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Introduction

Approximately 90,000 people worldwide are affected by the 
CFTR, a life-threatening genetic disorder.[1] Both CF gene alleles 
must have mutations for the disorder to exist, which is autosomal 
recessive.[2] Among the hereditary conditions that Caucasians are 
most likely to develop and die due to mutation on the long arm 
of  chromosome 7 (1q. 31.2). CFTR, the gene for cystic fibrosis 

transmembrane conductance, was discovered in 1989. It is made 
up of  27 exons that collectively account for approximately 215 kb 
of  the genetic sequence.[3,4] Lung function is the most serious 
issue, as the CFTR gene generates an ion channel that transfers 
bicarbonate and chloride across epithelial cells, impacting various 
organs.[5] Numerous investigations, however, have revealed that 
CFTR can also be produced in cells other than epithelial cells.[6] 
Moreover, the central, peripheral, and enteric nervous systems 
all express CFTR.[7,8] Although both epithelial and nonepithelial 
cell types, including many others, express CFTR. There are more 
than 2000 mutations, each with a different functional impact.[9] 
In consideration of  the fundamental outcomes of  the CFTR 
protein and its mutations [Figure 1].[10]
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Background

The CFTR, an ion channel in epithelial cells, regulates salt 
and fluid balance in various exocrine organs through a 
transmembrane chloride and bicarbonate channel.[11] CFTR, a 
protein chloride channel and a member of  the ATP-binding 
cassette (ABC) transporter family, is a protein that is produced 
by the CF gene. It consists of  a functional regulatory 
region (R) with several phosphorylation consensus sites, 
two membrane-spanning domains (MSD1, MSD2), and 
two nucleotide-binding domains (NBD1, NBD2). CFTR is 
physiologically expressed outside of  airway epithelial cells 
and controls the chloride ion channel [Figure 2].[12] Mutations 
in the CFTR cause less efficient transport of  chloride and 
bicarbonate ions, leading to mucus formation and airway 
blockage, inflammation, infection persistence, and lung damage. 
The CFTR maintains healthy airway surface fluids through 
sodium ion absorption and sodium ions leaving the cell 
through the basolateral Na + K + pump. The CFTR protein, 
acting as a chloride channel, removes chloride ions from the 
cell. Calcium-activated channels may partially clear the cells of  
chloride. The CFTR’s physiological expression and functionality 
are crucial in endocrine tissues for proper electrochemical 
exchanges and regulatory routes.[13]

Methodology

Searching and appraising the literature
Following a predetermined methodology, we used a procedure 
consistent with the 2009 Preferred Reporting Items for 
Systematic Reviews (PRISMA) standards to systematically review, 
published research. Human studies published between November 
1985 and January 2023 databases from PubMed, Embase, and 
Cochrane database were searched. Additional searches were 
made for Krystal biotech, clinical trial.gov, and cystic fibrosis 
foundation. Clinical trial registries maintained by the European 
Medicines Agency, the National Institutes of  Health in the United 
States, and the World Health Organization were also searched for 
comprehensiveness. To find CF therapeutic trials we employed 
the following key phrases: CFTR or CF and drug treatment or 
clinical trial on search engines.

Data extraction and screening
The review methodology utilized in this investigation was created 
in compliance with the PRISMA statement. Two researchers 
independently assessed the eligibility of  the literature review 
and abstracts. The degree of  consent in the articles chosen for 
full-text review and then for inclusion in the review by the two 

Figure 1: Types of CFTR Mutations: Distribution of CFTR Mutations into Six Functional Types Based on the Basic Molecular Defect Class I mutations 
do not lead to protein synthesis because the presence of premature stop codons (class Ia) or frameshifts for deletions or insertions (class Ib) 
precludes the translation of full‑length CFTR. Class II mutants are flawed trafficking proteins because CFTR is unable to attain full folding and 
is degraded by the ER‑associated degradation (ERAD) mechanism. Class III mutants have defective channel gating because CFTR reaches 
the cell surface but does not exhibit channel gating due to decreased ATP binding and hydrolysis. Class IV mutants are less functional proteins 
because, although the number of channels that reach the plasma membrane may be comparable to that of wt‑CFTR, they exhibit decreased 
chloride conductance. This is true even though the number of channels that reach the plasma membrane may be similar to that of wt‑CFTR. 
Because fewer CFTR channels are present and fewer Class V mutant proteins reach the cell surface, there is less protein maturation caused by 
amino acid substitution or alternative splicing. As a result, chloride transport is lost. Class VI mutations are less stable proteins because CFTR 
is present in the plasma
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investigators was recorded, and disagreements were settled by 
the chief  investigator.

Various treatment methods
According to each class of  CFTR mutation, specific therapies are 
designed for Class I mutations, read-through therapies, and NMD 
inhibitors are used; for Class II mutations, correct CFTR folding 
and trafficking to the apical plasma membrane (PM) are used; and 
for Class III mutations and any mutant with residual function 
at the PM, boost CFTR channel function potentiators are used. 
Some treatments in preclinical studies are not mutation‑specific, 
such as stem cell therapy, which is implied to cure airway tissue 
damage, and gene therapy to change the genome.[14]

Biological therapies
The CFTR protein can be produced through genome editing to 
repair the CF transmembrane conductance regulation gene, but 
natural obstacles like mucus, adaptive immunological responses, 
and intracellular restrictions hinder gene flow into the lungs.[15] 
Finally, gene therapies require repeated dosages since the airway 
epithelium is constantly regenerating. Choosing the right 
distribution strategy is crucial as a result. The most often used 
agents in CF gene therapy are adenoviruses, adeno-associated 
viruses (AAVs), and lentiviruses, coupled with nonviral lipoplexes 
and peptide nanoparticles.[14]

Viral vectors—adenoviruses
For CF gene therapy, lentiviral (LV) and AAV vectors and 
several intriguing vectors have been developed. In April 2022, 
4D moleculartherapies were utilized to improve AAV capsids 
for pulmonary gene therapy.[16] The individual AAV vector 
4D-710 had been administer to the patient.[17] To improve 
pulmonary gene therapy, SP-101, the primary potential AAV 
vector from Spirovant, was created using the capsid protein’s 

site-directed mutagenesis.[18] Clinical testing is underway for a 
new vaccine with truncations in CFTR cDNA, compared to 
AAV’s 4.7 kb packaging capacity, which allows for repeated use 
without compromising efficacy.[19] LV vectors, with their unique 
characteristics, are particularly beneficial for treating diseases like 
CF, resulting in consistent and long-lasting gene expression in 
animal models, and being pseudotyped in multiple laboratories.[20] 
To accelerate the creation of  BI 3720931 as a viable long-term 
treatment option for patients with CF (PwCF), Boehringer–
Ingelheim licensed. In October 2021, the GTC licensed the rights 
to the development of  a lentiviral vector pseudotyped with the 
HN and F proteins of  the Sendai virus.[21] Krystal Biotech has 
received approval for a Phase 1 clinical trial in Australia using a 
nonintegrating KB407 HSV-1-derived vector to enter PwCF’s 
airways with full-length human CFTR.[22,23] Bandara et al. suggest 
that HD-Ad, a large and low-immunogenic adenovirus, could be 
a promising avenue for CF gene therapy.[24]

Non-Viral Vectors
Nonviral vector solutions are being explored due to concerns 
over immunogenic reactions, transgenic miss-insertions, packing 
large nucleic acids, and bulk production issues.[25] Liposomal 
vector advancements have demonstrated the safe and practical 
delivery of  large DNA molecules.[26] In the United Kingdom, 
the Phase 2b trial showed a slight increase in FEV1 compared 
to a placebo after a year, suggesting lung function stabilization 
in treated patients.[27] The conclusion is speculative due to the 
decline in the placebo group, but no proof  exists that respiratory 
cells expressed WT-CFTR.[28]

Polymers made of  reversible poly (b-amino esters) (PBAEs) can 
be used to protect DNA nanoparticles from irritation and bodily 
harm during breathing.[29] Additionally, endosomal ejection of  
plasmid genetic material and stability were observed in GL67A38, 
which was cationic lipid-tagged.[30] Nanoparticles can transport 

Figure 2: The cystic fibrosis defect, ASL dehydration, and impaired mucus clearance are caused by a mutation in the CFTR gene, which inhibits 
Cl‑ from being released and leads to unrestricted Na+ absorption
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circular DNA fragments retaining transgenes and regulatory 
elements, potentially reducing immunogenicity, and enhancing 
integration in preclinical research.[26]

CRISPR/Cas9 Approach
In 2013, the CRISPR-associated protein 9 enzyme and clustered 
regularly interspaced short palindromic repeats (CRISPR), a 
revolutionary gene-editing technique, was published (Cas9).[31] 
CRISPR-Cas9 is a popular gene-editing technique for modifying 
mammalian cell genomes in culture due to its precise editing 
capabilities, versatility in silencing genes, affordability, and 
simplicity.[32] The guide RNA (gRNA) and the Cas9 protein 
enzyme are the two main components of  the CRISPR-Cas9 
system. The Cas9 protein makes a dsDNA break when the 
gRNA recognizes a certain sequence pattern at the target 
region, double-stranded breaks (DSB). The damaged DNA 
is then repaired by the cell’s own DNA repair processes via 
non-homologous end joining (NHEJ) and homology-directed 
repair (HDR).[33,34] NHEJ immediately joins the broken ends and 
can insert or delete genes, which results in mutants.[34] The HDR 
reaction, which allows homologous recombination with a repair 
template, is effective for adding desirable genes or wild-type 
variations, but it occurs infrequently.[35]

Base editing: Base editing was developed to address the 
inefficiency of  the CRIPSR‑Cas9 system, which relies on DSBs 
for frequent insertions or deletions at DNA cleavage sites.[36] This 
increases the effectiveness of  the CRISPR-Cas9 system. While 
cytosine base editors (CBEs) allow the irreversible conversion of  
the adenine base from C-G to T-A base pairs moderators (ABEs) 
catalyze the enzymatic conversion of  A-T base pairs into base 
pairs consisting of  G-C.[35]

Initial editing: Advanced CRISPR editing has become a 
promising tool for changing variable-length DNA sequences 
at specific locations. Combining a reverse transcriptase with a 
Cas9 protein with catalytic impairment allows for the editing of  
the target area using a main editing guide RNA.[37] Prime editing 
is a promising gene replacement therapy for CF, successfully 
repairing the CFTR mutation in patient-derived intestinal 
organoids, but its targeting efficacy varies and off‑target changes 
occur.[38]

RNA replacement
Full-length CFTR mRNA substitution is a promising 
therapeutic strategy for CF variations, avoiding nucleus entry 
and transcriptional cellular machinery, and offering additional 
advantages. Therefore, mRNA substitution will need to be 
repeated frequently as a therapy. Arcturus therapeutics is 
developing one such preclinical method called ARCT-032, 
which is a LUNAR® lipid LNP containing a complete CFTR 
mRNA that can be inhaled as an aerosol. The LUNAR® 
formulation enables the synthesis of  a fully functioning CFTR 
protein, which makes it easier to transport mRNA to epithelial 
cells.[39]

Antisense‑oligonucleotide‑mediated therapy
It is still difficult to distribute oligonucleotides to extrahepatic 
tumors effectively. To be successful in clinical settings, ASO-based 
medications must also overcome inadequate biological activity 
and off-target side effects.[40] Nebulized ASOs like SPL84 and 
SPL23 show potential therapeutic benefits in treating human 
nasal epithelial (HNE) cells in healthy individuals, while inhaled 
ASOs offer stability, acceptable tolerability, and minimal systemic 
exposure.[41,42] Crosby et al.’s[43] study supports the idea that inhaled 
ASO-based medicines can effectively decrease target mRNA in 
mouse lungs, supporting the successful treatment of  CF patients. 
Sequence alignment analysis confirms the aerosol route delivery 
safety of  ASOs like SPL84, with off-target hybridization risks. 
Splice‑flipping ASOs control splicing, reducing hybridization 
risks.

Gene therapy and gene editing are two DNA‑based 
treatments
Gene therapy uses CFTR cDNA to produce both conventional 
and aberrant CFTR proteins, benefiting all CF patients. However, 
efficient delivery methods are needed to transport the cDNA 
to airway epithelial cells for transcription and translation.[44,45] 
Cellular DNA repair is a method used in gene editing to correct 
mutations in the CFTR gene. It involves inserting the correct 
CFTR DNA sequence and nuclease into target cells, facilitated 
by nucleases like CRISPR/CRISPR-associated nuclease 9 (Cas9), 
transcription activator-like effector nucleases (TALENs), 
and zinc‑finger nucleases (ZFNs). CRISPR/Cas9 is a leading 
tool in CF gene‑modification research due to its affordability 
and minimal chance of  missing target breaking.[46,47] A 
proof-of-concept study that showed how gene editing may 
treat gastrointestinal organs with the p.Phe508del mutations 
was described in 2013.[48]

Therapies based on cells
Induced pluripotent stem cells (iPSCs) are a unique therapeutic 
approach that uses ex vivo gene editing to mimic embryonic 
stem cells. These fully mature cells, like fibroblasts or cutaneous 
cells, undergo reprogramming to differentiate into specific 
lineages, such as the airway epithelium, with unlimited growth 
potential.[44,49,50] Future CF treatments may use ex vivo gene 
editing using iPSCs. According to a study, the p.Phe508del 
mutation in fibroblast‑derived iPSCs that transformed into 
airway epithelial cells was genetically fixed using the CRISPR/
Cas system and TALENs.[51] Cells from the patient are taken out 
and reprogrammed in the laboratory to produce iPSCs, and then 
they are repaired for the CFTR gene mutation. After that, the 
altered iPSCs are transformed into basal airway stem cells, which 
might transform into any variety of  pseudo‑stratified bronchial 
epithelium.[52] The patient’s airway epithelium’s basement 
membrane is transplanted with corrected basal cells, creating an 
autologous graft that entirely corrects CFTR and repopulates the 
airways.[53] Engrafting iPSCs into human airways requires a pure 
sample of  airway epithelial cells, potentially requiring up to 60 
million regenerated cells for CF patients [Figure 3].[54]
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Other novel approaches
A number of  the initial stages pharmaceutical companies are 
also building cutting-edge capabilities and platforms to help 
with the creation of  gene and RNA-based therapies. With 
their novel Gene Coding TM technology, CFTR’s genomic 
locus is the target of  SalioGen Therapeutics’ effort to splice 
in a substantial “super exon” for the gene. Omega therapeutics 
is developing LNPs with a focus on the lungs Tessera 
Therapeutics and Carbon Biosciences are developing Gene 
Writing and CGT-001 technologies for genetic alterations, 
intending to deliver larger DNA treatment payloads with 
minimal neutralizing immunity.[40]

Airway dysbiosis with cystic fibrosis patent
The relationship between airway dysbiosis, airway inflammation, 
and impaired lung function in people with chronic obstructive 
pulmonary disease (PwCF) remains unclear.[55]

Its diverse anatomical structure, including the trachea, bronchi, 
bronchioles, and alveolar sacs, is consistent with pulmonary 
biogeography.[56,57] Bacteroidetes and Firmicutes, as well as 
Proteobacteria and Actinobacteria to a lesser extent, are the two 
major phyla of  lung bacteria.[56,58] High-throughput sequencing 
of  16S rRNA genes has identified a “core microbiome” 
comprising species typical of  most humans.[60] Streptococcus, 
Prevotella, Fusobacterium, Veillonella, Porphyromonas, Haemophilus, 
and Neisseria are the primary pathogens in healthy individuals.[59] 
The CFTR protein’s absence or nonfunction significantly affects 
the rheology of  CF mucus due to the presence of  anaerobic 
bacteria in the oxygenation-focused organ.[57] CF airways cause 

dysbiosis, polymicrobial proliferation, and hyper viscosity in the 
respiratory system, with over 1000 species identified through 
shotgun metagenome sequencing and differences in nasal, 
nasopharyngeal, oral, and lung samples.[61-63] The CF pulmonary 
microbiome, comprising over 99% of  the airway population, is 
complex and requires detailed NGS understanding, including 
Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, 
Proteobacteria, Streptococcus, Prevotella, Veillonella, Rothia, 
Actinomyces, Gemella, Granulicatella, Fusobacterium, 
Neisseria, Atopobium, Porphyromonas.[64,65] The microbiome 
perspective enhances understanding of  multidrug-resistance 
gene determinants by anticipating the entire “resistome” 
including all genes associated with antibiotic resistance in 
pathogenic and nonpathogenic bacteria.[66]

Virome: The mucosal environment and weakened immunity 
significantly impact the CF lung virus, with mutual lung viruses 
present in 60% of  PwCF and associated with higher morbidity. 
Their presence causes inflammation, exacerbation, and reduced 
lung function due to disruption of  IFN and NF-kappaB 
pathways.[67,68]

Mycobiome: Opportunistic pathogens seen in CF patients’ 
sputum include fungi, such as Aspergillus fumigatus.[61] Nonetheless, 
the majority of  CF airway fungi are transitory and belong to the 
Candida or Malassezia groups. Some fungi may interact with 
bacteria and/or viruses and play a role in immune response 
and inflammation.[62] Archaic bacteria, single-celled prokaryotic 
bacteria found in anaerobic environments, including humans, 
exhibit diversity in anatomical niches, with CF lung containing 
0.1% of  all archaeal phyla.[69]

Figure 3: Using induced pluripotent stem cells, a schematic picture of cell‑based therapy strategies is shown. In autologous iPS cell therapy, 
somatic cells from the CF patient are removed, multiplied, and reprogrammed to create induced pluripotent cells that are unique to that patient. 
Following differentiation into proximal airway epithelium and genetic correction to produce normal airway epithelium, these cells are transplanted 
back into the patient. In allogeneic iPS cell therapy, proximal airway epithelium is generated and transplanted into CF patients using a universal 
iPS line (from a healthy donor) that has been genetically engineered for safety and immunogenicity
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Personalized care for patients with cystic fibrosis
Personalized medicine allows for the selection of  effective 
medications based on dosage, routine, and supervision. However, 
optimizing CF care programs is challenging due to the lack of  
practical efficiency data, the addition of  new drugs without 
understanding their effects, and the physiologic interactions 
between existing therapies and highly effective CFTR modulator 
drugs.[70] Therapeutic drug monitoring and pharmacogenomics 
offer a valuable method for managing PwCF, but their use is 
underutilized. Pharmacokinetic-pharmacodynamic (PK/PD) 
modeling is needed for each new medication, and ongoing 
research could uncover new uses for controlling side effects and 
enhancing therapy.

Pharmaceutical precision dosing is crucial for clinical treatment 
but requires specialized resources for fast drug measurement, 
genotyping, and pharmacologic interpretation. Therapeutic 
drug monitoring (TDM) can improve personalized therapy 
despite medication interactions by directing patient dosage 
procedures [Figure 4].[71]

Personalized medicine is crucial for optimizing CF care programs, 
but it faces challenges due to a lack of  long-term data, the 
gradual introduction of  new drugs with inadequate knowledge 
of  their effects on existing therapies, and the physiological 
impacts of  highly efficient CFTR modulator drugs when 
combined with current therapies. Novel care regimens for CF 
medications are progressively created, approved, and advised 
without sufficient data on how they may influence widely 

used existing medications. For example, drugs like lumacaftor, 
lumacaftor, and ivacaftor (ETI) have been shown to improve 
lung function, reduce CF symptoms, and lower the likelihood 
of  sudden pulmonary flare‑ups.[72-75] The health outcomes of  
CF treatments focusing on the lungs are similar, highlighting the 
challenge of  customizing care regimens. ETI has been proven 
to increase sputum viscosity and mucociliary clearance, raising 
questions about whether other strenuous inhalation therapy is 
significantly aiding airway clearance and pulmonary function 
in patients with CF receiving ETI. Inhaled alfa-dornase and 
hypertonic saline promote lung health by enhancing secretion 
removal.[76,77] Modulators can significantly reduce bacterial 
airway infections, raising questions about the effectiveness of  
long-term suppressive inhalation antibiotics on microbiology 
and clinical status.[78] Chronic azithromycin treatment has been 
found to significantly reduce acute pulmonary exacerbations in 
controlled trials, despite a decrease in prevalence among most 
ETI users.[79-81] The increased exocrine pancreatic function seen 
in limited studies of  high electron mobility transistors (HEMT) 
that were started at a young age allows some people to forgo 
the requirement for the replacement of  pancreatic enzymes.[82,83]

Outlook and Conclusion

Since the CFTR gene was discovered 30 years ago, some significant 
milestones have been reached in CF experimental and clinical 
research. The creation of  treatment approaches that target the 
underlying dysfunctions brought on by CF mutations has been made 
possible by our increased understanding of  the cellular and molecular 

Figure 4: By introducing the reprogramming genes into adult somatic cells (such as skin fibroblasts and peripheral blood mononuclear cells), 
iPSCs can be produced (c‑Myc, Oct4, Sox 2, and Kfl4). To test small compounds to restore the CFTR’s decreased activity, iPSCs could be 
employed to create iPSC‑derived lung, cholangiocytes, or intestinal epithelial cells
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causes of  the disease. Therapeutic modalities have evolved to provide 
personalized information and are now being used in clinics. These 
developments will continue to improve health outcomes, fostering a 
collaborative effort to enhance quality of  life and health outcomes. 
CFTR mutations that probably call for novel therapeutic strategies, 
these challenging variants can be treated with the help of  RNA, 
ASO, and gene treatments, and gene and RNA therapies can treat all 
CF-causing mutations. However, treatments based on genes, RNA, 
and ASO that are used to treat human illness are still in their infancy. 
Many open questions still need to be answered, such as what type of  
vector is best for delivering genes and how the mucous membrane 
works. This article explores the impact of  microbiome science on 
cystic fibrosis (CF) lung and the influence of  various microbes on 
its transduction and transfection effectiveness.
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