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Domain transfer learning aims to learn common data representations from a source domain and a target domain so that the
source domain data can help the classification of the target domain. Conventional transfer representation learning imposes the
distributions of source and target domain representations to be similar, which heavily relies on the characterization of the
distributions of domains and the distributionmatching criteria. In this paper, we proposed a novel framework for domain transfer
representation learning. Our motive is to make the learned representations of data points independent from the domains which
they belong to. In other words, from an optimal cross-domain representation of a data point, it is difficult to tell which domain it is
from. In this way, the learned representations can be generalized to different domains. To measure the dependency between the
representations and the corresponding domain which the data points belong to, we propose to use the mutual information
between the representations and the domain-belonging indicators. By minimizing such mutual information, we learn the
representations which are independent from domains.We build a classwise deep convolutional networkmodel as a representation
model and maximize the margin of each data point of the corresponding class, which is defined over the intraclass and interclass
neighborhood. To learn the parameters of the model, we construct a unified minimization problem where the margins are
maximized while the representation-domain mutual information is minimized. In this way, we learn representations which are
not only discriminate but also independent from domains. An iterative algorithm based on the Adam optimization method is
proposed to solve the minimization to learn the classwise deep model parameters and the cross-domain representations si-
multaneously. Extensive experiments over benchmark datasets show its effectiveness and advantage over existing domain transfer
learning methods.

1. Introduction

1.1. Background. Transfer learning is a machine learning
problemwhich deals with data from two domains [1–6]. One
domain is target domain, and in this domain, we aim to learn
an effective machine learning model for prediction. Another
domain is source domain, in which we have sufficient labeled
data points. Usually, in the target domain, the labeled data
points are of a small number, which is not sufficient to learn
an effective model. ,us domain transfer learning tries to
transfer the knowledge in the source domain to the target
domain to help the learning in the target domain. Although
the target domain and source domain share the same input

and output space, the distribution of the input data points of
two domains is of significant difference. For example, in the
problem of text topic categorization, the newspaper article is
a source domain, where almost all the articles are labeled
well, and the personal communication message is a target
domain. Usually, the message texts are not labeled, or only a
small number of them are labeled. It is natural to use the
newspaper articles and the corresponding labels to help the
learning of model for the categorization of the message texts.
However, the newspaper articles are written normally, while
the personal messages are usually written casually. ,us, the
usage of words and the writing styles are very different. ,is
leads to the significant difference between the distributions

Hindawi
Computational Intelligence and Neuroscience
Volume 2019, Article ID 9414539, 14 pages
https://doi.org/10.1155/2019/9414539

mailto:wangke1845@outlook.com
https://orcid.org/0000-0002-5766-2799
https://orcid.org/0000-0001-9582-4966
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9414539


of the source domain (newspaper article) and the target
domain (personal message). Transfer learning aims to build
a predictive model for the target domain by utilizing the data
points of both domains, even though they are of different
distributions.

In this case, it is very necessary to map the data points of
both domains to a common data space so that they lie in the
same distribution, and we can directly train a model for the
target domain by using both domains’ data points’ repre-
sentations. Another solution is to learn a model for the
source domain first and then adapt it to the target domain. In
this paper, we focus on the first solution where the data
points are mapped to a common space. ,is solution aims to
learn domain transferable representations for data points in
different domains. Different representation learning
methods have been applied for domain transferable repre-
sentation learning, including multikernel learning [7–10],
deep learning [11–20], nonnegative matrix factorization
[21–24], sparse coding [25–28], etc. For the domain dis-
tribution matching-based domain transfer learning, the
most popular method is based on the maximum mean
discrepancy criterion. It calculates the means of the repre-
sentations of data points of source and target domain and
minimizes the squared ℓ2 norm distance to match the two
domains.

In this paper, we study the problem of learning domain
transfer representations. However, we do not consider the
distribution matching of two domains but consider learning
representations which can be directly generalized to two
domains.

1.2. Related Works. In this section, we briefly introduce the
state-of-the-art methods for transferable representation
learning.

,eauthors in [4] present a novel method to learn deep
networks for domain adaptation. ,e proposed method
maps the outputs of all layers of deep networks to re-
produce kernel Hilbert spaces and tries to match the
distributions of these layers’ outputs of target and source
domains. Moreover, the kernel space mapping is con-
ducted by applying multikernel learning, where the
optimal kernel function is a weighted linear combination
of multiple kernels. ,is is different from the conven-
tional transfer learningmethods, which onlymatches the
distributions of outputs of the last layer of source and
target domains. ,e mismatching of the two distribu-
tions is measured by the maximum mean discrepancy
criterion, which actually minimizes the squared Eu-
clidean distance between the mean outputs of the source
and target domains of the corresponding layer.
,e authors in [6] proposed to learn a domain transfer
learning model for feature space independent domains.
In this case, the source domain and target domain have
completely different feature space. ,e source domain
data points are mapped to target domain data points.
,e mapping guarantees that any source domain data
point is mapped to a target domain point with the same

class label. ,e target domain and source domain
(mapped to target domain) are both represented by
kernel matrices. To measure how well the two domains
are allied, the Hilbert Schmidt Independence Criterion
is applied. It calculates the trace of the product of the
target domain kernel matrix and the mapped source
domain kernel matrix. By maximizing the trace of the
product of target and source, the distributions of the
source and target domains are aligned and matched.
,e authors in [1] proposed a novel method for transfer
learning. It selects the data points from the source
domain for the target domain learning problem. To be
specific, it assigns a weight to each source domain data
point, which plays the role of selective weight. ,is
weight has two functions. ,e first function is to select
important source domain data points to represent the
source domain to match the target domain. Instead of
calculating the mean vector of the source domain
features, this method calculates the weighted mean and
matches it to the target domain by the maximummean
discrepancy criterion. ,e second function is to weight
the loss function of the target domains. ,e target
domain data points’ weights and the classifier pa-
rameters are also learned simultaneously in an iterative
algorithm.
,e authors in [2] developed a novel multikernel
classifier for domain transfer learning. It constructs the
kernel function by multikernel combination with
learned weights. Meanwhile, the kernel weights and
classifier parameters are learned simultaneously. To
match the source domain and target domain, the data
points of two domains are mapped to a nonlinear
Hilbert space, and their distributions are matched in
this space. ,e learning algorithm minimizes the
classification losses over the labeled data points of both
domains and the squared Euclidean distance between
the mean multikernel representations of tow domains
under the maximum mean discrepancy criterion.

1.3. Our Contributions

1.3.1. Motive. All the above methods are based on the
matching of two domains’ distributions of the data repre-
sentations. ,e two key components of this method are the
representation of distributions and the metric of the mis-
matching of the two distributions. In this paper, we give up
this framework and propose a completely different frame-
work for domain transfer learning. We observed that for an
ideal representation model across two different domains,
from its output of one data point, we cannot tell which
domain it is from. At the same time, we can separate it from
its true class and the other classes according to its output of
the cross-domain representation model. It means that the
representation of a data point is independent of its domain,
but closely relevant to its class. ,us, instead of measuring
the mismatch of source and target domain distributions, we
measure the independence of the representations and
domain-belonging indicators of the data points. To measure
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the dependency between the representation and the domain
indicator, we employ the mutual information. By mini-
mizing the mutual information between them, we learn the
domain-independent representations. Meanwhile, we also
propose to maximize the margin of each data point so that it
can be separated from data points from other classes and
kept close to the data points from the same classes.

1.3.2. Our Method. Motivated by the above ideas, we
propose a novel deep learning model for the representation
of data points of transfer learning problems. Firstly, to
enhance the ability to discriminate data points of different
classes, we propose to learn a unique deep convolutional
network for each class, named classwise convolutional
representation model. ,is is different from traditional
domain transfer representation models, which learns a
common model for all classes. To make the outputs of this
model independent from the domain indicators, we pro-
pose to minimize the mutual information between the
representation model outputs and the domain indicators.
,e mutual information estimation is based on the
probability of representations and conditional probability
of domain indicators given representations. We develop
novel estimators for the conditional probability of domain
indicators given representations. ,e estimator is defined
over the neighborhood of the data point of the given
representation, and it calculates the normalized summation
of the soft weights of the data points from the input do-
main. To make the outputs of the model to be discriminate,
we proposed to maximize the margin of each data point in
the corresponding class. ,e margin is defined as the
difference between intraclass dissimilarity and the in-
terclass dissimilarity. ,e intraclass dissimilarity is defined
in an intraclass neighborhood which contains a set of
neighboring data points from the same class, while the
interclass dissimilarity is defined in an interclass neigh-
borhood which contains a set of neighboring data points
from the other classes. To learn the representation model
parameters, we build a unified learning framework. ,e
objective function is defined by combining the margins,
mutual information, and a squared ℓ2 norm term to control
the complexity of the model. An iterative algorithm based
on Adam is developed to solve the problem.

Remark. ,e overall diagram of the proposed learning
framework for each class is given in Figure 1. As we can see
from the figure, for each CNN model, its outputs are reg-
ularized by two types of auxiliary information: the domain
indicator and the class label. Our framework calculates the
mutual information between the CNN representations and
the indicators of domains and minimizes it. Meanwhile, it
calculates the margin from class label and maximizes it. In
this way, this framework enables the CNN model to be
discriminative and insensitive to the diversities of domains.

Our contributions are of three folds:

(1) For the first time, the idea of learning cross-domain
representations which are independent of domains is
proposed for transfer learning. Instead of learning

representations and making the distributions of two
domains’ representations to match each other, we
directly learn representations which are independent
of their domain-belonging indicators. ,e mutual
information is used to measure such dependency of
representations and domain indicators, and it is
minimized to seek the domain-independent
representations.

(2) We develop a novel and practical representation
learning method to minimize the mutual in-
formation between the data points’ representations
and domain indicators. ,e mutual information
between representations and domain indicators of
data points is estimated according to the probability
of representation and the conditional probability of
domain indicator given representation. We estimate
the conditional probability of a data point’s domain
indicator given its representation over its neigh-
borhood. It is calculated as a summation of the
normalized Gaussian kernel based similarity mea-
sured of the data points in the neighborhood but
from the considering domain.

(3) We propose a novel transfer learning framework for
learning domain transfer deep representation
models. It is a classwise model and we learn the
parameters by simultaneously maximizing the
margin of each data point of this class and mini-
mizing the mutual information between the data
points’ representations and their domain indicators.
An iterative algorithm is developed to learn the
optimal representations and the parameters of the
model to output these representations.

1.4. Paper Organization. ,e paper is organized as follows:
in Section 2, we introduce the proposed method in detail,
including its mathematical modeling, problem optimization,
and iterative algorithm design. In Section 3, we evaluate the
proposed method over several transfer learning benchmark
datasets to compare it against state-of-the-art transfer
learningmethods. In Section 4, we give the conclusion of this
paper and some future works.

2. Methods

2.1. Definition of Symbols. In this section, we give a list of
detailed definitions of the symbols used in the following
sections.

2.2. Problem Modeling. We assume we have a set of n
training data points, denoted as X � X1, . . . , Xn , where
Xi � xi1, . . . , xini

  is the i-th data point, which is composed
of ni instances, and xij is the j-th instance of the i-th data
point. For the computer vision problem, a data point is an
image, and an instance is an image patch, while for the
natural language process problem, a data point is a sentence,
and an instance is the embedding vector of a word.
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2.2.1. Large Margin Class-Specific Convolutional
Representations. We consider a classification problem of L
classes, the training set can be divided into subsets of L classes
and a set of unlabeled data points whose class labels are not
known yet. ,e training set can be denoted as follows:

X � X1 ∪ · · · ∪XL ∪XU, (1)

whereXl is the subset of the l-th class andXU is the subset of
the unlabeled data points.

For the l-th class, we learn a class-specific deep CNN
model to represent the data point X,

fl : X⟶ z � fl X; Wl(  ∈ Rm
, (2)

which outputs a vector of m dimensions as the class-specific
convolutional vector, and Wl presents the parameters of the
model.

Remark. We choose to learn the convolutional represen-
tations due to the following two reasons:

(1) CNN model is good at extracting local patterns by
utilizing a large number of sliding local filters, while in
most domain transfer applications discussed in this
paper, the local patterns play the most important role.
For example, in the cross-domain image categorization
task, for two images of different domains but con-
taining the same object, the CNN model can capture
the local region of the object with some local filters
while ignoring the contexts whichmay vary in different
domains. Another example is the text-related tasks;
long sentences of the same topic may have different
linguistic styles of different domains, but still contains
short phrase, which could be captured by the CNN
model effectively by its sliding local filters to extract
features from short phrases.

(2) CNN model, compared to the other deep learning
models, such as recurrent neural network (RNN), has a
more efficient training process. ,e CNN model has a
parallel structure, and the responses of a sliding filter are

calculated independently from each other; thus, its
computing can be easily paralleled by GPU. ,is is
different from the RNN model which has a sequential
structure, where the response of a node is calculated
based on the response of the previous nodes, which
makes its computing time longer than the CNNmodel.

Naturally, we hope the class-specific convolutional
representations can separate the data points of the l-th class
and the other classes as far as possible so that the classifi-
cation performance can be improved. To this end, we
propose to learn to discriminate convolutional representa-
tions for the data points of l-th class, by maximizing the local
margin of each data point in this class. For the local margin
of a data point in the l-th class, Xi ∈ Xl is defined by its
intraclass neighborhood and interclass neighborhood. ,e
intraclass neighborhood is the set of κ nearest neighboring
data points in the same class, Xl:

N
+
i � κ− arg minXj:Xj∈Xl

zi − zj

�����

�����
2

F
, (3)

where the ℓ2 norm distance between their l-th class-specific
convolutional representations is used to measure the distance
of neighbors. Meanwhile, the interclass neighborhood is the
set of κ nearest neighboring data points from a different class:

N
−
i � κ− arg minX

j′ :Xj′ ∈Xl′ ,l′ ≠ l

zi − zj′

�����

�����
2

F
. (4)

Note that to search for the interclass neighbors of Xi, we
use the convolutional representations of its class, the l-th
class, even for the data points of the other classes. We further
calculate an affinity measure for Xi and a data point Xj from
N+

i , according to their class-specific convolutional repre-
sentations and a Gaussian kernel function:

A
+
ij �

g zi − zj 

X
j′ ∈N

+
i
g zi − zj′ 

, (5)

where g(x) � exp(−‖x‖2F/2σ
2).

Input data CNN

Labels

Domain indicator

Convolutional 
representations

Mutual 
information

Margin

Minimization

Maximization

Figure 1: Overall diagram of the proposed learning framework for minimum mutual information domain transfer representation.
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Similarly, we also calculate the interclass affinity between
Xi and data points in N−i :

A
−
ij′ �

g zi − zj′ 

X
j′ ∈N
−
i
g zi − zj′ 

. (6)

,e local margin of Xi is defined as the difference be-
tween the weighted intraclass convolutional dissimilarity
and the interclass dissimilarity:

ml Xi(  � 
Xj∈N

−
i

A
−
ij′ zi − zj′

�����

�����
2

F
− 

Xj∈N
+
i

A
+
ij′ zi − zj

�����

�����
2

F
. (7)

We proposed to maximize the local margin to improve
the ability to separate data points of the l-th class from the
other classes. To this end, we minimize the following ob-
jective function of margins over the data points of the l-th
class to learn the convolutional representation network
parameters:

min
Wl


Xi∈Xl


Xj∈N

+
i

A
+
ij′ zi − zj

�����

�����
2

F
− 

Xj∈N
−
i

A
−
ij′ zi − zj′

�����

�����
2

F

⎛⎜⎜⎝ ⎞⎟⎟⎠.

(8)

2.2.2. Minimum Mutual Information Domain Adaptation.
Since we are considering the problem of domain transfer
learning, the training data points are from a source domain
and a target domain, and we denote the source domain
training set as XS and XT; thus, X � XS ∪XT. We in-
troduce a domain indicator for each data point Xi to
present which domain it is from, πi ∈ source, target ,
where πi � source indicates that Xi is a source domain data
point, while πi � target indicates that it is a target domain
data point. Naturally, we hope the classwise convolutional
representations of the source and target domains are
mapped to a common space of the same distribution. To
this end, we impose that the representations of the data
points and their domain indicators are independent of each
other so that from the presentation, we cannot measure
which domain it is from. To measure the mutual de-
pendence between the classwise representation z and the
domain indicator π, we proposed to use the mutual in-
formation between them, I(π; z).

Remark. According to the probability theory and information
theory, the mutual information between two variables is a
measure of the mutual dependence between them. For two
variables, x, and y, the definition of mutual information of x
and y is calculated by the double integral as follows:

I(x; y) � 
y


x
p(x, y)log

p(x, y)

p(x)p(y)
 dx dy, (9)

where p(x, y) is the joint probability function of x and y and
p(x)(p(y)) is the probability function of x(y). For the
discrete variables, the mutual information is calculated by
the double sum:

I(x; y) � 
y


x

p(x, y)log
p(x, y)

p(x)p(y)
 . (10)

According to the mutual information’s relation to
Kullback–Leibler divergence,

I(x; y) � 
y

p(y)DKL(p(x ∣ y)p(x))

� 
y

p(y) 
x

p(x ∣ y)log
p(x ∣ y)

p(x)
 ,

(11)

whereDKL(p(x ∣ y)p(x)) is the Kullback–Leibler divergence
between p(x ∣ y) and p(x) and p(x ∣ y) is the conditional
probability of x given y. Following equation (11), the mutual
information between π and z is defined as follows:

I(π; z) � 
z

p(z) 
π

p(π ∣ z)log
p(π ∣ z)

p(z)
 . (12)

To estimate the mutual information over the training set,
we propose to recalculate I(π; z) as follows:

I(π; z) � 
i:Xi∈X

p zi(  

π∈ source,target{ }

p π ∣ zi( log
p π ∣ zi( 

p zi( 
 .

(13)

In the following, we discuss how to estimate the con-
ditional probability of domain indicator given the con-
volutional representation, p(π ∣ zi), and the probability of
the convolutional representation, p(zi).

2.2.3. Estimation of p(π ∣ zi). To estimate the probability of
π given a data point, we propose to calculate the density of π
over the neighborhood of Xi. Xi is the set of k-nearest
neighbors,

Ni � k− arg minXj∈X zi − zj

�����

�����
2

F
, (14)

and the probability of π overXi is calculated as the empirical
distribution,

p π ∣ zi(  �
1
Ni





Xj∈Ni

δ πj � π , (15)

where δ(x) � 1 if x is true, otherwise 0. According to
equation (15), p(π ∣ zi) is the weighted summation of δ(πj �

π) over Ni, and the weights are hard weight (1/|Ni|). We
release the calculation of the weights as soft weight according
to Gibbs distribution as follows:

p π ∣ zi(  � 
j:Xj∈Ni

ωijδ πj � π ,

where ωij �
g zi − zj 

j′∈Ni
g zi − zj′ 

.

(16)

,e weights satisfy the constraints of j∈Ni
ωij � 1 and

ωij ≥ 0.
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2.2.4. Estimation of p(zi). We assume the convolutional
representations are evenly distributed; thus, we use a simple
empirical distribution function to calculate the probability of
zi as follows:

p zi(  �
1
n

. (17)

Substituting equations (17) and (15) in (13), we rewrite
the mutual information between variables z and π as follows:

I(π; z) �
1
n


i:Xi∈X



π∈ source,target{ }


j:Xj∈Ni

ωijδ πj � π ⎛⎜⎝ ⎞⎟⎠

· log 
j:Xj∈Ni

ωijδ πj � π ⎛⎜⎝ ⎞⎟⎠ + log(n)⎛⎜⎝ ⎞⎟⎠.

(18)

To simplify the equations, we introduce the following
variables:

hi � 
j:Xj∈Ni

g zi − zj ,

h
s
i � 

j:Xj∈Ni ,πj�source
g zi − zj ,

h
t
i � 

j:Xj∈Ni ,πj�target
g zi − zj ,

(19)

so that
hi � h

s
i + h

t
i


j:Xj∈Ni

ωijδ πj � source  �
hs

i

hi

,


j:Xj∈Ni

ωijδ πj � target  �
hs

i

hi

.

(20)

We rewrite equation (18) with hi, hs
i , and ht

i as follows:

I(π; z) �
1
n


i:Xi∈X


hs

i

hi

log
hs

i

hi

  +
hs

i

hi

log(n)

+
hs

i

hi

log
hs

i

hi

  +
hs

i

hi

log(n)

�
1
n


i:Xi∈X

hs
i log hs

i(  + ht
i log ht

i( 

hi

+ log(n)− log hi(  

�
1

nhi


i:Xi∈X


j:Xj∈Ni ,πj�source

g zi − zj ⎛⎜⎝ ⎞⎟⎠

· log 
j:Xj∈Ni ,πj�source

g zi − zj ⎛⎜⎝ ⎞⎟⎠

+
1

nhi


i:Xi∈X


j:Xj∈Ni ,πj�target

g zi − zj ⎛⎜⎝ ⎞⎟⎠

· log 
j:Xj∈Ni ,πj�target

g zi − zj ⎛⎜⎝ ⎞⎟⎠

−
1
n


i:Xi∈X

log 
j:Xj∈Ni

g zi − zj ⎛⎜⎝ ⎞⎟⎠ + log(n).

(21)

To learn a cross-domain representation to map the data
of both domains to common space, we reduce the de-
pendency of the domain indicator and the convolutional
representation variables as much as possible. Since the
mutual information measures the dependency, we minimize
I(π; z) as follows:

min
Wl

I(π; z). (22)

In this way, we hope that the learned representations are
independent from the domains as much as possible so that it
can be generalized to adapt to both domains.

To construct the learning framework for the domain
adaptation problem based on the classwise deep CNN
representation model, we combine the objects of equations
(8) and (22) for the minimization problem:

min
Wl

o Wl(  � 
Xi∈Xl


Xj∈N

+
i

A
+
ij′ zi − zj

�����

�����
2

F
− 

Xj∈N
−
i

A
−
ij′ zi − zj′

�����

�����
2

F

⎛⎜⎜⎝ ⎞⎟⎟⎠

+ C1I(π; z) + C2‖W‖
2
lF

� 
Xi∈Xl


Xj∈N

+
i

A
+
ij′ zi − zj′

�����

�����
2

F
− 

Xj∈N
−
i

A
−
ij′ zi − zj′

�����

�����
2

F

⎛⎜⎜⎝ ⎞⎟⎟⎠

+
C1

nhi


i:Xi∈X


j:Xj∈Ni ,πj�source

g zi − zj ⎛⎜⎝ ⎞⎟⎠

· log 
j:Xj∈Ni ,πj�source

g zi − zj ⎛⎜⎝ ⎞⎟⎠

+
C1

nhi


i:Xi∈X


j:Xj∈Ni ,πj�target

g zi − zj ⎛⎜⎝ ⎞⎟⎠

· log 
j:Xj∈Ni ,πj�target

g zi − zj ⎛⎜⎝ ⎞⎟⎠

−
C1

n


i:Xi∈X
log 

j:Xj∈Ni

g zi − zj ⎞⎟⎠⎛⎜⎝ + C2 Wl

����
����
2
lF
,

(23)

where ‖Wl‖
2
F term is used to control the complexity of the

model to prevent the overfitting problem and C1 and C2
are the tradeoff parameters. In the objective, the first
term is a large margin corresponding term, while the
second and third terms are corresponding to the en-
tropies of location distribution of convolutional repre-
sentations over the neighborhood specified by source
and target domains. ,e fourth them is corresponding
to the entropy of the overall location distribution of
representations.

6 Computational Intelligence and Neuroscience



2.3. Optimization. It is difficult to solve the problem of
equation (23) because the classwise representations zi, i �

1, . . . , n are the outputs of a deep CNN function, fl, while it
also defines the neighborhoods and affinities. To solve the
problem of equation (23), we treat the representation zi as
slack variables and introduce the following optimization
problem:

min
Wl,z1 ,...,zn

o Wl, z1, . . . , zn(  � 
Xi∈Xl

 
Xj∈N+

i

A
+
ij′ zi − zj

�����

�����
2

F

− 
Xj∈N

−
i

A
−
ij′ zi − zj′

�����

�����
2

F


+
C1

nhi


i:Xi∈X


j:Xj∈Ni ,πj�source

g zi − zj ⎛⎜⎝ ⎞⎟⎠

· log 
j:Xj∈Ni ,πj�source

g zi − zj ⎛⎜⎝ ⎞⎟⎠

+
C1

nhi


i:Xi∈X


j:Xj∈Ni ,πj�target

g zi − zj ⎛⎜⎝ ⎞⎟⎠

· log 
j:Xj∈Ni ,πj�target

g zi − zj ⎛⎜⎝ ⎞⎟⎠

−
C1

n


i:Xi∈X
log 

j:Xj∈Ni

g zi − zj ⎛⎜⎝ ⎞⎟⎠ + C2 Wl

����
����
2
F


s.t. zi � fl Xi; Wl( , i � 1, . . . , n.

(24)

To solve this problem, we use the ADMM algorithm.
Following ADMM, we have the following optimization
problem:

min
Wl,z1 ,...,zn

o Wl, z1, . . . , zn(  +
ρ
2


i�1

n

fl Xi; Wl( − zi






2
F

+ 
i�1

n

α⊤i fl Xi; Wl( − zi( ,

(25)

where αi is a dual variable for the constraint zi � fl(Xi; Wl)

and ρ is its penalty parameter. We solve this problem by
alternately updating the variables in an iterative algorithm.

2.3.1. Updating of zi. ,e updating of zi is conducted by
solving the following ionization problem:

min
zi

o1 zi(  � o zi(  +
ρ
2

fl Xi; Wl( − zi

����
����
2
F

+ α⊤i fl Xi; Wl( − zi( ,

(26)

and we solve it by a gradient descent method:

zi⟵ zi − ρ∇zi
o1 zi( , (27)

where ρ is a descent step parameter and ∇zi
o1(zi) is the

gradient function regarding zi,

∇zi
o1 zi(  � ∇zi

o zi( − ρ fl Xi; Wl( − zi( − αi. (28)

2.3.2. Updating of Wl. Updating of Wl is conducted by
solving the following minimization problem:

min
Wl

o2 Wl(  � C1 Wl

����
����
2
F

+
ρ
2

fl Xi; Wl( − zi

����
����
2
F

+ α⊤i fl Xi; Wl( − zi( .

(29)

We also use the backprorogation algorithm to solve this
problem, based on the chain rule:

Wl⟵Wl − ρ∇Wl
o2 Wl( ,

∇Wl
o2 Wl(  � 2C1Wl + ρ fl Xi; Wl( − zi( 

⊤

· ∇Wl
fl Xi; Wl(  + α⊤i ∇Wl

fl Xi; Wl( .

(30)

2.3.3. Updating of αi. ,e dual variable is updated by gra-
dient ascent:

αi⟵ αi + ρfl Xi; Wl( . (31)

2.4. Overall Learning Algorithm of MMITR. In this section,
we give the overall iterative learning algorithm of the pro-
posed minimummutual information transfer representation
(MMITR) method. In this algorithm, it has an updating
strategy similar to the expectation-maximization (EM) al-
gorithm. In each iteration, we firstly fix domain transfer
representations to update the inter- and intraclass affinity
metrics in an E-step and then fix the inter- and intraclass
affinity metrics to update the CNN parameters and the
representations in an M-step. ,e iterations are stopped
until a maximum iteration number is reached or the ob-
jective value reaches a threshold. ,e overall algorithm is
described in Algorithm 1.

2.5. Prediction of a New Data Point. When we have a new
data point, X, to classify it, we calculate its classwise
representation and corresponding margin regarding each
class:
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z � fl X; Wl( ,

ml(X) � 
Xj∈N

−
X

A
−
ij′ zi − zj′

�����

�����
2

F
− 

Xj∈X
+
X

A
+
ij′ zi − zj′

�����

�����
2

F
,

l � 1, . . . , L,

(32)

where the intra- and interclass neighborhood and affinity are
calculated according to the classwise representations. ,e
new data point is assigned to a class which gives the
maximum margin:

y
∗

� arg maxL
l�1ml(X). (33)

3. Experiments

3.1. Datasets. In our experiments, we use the following
datasets as benchmark datasets:

Office-31: this dataset has 4,652 images of 31 classes.
,e images are from three different domains: Amazon
(images downloaded from http://www.amazon.com),
Webcam (photos taken by web camera), and DSLR
(photos taken by digital SLR camera).
ImageCLEF-DA: this dataset is composed of images of
12 classes of four domains. Each domain is a unique
database, including Caltech-256, ImageNet ILSVRC
2012, Pascal VOC 2012, and Bing.
Email spam: this dataset has email texts of spam and
nonspam.,edata are collected from three users, and each
user has 2,500 emails. Each user is treated as a domain.
Extended Cohn-Kanade (CK+): this dataset is an image
set for facial expression recognition. It has images of
123 subjects, and each subject is treated as a domain.
,is dataset has 593 videos in total, and for each video,
there are about 20 frames. Each image of a face belongs
to one of the 7 expression classes.

Amazon: this dataset is a text classification task dataset.
,e texts are from three different domains, and each
domain is the review for products of books, DVD, and
music. For each domain, there are 2,000 positive review
texts and 2,000 negative review texts.

3.2. Experimental Setting. In this experiment, we use each
domain of a dataset as a target domain in turn and the
remaining domains as the source domains. For each test
domain, we use the leave-one-out protocol to split it into a
training set and a test set. Each data point of a target domain
is used as a test data point in turn, and the remaining data
points are combined to form a training set. ,e training set
of the target domain is randomly split to an unlabeled set
and a labeled set, with equal size. ,e data points of the
source domains are always treated as labeled in our setting.
Our algorithm is performed over the training set to learn the
parameters of the classwise representation model and the
domain-independent representations and then used to
classify the test data points. ,e classification accuracy is
used to evaluate the performance of the algorithm.

3.3. Results. In our experiment, we first study the properties
of the algorithm experimentally, including its sensitivity to
the tradeoff parameters and its convergence property to
iteration numbers. ,en, we compare its performance to
state-of-the-art domain transfer learning algorithms.

3.3.1. Algorithm Property Evaluation

(1) Sensitive to Tradeoff Parameters. ,ere are two tradeoff
parameters in our algorithm:C1 andC2.,ey are the weights
of the mutual information term and the complexity re-
duction term in our object. We plot the accuracy of our
algorithm regarding different values of C1, as shown in
Figure 2. From this figure, we observe that the accuracy

Input: Training set of L classes and unlabeled data points X1 ∪ · · · ∪XL ∪XU;
Input: Domain indicators of training points π1, . . . , πn;
Input: Tradeoff parameters C1 and C2;
Input: Maximum number of iterations, η;
Input: Objective value threshold, ε.
Initialize iteration indicator ι � 1.
Initialize model parameters and objective value o0 � 0.
while ι≤ η or objective value |oι − oι−1|≤ ε do
E-step: Update the inter- and intraclass affinities for each data point, according to equations (5) and (6).
M-step: Iterating the ADMM updating steps.
for t � 1, . . . , T do

Update the domain transfer representations by iterating the gradient descent steps of equation (27).
Update the CNN model parameters by iterating the backprorogation steps of equation (30).
Update the dual variables by iterating the gradient ascent steps of equation (31).

end for
ι � ι + 1.

end while
Output: W and z1, . . . , zn.

ALGORITHM 1: Iterative learning algorithm of MMITR.
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improves in most cases when the value of C1 increases. Since
C1 is the weight of the mutual information term to measure
how dependent the representation is from the domain, this
indicates that a more domain-independent representation
helps the classification in the target domain. Actually, the
more independent the representation is from the domain,
the better the data of different domains aremerged.,us, the
source domain can benefit the learning problem in the target
domainmore.,is phenomenon is evenmore obvious in the
CK+dataset; when C1 grows from 1 to 10, the accuracy is
boosted significantly. ,is is a piece of strong evidence how
the minimum mutual information improves the transfer
learning.

,e accuracy curves of classification with different values
of C2 are shown in Figure 3. From this figure, we can see that
the proposed algorithm is stable to the change of C2. Since
the algorithm is not sensitive to the change of C2, the tuning
of this parameter will be easy for a specific dataset. One only
exception is the case when C2 varies between 1 and 10, the
accuracy changes dramatically.

(2) Convergence Analysis. Since our algorithm is an iterative
algorithm, it is critical to know when to stop the iterations.

We study the convergence of the algorithm by plotting the
accuracy over different datasets with varying numbers of
iterations in Figure 4. According to the curves in the figure,
in most datasets, the algorithm gives a better accuracy when
the iteration number grows and then becomes stable after
about 100 iterations. For the email spam dataset, the al-
gorithm converges at 50 iterations.

Remark. To solve a minimization problem in our algorithm,
we employed the ADMM algorithm. To verify if the ADMM
algorithm solves the optimization of the minimization
problem effectively, we plot the object values of the learning
problem with increasing numbers of iterations in Figure 5.
As we can see from the curves, the object value decreases
stably as the number of iterations increases, until it reaches a
convergency, and then the changing of object values be-
comes small. ,is is a strong evidence that ADMM algo-
rithm solves the optimization problems effectively (Table 1).

3.3.2. Comparison to State of the Arts. We compare our
algorithm, MMITR, to several state-of-the-art transfer
learning algorithms, including the Deep Adaptation Net-
work (DAN) [4], Selective Transfer Machine (STM) [1],
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Figure 2: Tradeoff parameter sensitivity study of C1. (a) Office-31. (b) ImageCLEF-DA. (c) Email spam. (d) CK+. (e) Amazon.
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Figure 3: Tradeoff parameter sensitivity study of C2. (a) Office-31. (b) ImageCLEF-DA. (c) Email spam. (d) CK+. (e) Amazon.
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Figure 4: Continued.
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Semisupervised Kernel Matching Domain Adaptation
(SSKMDA) [6], and Domain Transfer Multiple Kernel
Learning (DTMKL) [2]. In Table 2, we have provided a
detailed list of algorithms compared in the experiment,
regarding the aspect of data representation components and
domain matching criteria.

,e comparison of accuracy results is given in Figure 6.
In this figure, we can observe that the proposed method

outperforms the other methods in four experiments out of
five. In experiments over three datasets (Office-31,
ImageCLEF-DA, and Amazon), our algorithm outputs the
second best method, DAN, by a large margin. For the dataset
of CK+, DAN outperforms our method by a slight amount.
Both DAN and our method MMITR are based on deep
learning model, but our method tries to learn domain-
independent deep representations, while DAN tries to
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Figure 4: Convergence analysis. (a) Office-31. (b) ImageCLEF-DA. (c) Email spam. (d) CK+. (e) Amazon.

1 20 50 100 200
Number of iterations

0
2
4
6
8

10
12
14
16
18

O
bj

ec
t v

al
ue

(a)

1 20 50 100 200
Number of iterations

0
1
2
3
4
5
6
7

O
bj

ec
t v

al
ue

(b)

1 20 50 100 200
Number of iterations

0

0.2

0.4

0.6

0.8

1

1.2

O
bj

ec
t v

al
ue

(c)

1 20 50 100 200
Number of iterations

0
0.5

1
1.5

2
2.5

3
3.5

O
bj

ec
t v

al
ue

(d)

1 20 50 100 200
Number of iterations

0
10
20
30
40
50
60

O
bj

ec
t v

al
ue

(e)

Figure 5: Objective value curve of ADMM algorithm. (a) Office-31. (b) ImageCLEF-DA. (c) Email spam. (d) CK+. (e) Amazon.
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Table 1: Definitions of symbols.

Symbol Definition
Xi i-th data point
Xl Set of data points of the l-th class
XU Set of unlabeled data points
z Domain transfer representation of a data point
Wl Parameters of the CNN model of the l-th class
N+

i Intraclass neighborhood of the i-th data point
N−i Interclass neighborhood of the i-th data point
A+

ij Intraclass affinity between the i-th and j-th data points
A+

ij′ Interclass affinity between the i-th and j′-th data points
πi Domain indicator of the i-th data point
ωij Soft weight of the the j-th data point in the i-th neighborhood

Table 2: Compared methods.

Method Data representation Domain matching criterion
MMITR CNN Mutual information minimization
DAN CNN Maximum mean discrepancy (MMD)
STM — Kernel mean-matching (KMM)
SSKMDA Multikernel learning Hilbert schmidt independence criterion (HSIC)
DTMKL Multikernel learning MMD
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Figure 6: Continued.
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learn a deep learning model to represent the data points so
that mean of representations of source domain and target
domain can be similar to each other. According to the re-
sults, MMITR outperforms DAN in most cases; we conclude
that domain-independent deep representation is more
suitable for domain transfer learning than domain-mean
matched representation. ,e other methods are also based
on mean-matching of domain transfer representations, but
using a shallowmodel instead of a deep model; thus, they are
not able to explore hierarchal deep features. ,is again
verifies the effectiveness of the deep model.

Remark. ,e conditions of the methods of the results re-
ported in 6 are described in details as follows. For the DAN
algorithm, it has two hyperparameters: the MMD Penalty λ
and the Entropy Penalty c, and we set their values to 1 and
0.1, respectively. For the STM algorithm, there are two
hyperparameters: C for the tradeoff between maximal
margin and training loss and λ for the tradeoff between the
SVM empirical risk and the domain mismatch loss. In this
experiment, we set both their values to 1. For the SSKMDA
algorithm, it has five tradeoff parameters between the model
components: μ, η, β, cs, ct, and their value setting in our
experiment are 10, 2, 0.1, 0.1, and 1, respectively. ,e
DTMKL algorithm has only one hyperparameter: the reg-
ularization parameter C, and we set it to 0.5 in the exper-
iments. For our algorithm MMITR, it has two tradeoff
parameters, C1 and C2; for each benchmark dataset, we
report the best results among the results obtained by using
different values of C1 and C2.

4. Conclusions and Future Works

In this paper, we proposed a novel framework for transfer
learning. Not like the traditional transfer learning which
tries to match the representations of source domain and
target domain, we proposed to learn domain-independent
representations. We argue to measure the dependency of

learned deep representations and domain by mutual in-
formation and learn the domain-independent deep repre-
sentations by minimizing the mutual information. We also
proposed a practical estimation method for the mutual
information between domain and deep representations. A
classwise deep representation neural network work is trained
under this framework and used to classify new data points.
Experiments over benchmark datasets for transfer learning
verify the effectiveness of the proposed method.

Remark. ,e new concept proposed in this paper is a novel
domain transfer learning framework which minimizes the
mutual information between the domain transfer repre-
sentations and the domain indicators so that the gaps among
domains can be effectively leveraged and a common rep-
resentation space is learned. ,e new method developed in
this is a novel iterative learning algorithm to learn the
domain transfer representations based on CNN models.
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