose-range finding experiments are necessary
to determine relevant exposure scenarios given a specific experimental context and for a
particular toxicological endpoint. Effect concentrations for metabolomics studies can differ
from those observed at other levels of biological organization, meanwhile, it is the research
question that determines the relevant exposure range. For example, the concentrations
required to study metabolic changes associated with loss of reproductive capacity will
be different from those changes associated with loss of equilibrium. Consequently, no
general rules such as using the lowest observed effect concentration (LOEC) for a specific
toxicological endpoint as maximum exposure level for zebrafish toxicometabolomics have
been proposed in this work.

From an analytical chemistry perspective, fast quenching of samples using liquid N2
is necessary to avoid post-collection metabolic changes, while the use of antioxidants can
help to preserve samples during preparation and storage at −80 ◦C. Extraction methods
will depend on the class of metabolites under investigation since global metabolomics
methods with full coverage of the metabolome even though desired, cannot be achieved.
For comprehensive untargeted LC-MS-based metabolomics, liquid–liquid extraction to
separate polar and non-polar metabolites followed by their analyses using different combi-
nations of HILIC-HRMS and RPLC-HRMS has shown high potential. Depending on the
laboratory infrastructure and available time, multi-analytical platform metabolomics can
be used to improve metabolite coverage. Data acquisition parameters, data preprocess-
ing, data pretreatment, statistical analysis, feature annotation, validation, and biological
interpretation need to be carefully evaluated and it is recommended to report each step
in detail according to the minimum requirements proposed by the Metabolomics Society
Data Analysis Task Group. To ensure reliable and high-quality data, a quality management
system is of vital importance. The current guidelines for QA/QC mentioned in this review
with the usage of inter alia system suitability samples, process blanks, pooled QC samples,
and QC conditioning samples, present good application, and reporting practices. In addi-
tion, confidence levels should be used for all annotated metabolites accompanied by the
used confidence level system. Finally, submission of data to open repositories is necessary
to improve transparency and reproducibility of obtained results and allow systematic
comparisons of metabolites and pathways affected by specific classes of chemicals.
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