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A wide range of molecular techniques have been developed for genotyping Candida species. Among them, multilocus sequence
typing (MLST) andmicrosatellite length polymorphisms (MLP) analysis have recently emerged. MLST relies on DNA sequences of
internal regions of various independent housekeeping genes, while MLP identifies microsatellite instability. Bothmethods generate
unambiguous and highly reproducible data. Here, we review the results achieved by using these two techniques and also provide
a brief overview of a new method based on high-resolution DNA melting (HRM). This method identifies sequence differences by
subtle deviations in sample melting profiles in the presence of saturating fluorescent DNA binding dyes.

1. Introduction

Candida species are opportunistic pathogens which can
cause diseases ranging from mucosal infections to systemic
mycoses depending on the vulnerability of the host. The
major pathogen worldwide is Candida albicans [1, 2]. This
fungus is detected in the body microbiota of healthy humans
[3] and accounts for 75% of the organisms residing in the
oral cavity [4]. It is diploid and has a largely clonal mode of
reproduction. However, it can undergo considerable genetic
variability either by gene regulation and/or genetic changes
including chromosomal alterations, mutations, and loss of
heterozygosity (LOH). In fact, LOH events lead to MTL
homozygosis [5], azole resistance [6–8] and microevolution
during infection [9–11], passage through a mammalian host
[12], or in vitro exposure to physiologically relevant stresses
[13].

Non-albicans Candida species such as Candida glabrata,
Candida parapsilosis, Candida tropicalis, Candida krusei,
and Candida dubliniensis are also found with increasing
frequency [14–17]. C. glabrata has been reported to be the

second etiologic agent, after C. albicans, of superficial and
invasive candidiasis in adults in the United States [18, 19],
whereas, in Europe and Latin America, C. parapsilosis is
the specie responsible for approximately 45% of all cases of
candidemia [14, 20].

The ability to discriminate Candida isolates at the molec-
ular level is crucial to better understand the spread of these
species, particularly in hospitals and to assist in an early
diagnosis and initiation of the appropriate antifungal therapy
as these organisms show a range of susceptibilities to existing
antifungal drugs. C. albicans, C. parapsilosis, and C. tropicalis
remain susceptible to polyenes, azoles, and echinocandins
[21]. However,C. glabrata andC. krusei show reduced triazole
susceptibility [22, 23]. In addition, the majority of clade 1 iso-
lates of C. albicans are less susceptible to flucytosine [24].The
faster and more accurate the species and strains can be iden-
tified, the greater the impact in the patient clinical response
is. Several methods, such as pulsed-field gel electrophoresis,
restriction enzyme analysis, Southern-blot assays, random
amplified polymorphic DNA, and amplified fragment length
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Table 1: International consensus gene set used for C. albicansMLST analysis.

Locus Chromosome Gene product Primers Sequenced fragment size (bp)

CaAAT1a 2 Aspartate aminotransferase F: ACTCAAGCTAGATTTTTGGC 349R: CAGCAACATGATTAGCCC

CaACC1 R Acetyl-coenzyme A carboxylase F: GCAAGAGAAATTTTAATTCAATG 407R: TTCATCAACATCATCCAAGTG

CaADP1 1 ATP-dependent permease F: GAGCCAAGTATGAATGATTTG 443R: TTGATCAACAAACCCGATAAT

CaPMIb 2 Mannose phosphate isomerase F: ACCAGAAATGGCCATTGC 375R: GCAGCCATGCATTCAATTAT

CaSYA1 6 Alanyl-RNA synthetase F: AGAAGAATTGTTGCTGTTACTG 391R: GTTACCTTTACCACCAGCTTT

CaVPS13 4 Vacuolar protein sorting protein F: TCGTTGAGAGATATTCGACTT 403R: ACGGATGGATCTCCAGTCC

CaZWF1b 1 Glucose-6-phosphate dehydrogenase F: GTTTCATTTGATCCTGAAGC 491R: GCCATTGATAAGTACCTGGAT
F and R indicate forward and reverse primers, respectively.

polymorphism, were used to track differences among Can-
dida isolates [25, 26]. However, these approaches have limi-
tations such as time consuming, use of radioactive elements,
poor reproducibility, and/or discriminatory power [25, 26].
In the present review, we summarize the most exact and/or
recent DNA-based techniques developed for a better under-
standing of the epidemiology of Candida species. The avail-
ability of the C. albicans genome sequence [27–29] facilitated
studies in comparative genomics and genome evolution.

2. Multilocus Sequence Typing

The multilocus sequence typing (MLST) is based on the
analysis of nucleotide sequences of internal regions of various
independent housekeeping genes. MLST studies for C. albi-
cans, C. glabrata, C. tropicalis, C. krusei, and C. dubliniensis
have been reported (reviewed in [30]). MLST of C. albicans
was introduced during the early 2000s [31, 32]. On the basis
of a collaborative work, an international consensus set of
seven genes for C. albicans MLST have been proposed [33].
This gene set includes AAT1a, ACC1, ADP1, MPIb, SYA1,
VPS13, and ZWF1b (Table 1). MPIb has been renamed PMI1
[34]. Table 1 also shows primers for the amplification and
sequencing of the seven gene fragments.

MLST system has proved to be a useful method for
epidemiological differentiation of C. albicans clinical isolates
[31, 32]. Indeed, isolations of C. albicans strains recovered
from human patients seem to be specific to the patient but
not associated with different anatomical sources or hospital
origin [9, 10, 35, 36]. MLST studies also revealed a population
structure with five major clades of closely related strain types
(numbered 1, 2, 3, 4, and 11) plus various minor clades [37].
Clades do not represent cryptic species as genetic exchange
between and within clades is limited [38]. Clade 1 is particu-
larly rich in flucytosine-resistant isolates [39, 40]. All clade 1
flucytosine-resistant isolates carry a point mutation (R101C)
in the FUR1 gene which encodes uridine phosphoribosyl
transferase [40].

A potential weakness of the C. albicans international
standard gene set is that three of the chromosomes are not

represented and two gene pairs are located on the same
chromosome (Table 1). In order to include highly informative
polymorphisms, a MLST-biased single nucleotide polymor-
phism (SNP) microarray has been developed [41]. This sys-
tem which includes 7 loci from the consensus scheme and
12 additional discrete loci located at intervals along the 8
chromosomes may provide a basis for a standardized system.

MLST schemes have been also reported for C. glabrata
[42]. This typing system is based on fragments of six genes
([42], Table 2). Utilizing this MLST method, several studies
have described the population structure of geographically
diverse collections of C. glabrata isolates [43–45]. Recent
MLST analysis of 230 isolates of C. glabrata from five popula-
tions that differed both geographically and temporally con-
firmed that the six unlinked loci provide genotypic diver-
sity and differentiation among isolates of this species [46].
MLST studies also revealed that C. glabrata strains causing
bloodstream infections have similar population structures
and fluconazole susceptibilities compared to those normally
residing in/on the host [47]. When susceptibility testing of
colonizing isolates while receiving azole therapy was studied,
MLST revealed the occurrence of resistance development far
more frequently in C. glabrata than in any other species [48].
This resistance to azole prophylaxis has led to an increased use
of echinocandin for primary therapy ofC. glabrata infections.
However, decreased susceptibility to echinocandin drugs can
be observed among C. glabrata isolates with mutations in
the FKS1 and FKS2 genes. These genes encode Fks1p and
Fks2p subunits of the 1,3-𝛽-glucan synthase complex, which
synthesizes the principal cell wall component 𝛽-1,3-glucan,
target of echinocandin drugs. In light of this, MLST analysis
performed on isolates with FKSmutations indicated that the
predominant S663P mutation in the FKS2 gene was not due
to the clonal spread of a single resistant phenotype [49].

The MLST system for C. tropicalis comprises six house-
keeping genes ([52], Table 2). Data indicate that C. tropicalis
phylogenetically resembles C. albicans [53]. Both are diploid
organisms, exhibit a predominant clonal mode of reproduc-
tion, and support high level of recombination events, which
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mimic sexual reproduction processes [53]. However, unlike
C. albicans [35], C. tropicalis shows a clonal cluster enriched
with isolates with fluconazole resistant or “trailing growth”
phenotypes [54]. The term “trailing growth” describes the
growth that some isolates exhibit at drug concentrations
above the minimum inhibitory concentration (MIC) after
48 h of incubation, although isolates appear fluconazole
susceptible after 24 h of incubation. However, Wu et al. [55]
reported that C. tropicalis isolates were unrelated to the
fluconazole resistance pattern, suggesting that the antifungal
resistance may develop geographically. Association between
the MLST type of each isolate and flucytosine resistance
has also been observed [40, 56, 57]. It is interesting that
MLST genotypes were only distantly related, thus indicating
that flucytosine resistant strains emerged independently in
different geographic areas [56].

MLST gene sets for C. krusei and C. dubliniensis have also
been described [50, 51]. Characteristics of the housekeeping
loci used for these species are described in Table 2.

3. Microsatellite Length
Polymorphisms Analysis

Microsatellite length polymorphisms (MLP) analysis identi-
fies microsatellite instability. Microsatellites, also called sim-
ple sequence repeats (SSRs) or short tandem repeats (STRs),
are tandem repeat nucleotides comprising 1–6 bp dispersed
throughout the genome. These sequences undergo consider-
able length variations due to DNA polymerase slippage and
as a consequence are highly mutagenic [58]. In Candida
species, this technique has been applied for strain typing
[43–45, 59–63], analysis of population structure [64, 65],
and epidemiological studies [57, 61, 66–68]. For C. albicans,
several polymorphic microsatellite loci have been identified
(Table 3 and references therein). They were located in the
promoter sequence of the elongation factor 3 (EF3) [60,
69], in coding regions of extracellular-signal-regulated kinase
gene (ERK1) [70], downstream of coding sequences of cell
division cycle protein (CDC3) [59, 60, 71] and imidazole
glycerol phosphate dehydratase genes (HIS3) [60] and in
noncoding regions (CARABEME, CAI, CAIII, CAV, CAVI,
and CAVII) [44, 66, 72].These markers were used alone or in
combination.The best discriminatory powers (DPs) obtained
were 0.998 for CAI, CAIII, and CAVI [44] and 0.999 for
EF3, CAREBEME,CDC3,HIS3,KRE6,LOC4 (MRE11),ZNF1,
CAI, CAIII, CAV, and CAVII [73]. The DP estimates the
method ability to differentiate between two unrelated strains.
A high DP value (close to 1) indicates that the typing method
is able to distinguish eachmember of a strain population from
all other members of that population [74]. It is noteworthy
to mention that CA markers were specific for C. albicans
[44, 66]. In fact, CA microsatellites were named after C.
albicans and numbered according to the order of the analysis
[44]. These markers are highly polymorphic since they are
located outside known coding regions, thus being under
inconsequential selective pressures. Recently, an allelicCDC3
ladder has been developed for interlaboratory comparison
of C. albicans genotyping data [75]. This ladder proved to

be important as an internal standard for a correct allele
assignment.

Genotyping systems based on SSR markers have been
also described for C. glabrata. In 2005, Foulet et al. [67]
adopted three polymorphic microsatellite markers located
upstream of the mitochondrial RNase P precursor (RPM2),
metallothionein 1 (MTI), and 𝛿5,6-sterol desaturase (ERG3)
genes to generate a rapid strain typing method with a DP
of 0.84. These markers were specific for C. glabrata isolates.
Addition of three newmicrosatellite markers (GLM4, GLM5,
and GLM6) generated a typing system with a DP value
of 0.941 [76]. However, by combining only 4 microsatellite
markers (MTI, ERG3, GLM4, and GLM5), authors achieved
a DP value of 0.949. A different set of six different microsatel-
lite markers located in noncoding regions (Cg4, Cg5, and
Cg6) and in coding regions (Cg7, Cg10, and Cg11) have
been described [68], although the highest DP value, 0.902,
was reached by using a combination of only four markers
(Cg4, Cg5, Cg6, and Cg10). Another research group adopted
eight polymorphic microsatellite markers distributed among
different chromosomes [77]. This method has a DP value of
0.97, making it suitable for tracing strains. Studies using this
system indicate that C. glabrata is a persistent colonizer of
the human tract, where it appears to undergomicroevolution
[78].

A highly polymorphic CKTNR locus for molecular
strain typing of C. krusei has been identified [43]. Such locus
consists of CAA repeats interspersed with CAG and CAT
trinucleotides. Analysis of the CKTNR allele distribution
suggested that the reproductive mode of C. krusei is mainly
clonal [43].

MLP analysis also proved to be a reproduciblemethod for
molecular genotyping of C. parapsilosis [79]. Seven polymor-
phic loci containing dinucleotide repeats, most of them
located in noncoding regions, were analyzed. The DP calcu-
lated for such loci was 0.971. These microsatellites were not
amplified with DNA from single representatives of related
species, Candida orthopsilosis and Candida metapsilosis [79].
Recently, another research group conducted C. parapsilosis
typing studies using one of the previously reported marker
(locus B, [79]) and three additional new microsatellite loci
located outside known coding regions [80]. This multilocus
analysis resulted in a DP of 0.99. These markers were also
specific for the molecular typing of C. parapsilosis since
no amplification products were obtained with DNA of C.
orthopsilosis and C. metapsilosis.

4. High-Resolution DNA Melting

High-resolution DNA melting (HRM) is a novel technique
for SNPs genotyping and for the identification of new genetic
variants in real time (Figure 1). First, a PCRmethod is used to
amplify specific DNA polymorphic regions in the presence of
saturating DNA fluorophores [81]. The dye does not interact
with single-stranded DNA but binds to double-stranded
DNA, resulting in a bright structure. After PCR amplification,
at the beginning of the HRM analysis, the fluorescence is
high. As DNA samples are heated up, the double-stranded
DNAdissociates releasing the dyewhich leads to a decrease in
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Figure 1: Schematic representation ofHRManalysis for SNPs genotyping. Arrows indicate the positions of the primers for allele amplification
of a region harboring a SNP.TheDNAfluorophore has a bright fluorescence when intercalated to double-strandedDNA (black circle) and low
fluorescence in the unbound state (gray circles).Mispaired nucleotides are shown as diagonally broken lines. PCR products fromhomozygous
wild type (solid lines), heterozygous mutant (dotted lines), and homozygous mutant (dashed lines) were analyzed by normalized melting
curves (a), derivate melting curves (b), and difference plots (c).

the fluorescence intensity (Figure 1(a)).The observedmelting
temperature (𝑇m) and the shape of the melt curve are charac-
teristics of the specific sequence of the fragment (primarily
the GC content and the length). Data can also easily be
interpreted by derivative melting curves (Figure 1(b)) and by
plotting the fluorescence difference between a sample and a
selected control at each temperature (Figure 1(c)) [81]. Some
recent studies used HRM to differentiate clinical Candida
species [82–84]. HRM has been proven to be a sensitive,
reproducible, and inexpensive tool for a clinical laboratory
but exhibits low DP values. DP for CDC3, EF3, and HIS3
markers was 0.77 [84]. However, HRM can be used along
other genotyping methods to increase the resolving power.
In fact, the combination of HRM with MLP and SNaPshot
minisequencing of the CDC3 locus provided a DP value of
0.88 [83].

5. Conclusions

Thedevelopment of DNA sequence-based technologies led to
a great progress in understanding the epidemiology of clinical
isolates of Candida species. Both MLST and MLP analysis
offer a number of technical advantages over conventional
typing methods including extremely high DP values and

reproducibility, ease of use, and rapid reliable data.The selec-
tion of the technique depends on the purpose of the study,
the accessibility of genotypic strains archives, the time avail-
able to complete the analysis, and the cost. MLST remains
the most reliable method for the assessment of population
structure, diversity, anddynamics amongC. albicans, whereas
MLP analysis is most suitable for a rapid and less expensive
study of a limited number of isolates.
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