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ABSTRACT: Epidermal growth factor receptor (EGFR) plays a pivotal regulatory role in treating patients with advanced nonsmall
cell lung cancer (NSCLC). Following the emergence of the EGFR tertiary CIS C797S mutation, all types of inhibitors lose their
inhibitory activity, necessitating the urgent development of new inhibitors. Computer systems employ machine learning methods to
process substantial volumes of data and construct models that enable more accurate predictions of the outcomes of new inputs. The
purpose of this article is to uncover innovative fourth-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-
TKIs) with the aid of machine learning techniques. The paper’s data set was high-dimensional and sparse, encompassing both
structured and unstructured descriptors. To address this considerable challenge, we introduced a fusion framework to select critical
molecule descriptors by integrating the full quadratic effect model and the Lasso model. Based on structural descriptors obtained
from the full quadratic effect model, we conceived and synthesized a variety of small-molecule inhibitors. These inhibitors
demonstrated potent inhibitory effects on the two mutated kinases L858R/T790M/C797S and Del19/T790M/C797S. Moreover,
we applied our model to virtual screening, successfully identifying four hit compounds. We have evaluated these hit ADME
characteristics and look forward to conducting activity evaluations on them in the future to discover a new generation of EGFR-TKI.

1. INTRODUCTION
The epidermal growth factor receptor is a kinase within the
human epidermal growth factor receptor (HER) family and
holds a pivotal regulatory role across multiple malignancies. This
protein family serves as an appealing drug target, particularly
within the context of nonsmall cell lung cancer.1−4 In recent
times, with the intensification of research into tumor targets,
targeted antitumor medications, typified by epidermal growth
factor receptor tyrosine kinase inhibitors (EGFR-TKIs), have
emerged as the primary treatment option for patients in the
advanced stages of nonsmall cell lung cancer (NSCLC). These
drugs have demonstrated notable efficacy, minimal adverse
effects, and extended periods of disease-free progression survival
post treatment.

The EGFR-TKIs, which include the first generation:
erlotinib5 and gefitinib,6 the second generation: dacotinib7

and afatinib,8 and the third generation: osimertinib,9 are
extensively employed in clinical practice, catering to around

90% of patients possessing EGFR-sensitizing mutations. These
inhibitors are commonly administered as standalone treatments
or in conjunction with monoclonal antibodies to address patient
conditions. Unfortunately, prolonged utilization of EGFR
inhibitors has encountered substantial challenges due to the
emergence of acquired drug resistance. This phenomenon has
led to a reduction in clinical effectiveness.10−12 Recently,
approximately 40% of all resistance cases are caused by C797S
mutations, making them the primary cause of resistance to third-
generation inhibitors.13,14 Encouraging strides have been made
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in the development of fourth-generation EGFR-TKIs. Drugs like
BLU-945,15 BLU-701,16 TBQ3804,17 BBT-176,18 BPI-
361175,19 and others have progressed into the realm of clinical
research. However, the advancement of most other drugs to
clinical studies has faltered, and none have successfully cleared
phase III clinical trials. These drugs exhibit diverse structures,
including isoindoline-1-one derivatives, 4-amine-pyrimidine
derivatives, quinoline derivatives, 2-amino-pyrimidine deriva-
tives, and more. Hence, further investigation remains imperative
to uncover the fourth generation of novel EGFR-TKIs.

Computational modeling brings significant advantages to
drug discovery and has found extensive application in computer-
aided drug discovery.20−22 In recent years, numerous QSAR
models for EGFR-TKIs have been developed. In the develop-
ment of wild-type and monomutant EGFR inhibitor models,
Chauhan et al.23 collected 128 quinazoline inhibitors and
developed wild-type EGFR and monomutant EGFR (L858R)
support vector machine (SVM) models. The coefficients of
determination (R2) for the wild-type and mutant models
reached 0.83 and 0.71, respectively. Yan et al. collected a data
set of 1248 EGFR inhibitors and built two classification models
using the methods of Kohonen’s self-organizing map (SOM)
and SVM.24 The SOM model had prediction accuracy rates of
98.5 and 96.3% on the training set and test set, respectively,
while the SVM model had rates of 99.0 and 97.0%, respectively.
They further developed two-dimensional (2D) classification
models and three-dimensional (3D) CoMSIA models for wild-
type and L858R/T790M double mutant EGFR-TKI.25 For 2D
models, the accuracy of each model was greater than 0.87.

Significant strides have been made in the QSAR modeling of
EGFR tyrosine kinase inhibitors. However, there are still gaps
when it comes to modeling small-molecule inhibitors targeting
the EGFRL858R/T790M/C797S triple mutation. This is due to the
short duration of inhibitor studies focused on the C797S
mutation, leading to a small sample size of compounds. Because
of the resulting structural diversity stemming from the relatively
low number of inhibitors targeting triple mutations, it becomes
imperative to train models using known activities and structures
to propel advancements in medicinal chemistry studies. This
paper intends to develop an advanced machine learning model
capable of identifying small-molecule inhibitors that zero in on

the EGFRL858R/T790M/C797S triple mutation. Furthermore, this
model will be applied to virtually screen potential inhibitors, and
molecular structure descriptors will be extracted to guide the
synthesis of inhibitors (Figure 1). A considerable portion of the
existing literature combines all of the descriptors into a single
feature selection method for screening purposes, thereby
rendering it difficult to acquire precise structural descriptors
for guiding compound synthesis. In this context, we introduced
an integrated framework that initially employs the full quadratic
effect model to screen structural descriptors, followed by
utilizing Lasso for screening nonstructural descriptors. This
approach guarantees the acquisition of essential structural
molecular descriptors crucial for predicting activity, thereby
furnishing a broader array of avenues for designing molecular
structures. To initiate the process, we amassed a data set
comprising 221 small-molecule inhibitors specifically targeting
the EGFRL858R/T790M/C797S triple mutation. The open-source
toolkit RDKit was employed to condense the SMILES
representation of each inhibitor, yielding a comprehensive set
of descriptors elucidating structural information. Subsequently,
an integrated framework combining full quadratic effect
modeling and Lasso modeling was employed to meticulously
select pivotal descriptors, encompassing both structural and
general descriptors. These acquired descriptors were then
employed in training the support vector regression (SVR)
model. Concurrently, the structural descriptors played a pivotal
role in steering the synthesis of small-molecule inhibitors
engineered to target the EGFRL858R/T790M/C797S triple mutation.
This was corroborated through kinase inhibition activity
experiments. Furthermore, our model was extended to virtual
screening, wherein molecular simulation docking techniques
were harnessed to identify the potential EGFR-TKIs. The safety
of these identified hits was subjected to rigorous analysis via an
ADME evaluation. Ultimately, by leveraging the structural
descriptors as guidance, three inhibitors were meticulously
designed and synthesized. In-depth in vitro kinase activity assays
were subsequently conducted to validate their efficacy in
inhibiting the activity of the triple mutant kinases, with varying
degrees of success. Moreover, virtual screening resulted in the
identification of four hits with the potential to inhibit triple

Figure 1. Flowchart of molecular descriptor selection, model construction, and virtual screening.
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mutant kinases. These hits are now poised for further in-depth
investigation and study.

2. MATERIALS AND METHODS
2.1. Data Preparation.We collected 30 papers published in

recent years, which focus on small-molecule inhibitors of EGFR
L858R/T790M/C797S triple mutations and compiled a data set
containing 221 valuable active structures and their correspond-
ing kinase inhibitory activities (expressed as IC50).

26−55 For
screening efficiency, only structures with IC50 < 5 μM and with
accurate numerical representation have been retained in the
collation. The activity values were converted to the
pIC50(−log10(IC50)) for the sake of the same magnitude on
our data.
2.2. Data Preprocessing. In order to validate the

performance of the machine learning models, the whole data
set was split into a training and a test set at a 3:1 ratio randomly,
whose training set included 165 compounds and the test set
included 56 compounds.

An important challenge in computational chemistry was to
present molecular structures as pieces of information so that
computers can process them and use them to train models. The
method we used here is to convert the compound SMILES
formula into 2D descriptors via RDKit,56 which is an open-
source toolkit for cheminformatics based on 2D and 3D
molecular manipulations of compounds. The generated
molecular descriptors capture various features of individual
molecules, including molecular properties, connectivity, com-
position, topological information, and MOE-type (molecular
operating environment) information.

In this work, calculated molecule descriptors and the pIC50
values of the whole data set were standardized using the
following equation

* =x
x x

xi
i mean

std (1)

where xi* represents the scaled value; xi represents the original
value; xmean represents the mean value; and xstd represents the
standard deviation (SD).
2.3. Feature Selection. There are two types of descriptors,

structural and nonstructural descriptors, in the data set. The
structural descriptors can help to filter the new drugs, and the
nonstructural descriptors can benefit the prediction of activity of
new drugs. It is crucial to select both useful descriptors that will
be used to train the prediction model. Thus, in this work, we
proposed an integrated framework by using the full quadratic
effect model and the Lasso model for the selection of important
molecular descriptors to develop a machine learning model and
guide the subsequent inhibitor synthesis. We used the full
quadratic effect model to take the lead in selecting the
descriptors with significant effects from the structural molecular
descriptors. On the other hand, given that the data set used in
this paper was high-dimensional and sparse, where the number
of variables (221) and the number of features (208) were close,
the Lasso model was used to filter significant nonstructural
descriptors from the 208 molecular descriptors calculated by
RDKit. Finally, the descriptors screened from the fusion model
described above were fitted together to build a machine learning
model and guide the synthesis of inhibitors.

2.3.1. Structural Descriptor Selection. The full quadratic
effect model is a type of fixed effect model that describes the
causal relationship between the factors and the response that

persists throughout the experiment. It reveals the causal
relationship between the factors and response by employing a
regression model to find out the useful first-order effects,
second-order effects, and interaction effects between factors (eq
2) that have a significant effect on the dependent variable

= + + + + + +Y x x x x x x0 1 1 2 2 3 1
2

4 2
2

5 1 2 (2)

where Y represents the response, x1 and x2 represent the effects
of factors, ε represents the random error term, and β0−β5
represents the parameters.

In practice, the model can be estimated and extrapolated by
statistical software to understand the relationships among the
independent variables in order to better understand and
interpret the data. In this paper, the OLS model was built
using the statsmodels package in Python, containing the first-
order and interaction effects of the variables as well as the
second-order effects, with the size of the p-value used to
determine whether the effect was significant.

2.3.2. Lasso. Lasso regression is a widely used statistical
algorithm for variable selection. It is a least-squares with a
penalty term (eq 3). Unlike the L2 penalty term in ridge
regression, the L1 penalty term in Lasso regression achieves
feature selection by compressing the coefficients of insignificant
variables to zero without setting any value to zero. Therefore, for
high-dimensional sparse data sets, it is more suitable to use Lasso
regression to select features
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2.4. Activity Prediction Model Development and
Evaluation. 2.4.1. SVR Model. Support vector regression
(SVR) model is a widely used supervised learning model for
regression analysis, which was first proposed by Drucker et al.57

It translates the low-dimensional linearly indivisible data set into
a high-dimensional space via a nonlinear transform defined by
inner product function and then calculates the optimal
hyperplane by minimizing the distance to the furthest data
point from the hyperplane. The introduction of SVR is available
in ref 58.

In this work, we used the RBF kernel function (eq 4), which
transforms the input vector from a low-dimensional space to a
high-dimensional space and generates outputs through the
weighted summation of its hidden units. As a result, it is suitable
for tackling nonlinear problems. The optimization of parameters
C, ε (eq 5), and γ was taken out by using the lattice search
method with 5-fold cross-validation. In 5-fold cross-validation,
the training data were randomly divided into a training set and a
test set five times, and we scored each test set by the mean-
squared error (MSE), with the best average score indicating the
best hyperparameters. We repeated the 5-fold cross-validation
10 times and obtained the average score for each set of
hyperparameters. Then, we averaged these MSE values, with the
minimal mean MSE value corresponding to the optimal
hyperparameter

= || ||K x y x y( , ) 2 (4)
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2.4.2. Model Evaluation. In this work, two universal statistic
metrics (R2 and MSE) were applied to assess the model
effectiveness. The R2 and MSE were calculated by eqs 6 and 7,
respectively
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where n represents the total number of compounds; y represents
the observed value of a compound; ŷ represents the predicted
value of a compound; and y̅ represents the average of y.
2.5. General Procedure for Synthesis. The coupling

reaction of 2,4-dichloroquinazoline and tert-butyl-4-(2-
aminoethyl)piperazine-1-carboxylate was catalyzed by triethyl-
amine. The product was coupled with phenylboronic acid with
different structures under a palladium catalyst. The tertiary
butoxycarbonyl protecting group and methyl group of the
compound were removed in the presence of boron tribromide to
give the final product. The reaction steps are shown in the S1.

2.5.1. tert-Butyl-4-(2-((2-chloroquinazolin-4-yl)amino)-
ethyl)piperazine-1-carboxylate (2). 1.75 g (7.63 mmol) of
tert-butyl-4-(2-aminoethyl)piperazine-1-carboxylate was added
to a 100 mL round-bottom flask and 30 mL of tetrahydrofuran
was dissolved; 1 mL (7.63 mmol) of triethylamine and 1.51 g
(7.63 mmol) of 2,4-dichloroquinazoline were added to the
reaction system and stirred at 25 °C for 4 h. After the reaction, it
was concentrated under reduced pressure, dissolved in 20 mL of
DCM, and extracted three times with a saturated sodium
carbonate solution. The organic phase was combined and
concentrated under reduced pressure. A yellow oily product of
2.5 g was obtained through silica gel column chromatography
and purification, with a yield of 83%.

A white solid; yield: 83%; 1H NMR (400 MHz, chloroform-d)
δ 7.81−7.68 (m, 3H), 7.50 (ddd, J = 8.2, 6.4, 1.8 Hz, 1H), 3.81−
3.71 (m, 2H), 3.53 (q, J = 4.7, 4.1 Hz, 4H), 2.78 (t, J = 5.9 Hz,
2H), 2.60−2.49 (m, 4H), 1.49 (s, 9H).

2.5.2. tert-Butyl-4-(2-((2-(2-hydroxyphenyl)quinazolin-4-
yl)amino)ethyl)piperazine-1-carboxylate (3a). 0.50 g (1.28
mmol) of compound 2, 0.17 g (1.28 mmol) of (2-
hydroxyphenyl) boronic acid, and 0.016 g (0.011 mmol) of
tetra (triphenylphosphine) palladium were added in a 100 mL
three-necked flask, placing the reaction system in a nitrogen
atmosphere. 10 mL of 2 M sodium carbonate solution, 10 mL of
n-butanol, and 6 mL of toluene were added in sequence and
reacted at 110 °C for 18 h. During this time, TLC monitors the
reaction process. After the reaction was completed, heating was
stopped and the reaction system was filtered through diatoma-
ceous earth and washed with ethyl acetate; the filtrate was
extracted with saturated sodium bicarbonate solution three
times, the organic phase was merged, and a white solid product

of 0.42 g was obtained by silica gel column chromatography,
with a yield of 75%.

A white solid; yield: 75%; 1H NMR (400 MHz, chloroform-d)
δ 8.54 (dd, J = 7.9, 1.8 Hz, 1H), 7.77−7.67 (m, 2H), 7.40 (m, J =
23.0, 8.6, 7.0, 1.6 Hz, 2H), 7.04 (dd, J = 8.2, 1.2 Hz, 1H), 6.94
(ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 6.73 (t, J = 4.5 Hz, 1H), 3.84 (q, J
= 5.7 Hz, 2H), 3.52 (t, J = 5.1 Hz, 4H), 2.79 (t, J = 6.0 Hz, 2H),
2.54 (t, J = 5.1 Hz, 4H), 1.50 (s, 9H).

2.5.3. tert-Butyl-4-(2-((2-(5-cyano-2-hydroxyphenyl)-
quinazolin-4-yl)amino)ethyl)piperazine-1-carboxylate (3b).
A white solid; yield: 72%; 1H NMR (400 MHz, chloroform-d)
δ 8.07 (d, J = 2.2 Hz, 1H), 7.93−7.87 (m, 1H), 7.81−7.71 (m,
2H), 7.67 (dd, J = 8.6, 2.2 Hz, 1H), 7.49 (ddd, J = 8.3, 7.1, 1.2
Hz, 1H), 7.06 (d, J = 8.7 Hz, 1H), 3.91 (s, 3H), 3.75 (q, J = 5.5
Hz, 2H), 3.49 (t, J = 5.0 Hz, 4H), 2.75 (t, J = 6.0 Hz, 2H), 2.51 (t,
J = 5.0 Hz, 4H), 1.47 (s, 10H).

2.5.4. tert-Butyl-4-(2-((2-(5-chloro-2-hydroxyphenyl)-
quinazolin-4-yl)amino)ethyl)piperazine-1-carboxylate (3c).
A yellow solid; yield: 72%; 1H NMR (400 MHz, chloroform-
d) δ 7.90 (dd, J = 8.4, 1.2 Hz, 1H), 7.77−7.71 (m, 2H), 7.45
(ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.31 (dd, J = 8.8, 2.8 Hz, 1H),
6.93 (d, J = 8.8 Hz, 1H), 6.73 (t, J = 4.7 Hz, 1H), 3.82 (s, 3H),
3.74 (q, J = 5.6 Hz, 2H), 3.48 (t, J = 5.0 Hz, 4H), 2.71 (t, J = 6.0
Hz, 2H), 2.49 (t, J = 5.0 Hz, 4H), 1.47 (s, 9H).

2.5.5. 2-(4-((2-(Piperazin-1-yl)ethyl)amino)quinazolin-2-
yl)phenol (4a). 0.20 g (0.44 mmol) of compound 3a was
added to a 50 mL Schlenk flask. 15 mL of anhydrous
dichloromethane was dissolved in a nitrogen atmosphere and
stirred at −30 °C for 15 min; then, 514 μL (5.34 mmol) of boron
tribromide was added, and after 1 h, the reaction was moved to
room temperature. After the reaction, 15 mL of methanol was
added to a low-temperature bath at −30 °C to quench the
reaction. The solvent was removed by vacuum distillation and
dissolved in 20 mL of ultrapure water. The pH was adjusted to
12 or above, extracted three times using a mixture of 18 mL of
dichloromethane and 2 mL of methanol, and the organic phase
was merged. Vacuum distillation was used to remove solvents,
and reverse phase silica gel column chromatography was
performed to obtain 102 mg of green solid product with a
yield of 65%.

A white solid; yield: 65%; mp: 170.6−173.3 °C; 1H NMR
(400 MHz, methanol-d4) δ 8.44 (dd, J = 7.9, 1.6 Hz, 1H), 7.95
(d, J = 8.1 Hz, 1H), 7.73−7.60 (m, 2H), 7.44−7.27 (m, 2H),
6.94−6.83 (m, 2H), 3.81 (t, J = 6.9 Hz, 2H), 2.86 (t, J = 4.9 Hz,
4H), 2.71 (t, J = 6.9 Hz, 2H), 2.57 (s, 4H). 13C NMR (101 MHz,
methanol-d4) δ 161.34, 160.99, 159.39, 147.16, 132.88, 131.89,
129.07, 125.90, 125.46, 122.00, 119.55, 117.97, 116.87, 113.61,
57.03, 53.62, 44.74, 37.52. HRMS(ESI) m/z: ([M + H]+) calcd
For C20H24N5O+: 375.1976, found: 375.1981.

2.5.6. 2-(5-Cyano-2-hydroxyphenyl)-N-(2-(piperazin-1-yl)-
ethyl)quinazolin-4-aminium (4b). A yellow solid; yield: 20%;
mp: 179.2−181.3 °C; 1H NMR (400 MHz, methanol-d4) δ 8.29
(s, 1H), 8.08 (dd, J = 8.1, 1.1 Hz, 1H), 7.78−7.72 (m, 2H),
7.53−7.43 (m, 2H), 6.85 (d, J = 8.6 Hz, 1H), 3.90 (t, J = 6.9 Hz,
2H), 2.90 (s, 4H), 2.80 (t, J = 6.9 Hz, 2H), 2.64 (s, 4H). 13C
NMR (101 MHz, methanol-d4) δ: 159.55, 159.43, 144.62,
134.98, 134.07, 133.36, 126.31, 125.47, 122.21, 119.79, 119.44,
118.90, 113.81, 102.78, 100.18, 56.84, 53.47, 44.85, 37.67.
HRMS(ESI) m/z: ([M + H]+) calcd For C21H23N6O+:
375.1928, found: 375.1929.

2.5.7. 2-(5-Chloro-2-hydroxyphenyl)-N-(2-(piperazin-1-yl)-
ethyl)quinazolin-4-aminium (4c). A green solid; yield: 22%;
mp: 172.4−174.2 °C; 1H NMR (400 MHz, methanol-d4) δ 8.40
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(d, J = 2.7 Hz, 1H), 8.02 (dd, J = 8.2, 1.4 Hz, 1H), 7.79−7.66 (m,
2H), 7.48 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.27 (dd, J = 8.7, 2.8
Hz, 1H), 6.89 (d, J = 8.8 Hz, 1H), 3.87 (dd, J = 8.3, 5.9 Hz, 2H),
2.91 (t, J = 4.9 Hz, 4H), 2.80−2.63 (m, 6H). 13C NMR (101
MHz, methanol-d4) δ: 160.19, 159.69, 159.51, 146.64, 133.02,
131.46, 128.17, 126.05, 125.84, 122.63, 121.98, 120.63, 118.55,
113.70, 56.89, 53.67, 44.74, 37.51. HRMS(ESI) m/z: ([M +
H]+) calcd. For C20H23ClN5O+: 384.1586, found: 384.1595.
2.6. Kinase Profiling. All enzymatic reactions were

performed at 30 °C for 40 min as the assay method reported
by Kashem. 50 μL of reaction mixture contained 40 mM tris, pH
7.4, 10 mM MgCl2, 0.1 mg/mL of bovine serum albumin (BSA),
1 mM of dithiothreitol (DTT), 10 μM of adenosine
triphosphate (ATP), 25 ng of kinase, and 0.2 mg/mL of enzyme
substrate (Poly (Glu, Tyr)). Compounds were diluted in 10%
dimethyl sulfoxide (DMSO), and 5 μL of this dilution was added
to 50 μL of the reaction mixture so that the final concentration of
DMSO was 1% in all reactions. The assay was performed by
using a Kinase-Glo Plus luminescent kinase assay kit. It measures
kinase activity by quantifying the amount of ATP remaining in
the solution after the kinase reaction. The luminescent signal
from the assay correlates with the amount of ATP present and
inversely correlates with the increase in kinase activity. The IC50
values were calculated using the nonlinear regression of
normalized dose responses using graphpad prism 5.0 soft-
ware.59,60

2.7. Virtual Screening.To identify potential tyrosine kinase
inhibitors (TKIs) for EGFRL858R/T790M/C797S mutations, we
utilized an SVR model to conduct virtual screening experiments
on a small-molecule compound data set sourced from the
CHEMBL database. Molecular docking was performed by using
the CDOCKER module in Discovery Studio. All compounds
underwent structure optimization using the MM2 method of
ChemDraw 3D and were assigned a Forcefield in the simulation
module. The EGFRL858R/T790M/C797S protein (PDB:6LUD)61

was used as the protein receptor for docking. Before docking, the
protein receptor was preprocessed by inserting missing atoms in
incomplete residues, modeling the missing loops, and removing
cocrystallized water. To generate an aspherical grid with a radius
of 10 Å, the binding site was defined around the centroid of the
ligand. The resulting protein−drug complexes were then
analyzed for their interactions after the docking simulations.

The ADME properties play a critical role in determining the
efficacy and safety of drug candidates. Predicting these

properties is essential to preventing drug failure during clinical
trials. To this end, the Swiss ADME web server, offered by the
Swiss Institute of Bioinformatics (SIB), is employed to compute
several properties, such as drug-likeness, synthetic accessibility,
and PAINS, for the selected compounds.62 The drug-likeness
can be predicted by several rules, such as Lipinski, Ghose, Veber,
Egan, and Muegge. Furthermore, the synthetic accessibility of
the compounds is evaluated on a scale of 1−10, where a lower
score indicates an easier synthetic route and a higher score
indicates a more complex route. Compounds that satisfied the
criteria for drug-likeness were free of PAINS, demonstrated
favorable ADME properties, and were readily synthesized, which
are considered the most promising drug candidates.

3. RESULTS AND DISCUSSION
3.1. Diversity of Data Set. The data set of 221 small-

molecule inhibitors of EGFRL858R/T790M/C797S triple mutations
with various molecular structures was first visualized by the
bioactivity (pIC50) distribution. It was generally accepted that a
compound was highly active when its IC50 < 100 nM, i.e., pIC50
> 7, and from Figure 2A, it was found that 58% of the inhibitors
were highly active. Then, to measure the similarity of molecular
structures, we calculated the Tanimoto coefficients on the basis
of MACCS fingerprints. In general, compounds with a
Tanimoto coefficient less than 0.7 could be considered to
have significant variability. The frequency of distribution
histogram (Figure 2B) demonstrated the similarity of each
inhibitor. It was obvious that there were 79.5% pairs of inhibitors
in the whole data set whose Tanimoto coefficient values were
less than 0.70. It can be concluded that the data set employed in
this study exhibited a high degree of diversity.
3.2. Performances of Machine Learning Models.

3.2.1. Feature Selection. In order to select the most pertinent
descriptors relating to the bioactivity (pIC50), we initiated the
process with 10 molecular structural descriptors extracted from
RDKit. Specifically, these descriptors were NOCount, Num-
HAcceptors, NumAromaticHeterocycles, fr_C_O, fr_Nhpyr-
role, fr_amide, fr_aniline, fr_imidazole, fr_piperdine, and
fr_piperzine. These descriptors hold substantial influence over
EGFR-TKIs and represent fundamental facets of the molecular
structure. Both NOCount and NumHAcceptors denote the
counts of nitrogen/oxygen and hydrogen bond acceptors,
respectively. These counts are pivotal for fostering interactions
in the domain structure. The remaining descriptors, which

Figure 2. Histograms of the distribution of pIC50 values (A) and the Tanimoto coefficient (B) for 221 compounds.
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encompass the tally of aromatic heterocycles, ketoaldehydes,
pyrroles, amides, anilines, imidazoles, piperidines, and piper-
azines, are extensively utilized within EGFR-TKIs. Moreover,
their structural existence within these compounds has been
documented in various reports. A full quadratic effect model was
constructed by 10 structural molecule descriptors with an R2 of
0.750 and a Prob (F-statistics) of 7.33 × 10−26, which showed
the accuracy and effectiveness of the model. Out of 65 variables,
10 are first-order effects, 45 are interaction effects, and 10 are
second-order effects. The p-values of three first-order effects and
two interaction effects are less than 0.05 (Table 1), indicating a

significant effect between this variable and the dependent
variable pIC50. Among the three first-order effects, aromatic
heterocycles and aniline structures are commonly used in the
structural design of EGFR-TKIs (Figure 3). Aromatic nitrogen
heterocycles, in particular, often act as the parent core structure
of inhibitors. For example, Gefitinib is the first-generation
EGFR-TKI used for the treatment of nonsmall cell lung cancer
caused by primary mutations.63 Amino-quinazoline can form
hydrogen bond interactions with Met793 and Thr790 of
tyrosine kinases. To address the continuous occurrence of
acquired resistance, the fourth-generation EGFR-TKI Angew-
2017 continues the aminoquinoline structure.64 It can efficiently
inhibit the Del19/T790M/C797S mutant kinase (IC50 = 17.9
nM). Brigatinib, a fourth-generation EGFR-TKI, has structural
similarities to osimertinib. The IC50 value for the L858R/
T790M/C797S triple mutant kinase is 38.3 nM. In the
molecular simulation of brigatinib and tyrosine kinase, the part
replaced by piperidine is defined as the part with low affinity and
can be modified. This is consistent with the negative correlation
results of the piperidine structure in the full quadratic effect
model.65

Subsequently, we employed the Lasso model to identify
significant molecular descriptors from the comprehensive set of
descriptors (totaling 208) calculated by using RDKit. The
outcomes of this endeavor are presented in Table 2. Ultimately,
we amalgamated the 5 variables extracted from the full quadratic

effect model with the 7 variables pinpointed by the Lasso model,
constituting a holistic collection of pivotal molecule descriptors
for the purpose of constructing a support vector regression
model.

3.2.2. SVR Model. For constructing the SVR model with the
RBF kernel, we selected three optimal parameters (C, γ, ε) by
using the lattice search method with 5-fold cross-validation. As a
result (Table 3), the best parameters C = 1.7, γ = 0.11, ε = 0.3 for

the SVR model built with 12 important molecule descriptors and
an R2 of 0.745 and an MSE of 0.255 were obtained for test set.
The calculated and experimental values of bioactivity (pIC50) on
the SVR model are shown in Figure 4.
3.3. Synthesis of Inhibitors Based on Structural

Descriptors. Following the utilization of a comprehensive
quadratic effect model, structural descriptors that offered more
robust guidance for inhibitor synthesis were preserved.
Grounded in the insight gleaned from these descriptors, we
judiciously formulated and synthesized inhibitors aligned with
their structural attributes. Subsequently, we validated the
inhibitory potential of these inhibitors through a series of in
vitro experiments.

In the first-order effect, due to the negative correlation
between piperidine and the dependent variable pIC50, the
presence of piperidine structures should be avoided. At the same
time, the coefficient of aniline and aromatic heterocycles in the
interaction is negative, indicating that the number of aniline or
aromatic heterocycles present will affect the positive correlation
of the activity of other moieties. Therefore, in the design, efforts

Table 1. Results of the Full Quadratic Effect Model

variable coefficient
standard

error p-value

NumAromaticHeterocycles 2.3402 1.030 0.024
fr_piperdine −3.8413 1.524 0.013
fr_aniline 1.4642 0.552 0.009
NumAromaticHeterocycles*

fr_piperdine
−1.2650 0.373 0.001

NumAromaticHeterocycles* fr_aniline −0.4882 0.186 0.009

Figure 3. Structural analysis of classical EGFR-TKIs.

Table 2. Results of the Lasso Model

descriptor description

BCUT2D_MWHI similarity calculations of a property at a certain distance
from each atom

BCUT2D_CHGHI charge distribution calculations for the atoms
Chi2v the second-order valence bonding index of a molecule
HallKierAlpha calculation of the similarity of the charge distribution

and arrangement of atoms
PEOE_VSA10 atomic partial charges on the van der Waals surface

area of a molecule in the range [0.10, 0.15].
EState_VSA7 EState VSA Descriptor 7 (1.81≤ x < 2.05)
VSA_EState2 VSA EState Descriptor 2 (4.78≤ x < 5.00)

Table 3. Performance of the SVR Model

training set test set

modeling method MSE R2 MSE R2

SVR 0.147 0.853 0.255 0.745
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should be made to avoid an overwhelming increase in the
number of aniline or aromatic heterocycles. We used 2-aryl-4-
aminoquinazole as the starting point. It is not only a classic
mother nucleus structure but also contains two relatively
balanced structures: aniline and aromatic heterocycles. The
regulation of the structure−activity relationship was achieved by
replacing different substituents in the aromatic group. To satisfy
the interaction between inhibitors and the solvent region outside
the tyrosine domain, piperazine structures were connected from
the perspective of medicinal chemistry design. A total of 3
inhibitors were synthesized through the above design shown in
Figure 5 (4a−c).
3.4. In Vitro Enzymatic Activity Assay. Angew-2017

containing 2-aryl-4-aminoquinazole structure showed excellent
inhibitory activity against Del19/T790M/C797S.64 Therefore,
when in vitro enzyme inhibition experiments on inhibitors with
2-aryl-4-aminoquinazole as the mother nucleus were conducted,
two triple mutated kinases, L858R/T790M/C797S and Del19/
T790M/C797S, were considered. The results are listed in Table
4.

The findings demonstrated that the synthesized compound
exhibited concurrent inhibitory activity against both triple
mutated kinases L858R/T790M/C797S and Del19/T790M/
C797S. Notably, the presence of potent electron-withdrawing
substituents within the phenolic hydroxyl group emerged as a
critical determinant for the inhibitor’s activity. Compound 4c,
which was substituted with chlorine, exhibited the strongest
inhibitory effect on both triple mutated kinases (IC50

L858R/T790M/C797S = 0.277 μM, IC50
Del19/T790M/C797S = 0.089

μM). Compound Angew-2017 demonstrated a stronger
inhibitory effect on enzyme activity compared to that of the
synthesized compound. This compound contained more
aromatic heterocyclic structures in its composition. These
observations suggest that the number of aromatic heterocycles
could have a positive correlation with activity, which aligns with
the findings of the full quadratic effect model. In order to
determine the binding effect between the synthesized
compound and the active site of the enzyme, molecular docking
was performed between 4a−c and EGFRL858R/T790M/C797S triple
mutated kinase (Figures S17−S19). The results showed that
4a−c can bind to kinase active sites in different forms. The
experimental results indicated that the synthesized compounds
could be further studied as excellent lead compounds for
discovering fourth-generation EGFR-TKIs
3.5. Virtual Screening. In this study, a data set of 50,000

compound molecular structures, sourced from the ChMEBL
database, was utilized for virtual screening. A pIC50 value
threshold of above 7.5 was set to ensure empirical significance.
Consequently, 35 compounds, exhibiting pIC50 values surpass-
ing 7.5 in the SVR model, were pinpointed as potential
inhibitors.

3.5.1. Molecular Docking. Molecular docking is a computa-
tional method to identify the bioactive conformations of small
molecules within protein binding sites. We employed this
method to dock 35 compounds selected through virtual
screening with the EGFRL858R/T790M/C797S protein
(PDB:6LUD). After the ligands were prepared, a total of 665
conformations were generated. The docking results were sorted
by the size of the -CDOCKER ENERGY score, and four hits
with a score greater than 30 were obtained.

The visual analysis of the docking results revealed that all four
hits were able to interact with the structural domains of the
EGFR L858R/T790M/C797S triple mutant proteins in different ways,
as shown in Figure 6. Hydrogen-bonding interactions were
observed in all compounds, involving amino acids, such as
MET793, SER797, LYS745, and PRO794, among others.
Aromatic structures also played an important role in the
interaction of compounds with tyrosine kinases such as Pi-Alkyl
and Alkyl interactions. The potential hit structures discovered
above will provide new possibilities for the design of a new
generation of EGFR inhibitors.

3.5.2. ADME Analysis. ADME parameters are crucial in
determining the potential of a chemical compound to function
as an active drug. Solubility, lipophilicity, and bioavailability,
among other physicochemical properties, are critical factors in

Figure 4. Calculated vs experimental values of bioactivity (pIC50) on
the SVR model.

Figure 5. Structure of compounds based on structural descriptors.
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evaluating the drug-likeness of a compound. All four hits
demonstrated excellent physicochemical properties, as high-
lighted in Table 5. Each hit satisfied specific criteria, including
solubility (−6 < Log S < 0), lipophilicity (0.7 < Log P < 5),
molecular weight (150 < MW < 500 g/mol), polarity (20 <
TPSA < 130), saturation (0.25 < fraction Csp3 < 1), hydrogen

bond acceptors (0 < HBA < 10), and hydrogen bond donors (0

< HBD < 5). Furthermore, drug-likeness was evaluated using

important rule-based approaches such as Lipinski’s rule of five

and Ghose, Veber, Egan, and Muegge (Table 6). All four hits

showed a bioavailability score of 0.55, with no PAINS alerts and

Table 4. In Vitro Enzyme Inhibitory Activity of the Synthesized Compound on the Triple Mutant EGFR and the Number of
Structural Descriptors Contained in the Compounda

compound EGFRL858R/T790M/C797S IC50 (μM) EGFRDel19/T790M/C797SIC50 (μM) fr_aniline NumAromaticHeterocycles

4a 1.221 ± 0.031 1.432 ± 0.022 1 1
4b 0.736 ± 0.044 0.220 ± 0.002 1 1
4c 0.277 ± 0.028 0.089 ± 0.004 1 1
Angew-2017 Ndb 0.018 1 2

aThe data are the mean ± SD of at least three independent experiments. bNd: no data.

Figure 6. 2D interaction diagram of EGFRL858R/T790MC797S in complex with (A) CHEMBL602257, (B) CHEMBL3473990, (C) CHEMBL3718174,
(D) CHEMBL4116547, and (E) the corresponding structures of the compounds.
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a plausible synthetic accessibility score ranging from 3.68 to
4.79, as indicated in Table 5.

4. CONCLUSIONS
In this study, we assembled a data set encompassing 221 small-
molecule inhibitors targeting EGFRL858R/T790M/C797S, a valuable
resource for cancer therapy. We employed RDKit to compute
208 molecular descriptors for these compounds. Subsequently,
we introduced a fusion framework comprising a full quadratic
effect model and a Lasso model. This framework facilitated the
selection of both structural and nonstructural molecular
descriptors. Utilizing these descriptors, we constructed an
SVR model that integrated 12 crucial descriptors, resulting in an
R2 value of 0.745 and an MSE of 0.255 on the test set. Guided by
the structural descriptors employed in the modeling process, we
synthesized a range of fourth-generation EGFR inhibitors and
conducted in vitro kinase activity assays. The IC50 values of the
synthesized compounds reached the nanomolar level. A virtual
screening was then conducted on a data set containing around
50,000 compounds, leveraging the SVR model. This screening,
combined with molecular simulation docking and ADME
analysis, yielded 4 hit compounds. It is expected that activity
evaluation on the screened compounds will be conducted to
discover a new generation of EGFR-TKI.
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