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Summary Renal cell carcinoma (RCC) are frequently chemo- and radiation resistant. Thus, there is a need for identifying biological features
of these cells that could serve as alternative therapeutic targets. We performed suppression subtractive hybridization (SSH) on patient-
matched normal renal and RCC tissue to identify variably regulated genes. 11 genes were strongly up-regulated or selectively expressed in
more than one RCC tissue or cell line. Screening of filters containing cancer-related cDNAs confirmed overexpression of 3 of these genes and
3 additional genes were identified. These 14 differentially expressed genes, only 6 of which have previously been associated with RCC, are
related to tumour growth/survival (EGFR, cyclin D1, insulin-like growth factor-binding protein-1 and a MLRQ sub-unit homologue of the
NADH:ubiquinone oxidoreductase complex), angiogenesis (vascular endothelial growth factor, endothelial PAS domain protein-1,
ceruloplasmin, angiopoietin-related protein 2) and cell adhesion/motility (protocadherin 2, cadherin 6, autotaxin, vimentin, lysyl oxidase and
semaphorin G). Since some of these genes were overexpressed in 80–90% of RCC tissues, it is important to evaluate their suitability as
therapeutic targets. © 2001 Cancer Research Campaign 
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Renal cell carcinoma (RCC) accounts for approximately 3% of
adult malignancies and 1.4% of cancer-related deaths (Reis and
Faria, 1994). The prognosis of RCC remains poor. One third of the
patients already have metastases when first consulting the
hospital. Another 30–40% of patients develop metastases after
surgical excision of the primary tumour (Ravaud and Debled,
1999). RCC are radioresistant (Nieder et al, 1996) and more than
80% are chemoresistant (Mickisch, 1994). Since RCC are
presumed to be immunogenic, several clinical trials are exploring
the efficacy of cytokines, mainly interleukin 2 (IL2) and/or inter-
feron-α (IFNα), and the transfer of lymphokine-activated killer
cells (Hofmockel et al, 1997; Bukowski, 2000; Hoffman et al,
2000). Despite these new options, the median survival time of
patients with metastatic disease still remains only 6–8 months and
the overall 5-year survival rate is less than 5% (Moch et al, 2000;
Motzer and Russo, 2000). Thus, there is an urgent requirement for
alternative therapeutic modalities. 

The current strategy is to design therapeutic approaches based on
specific biological features of each tumour type. These include (i) the
aberrant expression of genes which can be recognized by the immune
system as foreign (Pawelec et al, 1999; Wang and Rosenberg, 1999;
Bremers and Parmiani, 2000); (ii) gene products related to the forma-
tion of new blood vessels (neoangiogenesis), since they are essential
for tumour expansion and metastatic settlement (Harris and
Thorgeirsson, 1998; Kerbel, 2000; Rosen, 2000) and (iii) the altered
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expression of adhesion molecules, matrix-degrading enzymes, their
receptors and inhibitors, which are a further requisite of metastatic
spread (Huang et al, 1997; Yu et al, 1997). 

Several technique enable the identification of tumour markers.
Subtractive hybridization (Lamar and Palmer, 1984; Kunkel et al,
1985; Kuang et al, 1998), differential display reverse transcrip-
tion-polymerase chain reaction (DD RT-PCR; Liang and Pardee,
1992) and hybridization of cDNA microarrays (reviewed in Khan
et al, 1999) are frequently used to compare the expression patterns
between tumour and normal tissue. Other approaches, such as
serological screening (SEREX; Sahin et al, 1995) and screening of
cytotoxic T lymphocyte activity against an autologous tumour cell
line (De Plaen et al, 1988), are especially focused on the identifi-
cation of immunogenic tumour molecules. 

We have described recently the successful use of SSH using
matched RCC and normal kidney tissue (Pitzer et al, 1999). In this
study, we randomly selected 16 genes, which by SSH appeared to
be differentially expressed. Differential expression of 9 of these 16
genes could be verified by Northern blot analysis. 2 of the 9 genes
appeared to be novel. From the remaining 7 genes, expression of 5
had been associated with the malignant phenotype. To substantiate
that SSH is a suitable method for the identification of differentially
expressed genes, we performed a SSH with an additional pair of
normal renal and RCC tissue and compared the validity of SSH
with the validity of a cDNA microarray containing 588 known
human cancer-related genes using the same patient’s tissues.
Finally, expression of 11 genes, which differed strongly between
2Current address: Recombinant Antibody Group, German Cancer Research Center,
69120 Heidelberg, Germany, 5Current address: Exp. Immunology Branch, NCI /
NIH, 10 Center Drive, Bethesda, MD 20892 USA. 
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RCC and normal renal tissue, was evaluated in altogether 35
matched normal kidney and RCC tissues to obtain a hint whether
these RCC-associated genes may serve as diagnostic, prognostic
or therapeutic targets. 

MATERIAL AND METHODS 

Cell culture and tissue samples 

Human renal cell carcinoma cell lines Caki 1, Caki 2, KTCTL-2,
KTCTL-28, KTCTL-84, KTCTL-128, A-498, 769-p and 786-O
were obtained from the tumour bank of the German Cancer
Research Center. Lines were cultured in RPMI-medium supple-
mented with 10% fetal calf serum (FCS). The NSCLC lines D51,
D97 and D117 have been established by one of the authors (SP).
Cells were grown in Leibovitz 15 supplemented with 15% FCS
and L-glutamine. The LC DMS79, H2170, H2228, H446, H526,
H82, N417, SHP-77 were obtained from the American Type
Culture Collection, Rockville, MD; the LC lines A427, A549,
COLO 668, COLO 677, COLO 699, CPC-N, DV90 were obtained
from the German Collection of Microorganisms and Cell Cultures,
Braunschweig, Germany. Human small airway epithelial cells
(SAEC) and human bronchial epithelial cells (HBEC) were
obtained from CLONETICS and were cultured under the recom-
mended conditions for a maximum of 10 cell divisions. 

Normal kidney and kidney tumour tissue samples from RCC
patients were snap-frozen in liquid nitrogen immediately after
surgery and stored at –80˚C. 35 pairs of RCC/normal kidney tissue
have been used. 

Isolation of RNA 

Total RNA was isolated from human tumour cell lines and human
tissue samples using Tri Reagent™ (Sigma, Taufkirchen,
Germany) as per the manufacturer’s instructions. Poly A+ mRNA
was isolated from total RNA samples with mini-oligo (dT) cellu-
lose spin columns (Peqlab, Erlangen, Germany) as per the manu-
facturer’s instructions. 

RNA gel electrophoresis and northern blot
hybridization 

Total RNA (20 µg) from 9 RCC cell lines and normal kidney and
kidney tumour tissue from 35 different RCC patients was run for 3
to 4 hours at 80 V on a 1 × MOPS/1.2% agarose gel containing
ethidium bromide and 2.2 M formaldehyde. The RNA was trans-
ferred to a positively charged nylon membrane (Hybond™-N+,
version 2.0; Amerham-Pharmacia, Freiburg, Germany) by
overnight capillary blotting with 20 × SSC. 

For Northern blot hybridization, RNA blots were prehybridized
at 42˚C for at least 1 hour and hybridized overnight with 25 ng
denatured probe DNA that was labelled with 50 µCi [32P]dCTP
using Rediprime™ II (Amersham-Pharmacia). The next day the
blots were washed 15 minutes in 1 × SSC/1% SDS at 42˚C, 15
minutes in 0.2 × SSC/1% SDS at 42˚C and 15 minutes in 0.2 ×
SSC/1% SDS at 55˚C. The blots were exposed to X-ray film
(Hyperfilm™ MP, Amersham-Pharmacia). The size of the identi-
fied transcripts was determined by the position of the 18S (1.9 kb)
and 28S (4.7 kb) rRNA bands. As a control for the amount of RNA
loaded on the gel, blots were hybridized with glycerinaldehyde-
phosphate dehydrogenase (GAPDH). For reprobing, the blots
© 2001 Cancer Research Campaign
were stripped for 15 minutes in boiling 40 mM Tris-HCl (pH 7.5)
with 0.1 × SSC and 1% SDS. 

Suppression subtractive hybridization (SSH) 

Analysis of differentially expressed genes in human renal cell
carcinoma (RCC) patient (T9) as well as of a pool of 6 RCC was
performed by suppression subtractive hybridization (SSH) using
the CLONTECH PCR-Select™ cDNA Subtraction Kit (Clontech,
Heidelberg, Germany). In short, 2 µg of both kidney tumour and
normal kidney poly A+ RNA from the same RCC patient (T9) and
the pooled probes, respectively, were used for double strand
cDNA synthesis and the resulting cDNA was digested with Rsa I.
The digested tumour cDNA was split into 2 and ligated to either
adaptor 1 or adaptor 2R. For the subtraction, an excess of normal
kidney cDNA was added to the adaptor-ligated kidney tumour
cDNA and the samples were heat denatured and allowed to anneal.
During the first hybridization the Rsa I-digested normal kidney
cDNA was mixed with either adaptor 1-or 2R-ligated RCC cDNA
and incubated at 68˚C for 8 h. The second hybridization, in which
the 2 samples from the first hybridization were mixed together and
to which freshly denatured kidney cDNA was added, was
performed overnight at 68˚C. New hybrid molecules with different
adaptors on each end were formed during this step and represented
the differentially expressed cDNAs in RCC that were subse-
quently selectively amplified by 2 polymerase chain reactions
(PCR): the first PCR with a primer that binds to both adaptor 1 and
2R and the second PCR with 2 nested primer that bind to adaptor 1
and 2R, respectively. The PCR products after both the first and
second PCR reaction were analyzed on a 1 × TAE/2% agarose gel
containing ethidium bromide. The PCR mixture, containing
enriched differentially expressed transcripts, was cloned into the
PCR® 2.1-TOPO (Invitrogen, Groningen, the Netherlands) and the
sequence was analysed. 

Sequence analysis 

Sequence analysis was performed with 3 µg of miniprep DNA
using the T7 Sequenase v2.0 7-deaza-dGTP Sequencing Kit
(Amersham-Pharmacia). The samples were run on a 6% polyacry-
lamide/8 M urea gel in 1 × TBE. The gel was dried under vacuum
at 80˚C for 2 hours and exposed overnight to X-ray film
(Hyperfilm™ MP, Amersham-Pharmacia). 

Vascular endothelial growth factor (VEGF) isoform
analysis 

The VEGF isoform pattern was analysed in T9 kidney tumour
tissue and normal kidney of the same patient by reverse transcrip-
tion-polymerase chain reaction (RT-PCR) as described by
Tomisawa et al (1999). In short, 1 µg total RNA was reversely
transcribed using 100 ng dT18 primer and VEGF cDNA fragments
were amplified by 30 cycles of PCR consisting of 1 minute at
94˚C, 1 minute at 55˚C and 2 minutes at 72˚C, using the following
primers: V-S: 5′-AGCCATCCTGTGTGCCCCTGATG-3′, V-S4:
5′-GGATCAAACCTCACCAAGGCC-3′, V-A: 5′-GCGAATTC-
CTCCTGCCCGGCTCAC-3′, V-A7: 5′-CTTTCTCCGCTCT-
GAGCAAGGC-3′. PCR with V-S and V-A gives VEGF121

(243 bp), VEGF165 (375 bp), VEGF189 (447 bp) and VEGF106 (498
bp) fragments. PCR with V-S4 and V-A7 gives VEGF165 (165 bp),
VEGF189 (204 bp) and VEGF206 (255 bp) fragments. 
British Journal of Cancer (2001) 85(9), 1372–1382
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Figure 1 Expression by Northern blot analysis of genes found by SSH.
Expression in normal kidney (N) and kidney tumour tissue (T) of one RCC
patient (T9). For RNA loading control, blots were hybridized with GAPDH 
Atlas cDNA expression array hybridization 

2 identical Atlas-membranes (Atlas Human Cancer cDNA
Expression Array, #7742-1; Clontech) were hybridized with 
either cDNA from normal kidney or from autologous kidney
tumour following the manufacturer’s protocol. The next day 
the membranes were washed 4 times with 2 × SSC/1% SDS for 
30 minutes at 68˚C, and twice with 0.1 × SSC/0.5% SDS for 30
minutes at 68˚C. 

The membranes were sealed in plastic wrap and X-ray films were
exposed to the membranes overnight to 3 days at –80˚C with inten-
sifying screens. PCR products of differentially expressed genes were
used as probes in Northern blot hybridization to verify differential
hybridization signals on the Atlas cDNA expression arrays. 

Hybridization of testis cDNA library arrays 

High-density filter arrays containing full length cDNAs from a
human testis library (Library No. 565, part 1; Experiment No. 275;
Filter No. 1; Replica No. 128 and 129) were obtained from the
Resource Center in the German Human Genome Project (Berlin,
Germany). Blots were prehybridized for at least 1 hour at 65˚C.
Probe DNA (25 ng) was labelled with 50 µCi [32P]dCTP using
Rediprime™ II (Amersham-Pharmacia) and added to the prehy-
bridization solution after denaturation. After overnight hybridiza-
tion at 65˚C the filters were washed once in 40 mM sodium
phosphate/0.1% SDS at 65˚C for 20 minutes. Signals were
detectable on X-ray film (Hyperfilm™ MP, Amersham-Pharmacia)
after an overnight exposure at –80˚C with intensifying screens.

Statistics 

Statistical evaluation was done by the Fisher’s exact test or the
exact Jonckheere–Terpstra test. 

RESULTS 

Screening for differentially expressed genes in RCC by
SSH 

To search for new biological targets that might be useful in RCC
therapy, we performed SSH with cDNA from normal kidney and
tumour tissue from one patient (T9). Subtraction was performed in
one direction resulting in the cloning of cDNA fragments repre-
senting genes overexpressed in T9. Over 100 clones were analysed
further. First, differential expression was verified by hybridizing
the clones back to Northern blots containing RNA from T9. The
differential expression of 54 out of 104 clones (roughly 50%) was
confirmed. 30 of these cDNA clones, despite being differentially
expressed, displayed weak expression in the RCC tissue analysed
(T9) and therefore were excluded from further analysis. The
remaining 24 cDNA fragments, some of which are shown in
Figure 1, were strongly expressed in the RCC tissue. RNA from a
panel of 9 RCC tissues and matched normal kidney tissues were
hybridized with these 24 clones. 3 clones (SSH-26, -33 and -42)
were expressed only in T9 and were thus excluded from additional
analysis. The remaining 21 clones were sequenced. Sequence
analysis revealed that several of the 21 cDNA clones represented
fragments from the same gene. Thus, from the original 104 clones,
11 genes were identified as being highly overexpressed in a panel
of RCC tissues. 
British Journal of Cancer (2001) 85(9), 1372–1382
Identification of overexpressed genes in RCC 

9 of these 11 genes have been described before, i.e. sequence
analysis revealed 95–100% homology at the cDNA level and corre-
sponding sizes of the SSH-identified gene transcripts with the
deposited description. 2 ‘newly defined’ genes have meanwhile
been identified. A 418 bp fragment of the ‘novel’ gene SSH-28
showed 96% homology at the cDNA level and 100% homology at
the protein level to the human MLRQ subunit of the NADH:
ubiquinone oxidoreductase complex in mitochondria, also called the
C1 respiratory complex (C1-RC) (accession No AAF80760). The
second ‘novel’ gene, SSH-58, has been identified as the recently
cloned human homologue of murine semaphorin G (SemG) (acces-
sion No AB040878). Expression of these genes in several kidney
and RCC tissue pairs is demonstrated in Figure 2. The overall
expression profiles are listed in Tables 1 and 2, which provide in
addition an analysis of 9 RCC lines as well as 2 normal lung
© 2001 Cancer Research Campaign
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Figure 2 Expression by Northern blot analysis of genes found by SSH. Expression in normal kidney (N) and kidney tumour tissue (T) of 8 RCC patients. For
RNA loading control, blots were hybridized with GAPDH. It should be noted that in sample 8 the amount of normal kidney RNA exceeded the one of the RCC 
epithelial lines, 3 non-small-cell lung carcinoma lines (NSCLC) and
15 lung carcinoma lines (LC) to obtain an impression on the selec-
tivity of the expressed genes for RCC. Interestingly, functional
activities of these 11 gene products have been associated with
© 2001 Cancer Research Campaign
different stages of tumour development, namely proliferation, cell
survival, neoangiogenesis and adhesion/motility. 

Insulin-like growth factor-binding protein 3 (IGFBP-3) and
cyclin D1 are known to be involved in cell proliferation. IGFBP-3
British Journal of Cancer (2001) 85(9), 1372–1382
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Table 1 Identification of genes differentially expressed in RCC 

RCC
Differentially expressed genesa

Tissueb IGFBP3 Cycl.D1 VEGF EPAS1 CP ARP2 Pcdh2 ATX LO C1-RC SemG 

RCC T4 – ± + – – – – – – – – 
RCC T6 – + ± – – – – – – – – 
RCC T8 +++ + ± – – – – nd – – – 
RCC T5 +++ ++ +++ + ++ ++ – +++ – + – 
RCC T3 +++ +++ +++ ± ++ ++ – +++ ± ± + 
RCC T1 ++ +++ +++ + +++ ++ – +++ + + ++ 
RCC T2 +++ ++ +++ ± +++ ++ – ++ + ++ ++ 
RCC T7 +++ ++ ++ ± +++ +++ – nd + ++ ++ 
RCC T9 +++ +++ +++ ++ +++ +++ + +++ ++ ++ ++ 

RCC lines 
769P ± nt – – +++ – nt – – – – 
786–0 ++ ++ ++ ++ ++ + – – – – – 
A498 +++ ++ ++ ++ +++ + ± – – – – 
Caki–1 ++ + nt nt ++ nt ± – nt +++ – 
Caki–2 +++ + nt nt + nt – – nt +++ – 
KTCL–2 ± nt ± – – – nt – – – – 
KTCL–28 +++ + ± ± ++ – ± – ++ – + 
KTCL–84 +++ ++ + + ++ – ± – ++ – ±
KTCL–128 +++ ++ ± ± +++ – ± – +++ – + 

athe degree of overexpression is indicated by +++: very strong, ++: strong, +: distinct, ±: weak, but differential; nd (not differential) indicates expression in normal
kidney tissue, nt: not tested. 
bRCC tissue were grouped according to expression profiles, RCC T9: RCC tissue of the same patient that was used for SSH. 

Table 2 Expression of RCC-associated genes in normal lung and lung carcinoma 

Lung Differentially expressed genes 

Tissuea IGFBP3 Cycl.D1 VEGF EPAS-1 CP ARP2 Pcdh2 ATX LO C1-RC SemG 

SAEC (1)b 0 0 1 0 0 1 0 0 0 1 0 
HBEC (1)b 0 0 1 0 0 1 0 0 0 0 0 

NSCLC (3)b 1 0 3 0 0 3 0 0 0 0 0 
LC (15)b 2 0 15 0 0 2 0 0 0 2 0 

aSAEC: small airway epithelial cells, HEBC: human bronchiolar epithelial cells, NSCLC: non-small cell lung carcinoma lines, LC: lung carcinoma lines; 
bin brackets: number of samples. 
was overexpressed in 7/9 RCC tissues and all 9 RCC lines. It also
was expressed in 3 lung carcinoma lines. Cyclin D1 was overex-
pressed in 9/9 RCC tissue and all tested RCC lines, while in none
of the 18 lung carcinoma lines cyclin D1 was detected. 

4 of the 11 differentially expressed genes encode proteins
involved in angiogenesis: vascular endothelial growth factor
(VEGF), endothelial PAS domain protein 1 (EPAS1), ceruloplasmin
(CP) and angiopoietin-related protein 2 (ARP2). Overexpression of
VEGF could be demonstrated in all RCC tissues, 6 out of 7 RCC
lines and in all lung-derived cell lines, i.e. in normal lung epithelial
cell lines as well as lung carcinoma lines. Different VEGF isoforms,
encoding polypeptides consisting of 121, 145, 165, 189 and 203
amino acids have been described (Neufeld et al, 1999). To test which
of the isoforms were overexpressed in the original kidney tumour
(T9), an RT-PCR was performed with primers that lead to distinct
bands for the different isoforms (Tomisawa et al, 1999). PCR with
primers V-S and V-A gives VEGF121 (243 bp), VEGF165 (375 bp),
VEGF189 (447 bp) and VEGF106 (498 bp) fragments. PCR with the
primers V-S4 and V-A7 gives VEGF165 (165 bp), VEGF189 (204 bp)
and VEGF206 (255 bp) fragments. GAPDH primers were used as a
control. All VEGF isoforms were overexpressed in kidney tumour
T9 (Figure 3). 
British Journal of Cancer (2001) 85(9), 1372–1382
Differential expression of EPAS1 was seen in 6 out of 9 RCC
tissues. It was expressed in 5 out of 7 RCC lines, but not in any of
the lung samples. CP was distinctly expressed in 6 out of 9 RCC
tissues and all except one RCC line. It was not detected in lung
carcinoma lines. ARP2 was expressed in 6 RCC tissues, but only
in 2 out of 7 RCC lines. Both a bronchial epithelial and a small
airway epithelial cell line were ARP2 positive. Also, 3/3 NSCLC,
but only 2/15 LC were ARP2 positive. 

With respect to adhesion-related molecules, we recovered 3
genes: protocadherin 2 (Pcdh2; also called cadherin-like 2), auto-
taxin (ATX) and lysyl oxidase (LO). Protocadherin 2 was not
detected in the other 8 RCC tissues, but in 5 out of 7 RCC lines,
albeit weakly. No signal was seen in Northern blots of lung carci-
noma lines. ATX, also called autocrine motility factor, was clearly
overexpressed in 5 RCC tissues. In 2 samples, ATX was also
strongly expressed in normal kidney tissue. Neither the RCC lines
nor the lung carcinoma lines expressed ATX. Expression of lysyl
oxidase (data not shown) was upregulated in 5 RCC tissues and
was not detectable in lung carcinoma lines, but in 3 out of 7 RCC
lines. 

The ‘novel’ gene C1-RC was overexpressed in 6 RCC tissues, 2
out of 9 RCC lines, the small airway epithelial cell line and 2 LC
© 2001 Cancer Research Campaign



Renal cell carcinoma associated gene expression 1377

− 500 bp
− 400

− 300

− 200

− 100

N

V-S
V-A

T TN TN

V-S4
V-A7 GAPDH

Figure 3 Identification of vascular endothelial growth factor (VEGF)
isoforms. RT-PCR of normal (N) and tumour (T) tissue of one RCC patient
(T9). PCR with V-S and V-A gives VEGF121 (243bp), VEGF165 (375bp),
VEGF189 (447bp) and VEGF106 (498bp) fragments. PCR with V-S4 and V-A7
gives VEGF165 (165bp), VEGF189 (204bp) and VEGF206 (255bp) fragments.
PCR with GAPDH primers served as positive control 
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Figure 4 Hybridization of Atlas blots with normal kidney and RCC cDNA.
Differentially expressed genes are marked by arrows. The apparently
overexpressed genes in normal kidney tissue c-fos (1), IGFBP-5 (2) and
hepatocyte growth factor (3) could not be verified in Northern blot analysis;
From the genes overexpressed in RCC tissue cyclin D1 (4), vimentin (5),
EGFR precursor (6), IGFBP-3 (7), cadherin 6 (10) and VEGF (11) were
verified by Northern blot analysis, but not CD59 (8), collagen type 1 (9),
BMP3 (12) and early growth response protein (13). The last row of each blot
contains positive controls 
lines. The second ‘novel’ gene, SemG, was differentially
expressed in 5 RCC tissues and 3 RCC lines. Lung carcinoma lines
did not express SemG.

Taken together, from 14 genes differentially expressed in the
tumour and normal kidney tissue of one patient, overexpression of
11 genes was also detected in additional RCC tissue samples
and/or RCC lines. Interestingly, with the only exception of
IGFBP3, none of these genes were differentially expressed in lung
cancer versus normal lung tissue lines. 

Controlling reliability of SSH 

To confirm our findings by SSH of one matched pair of normal
kidney tissue versus a RCC, SSH was repeated using a pool of 6
RCC versus the matched pool of normal kidney tissue. Northern
blotting revealed that 8 genes were differentially expressed in the
pool of RCC and in additional RCC as compared to matched normal
kidney tissue. Interestingly, 5 of these 8 genes had also been recov-
ered by the T9 tumour, i.e. IGFBP-3, VEGF, ARP2, CP and cyclin
D1. There were 2 additional genes, which were strongly upregulated
in RCC tissue, BACE2 (beta site amyloid precursor protein cleaving
enzyme) and SUPT5H (human homologue of the suppressor of
transposon Ty). Expression levels of a third gene, ARPP-19, were
found to vary widely in normal kidney tissue. Therefore, differential
expression of this gene has not been further pursued.

Finally and to obtain a more comprehensive view of genes
differentially expressed in RCC, the normal kidney and T9 RCC
tissue used for SSH were tested on 2 dot blots (Atlas blots) which
contain 588 known human cancer-related genes (Figure 4).
Putatively differentially expressed genes were tested on Northern
blots to eliminate false positives. 3 of the genes detected by SSH,
namely cyclin D1, VEGF and IGFBP-3, were also recovered by
Atlas blot hybridization. Of the remaining 10 genes, only cadherin
6, vimentin and epidermal growth factor receptor (EGFR) could
be verified by Northern blot analysis. None of the genes seemingly
overexpressed in normal kidney tissue could be verified by
Northern blot analysis (data not shown). 

In an attempt to isolate potentially immunogenic antigens,
particularly so called cancer-testis antigens, 2 identical filters
© 2001 Cancer Research Campaign
containing full-length cDNAs of human testis were hybridized
with normal kidney cDNA and the corresponding subtracted T9
RCC cDNA. Unfortunately, from 25 seemingly differentially
expressed clones, none could be verified after rescreening by
Northern blot hybridization (data not shown). 

Expression profile and clinical features 

As shown in Figure 2, there were clear differences in the expres-
sion profiles between the 9 RCC samples tested. 5 RCC tissues
displayed rather uniform expression profiles of the described
differentially expressed genes, while expression profiles of 4 RCC
tissues differed, with expression of only 2, 3 and 8 of the 11 genes,
respectively. Thus, it became tempting to speculate that different
gene expression profiles might correlate with histology, grading or
staging of the tumour. To support the assumption, Northern blots
were performed with an additional 26 matched normal renal and
RCC tissues Blots were hybridized with probes of IGFBP3, Cyclin
D1, C1-RC, VEGF, CP, ARP2, ATX, LO, SemG and with probes of
BACE2 and SUPT5H, two genes identified by using a pool of
normal kidney tissue and matched RCC for SSH. 

Table 3 shows the reactivity profiles when samples were
grouped according to histology, grading and TNM staging. The
individual RCC-reactivity profiles, grouped according to the histo-
logical type are, in addition, shown in Figure 5. Although with the
British Journal of Cancer (2001) 85(9), 1372–1382
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Table 3 Correlation between differential gene expression, histology, grading and staging 

Clinical features IGFBP3 Cycl.D1 C1-RC SUPT5H VEGF CP ARP2 ATX LO SemG BACE2 

Histology 
Clear (20) 17/20 12/18 16/18 15/20 15/20 11/18 14/18 8/20 9/20 8/16 3/13 

P value (vs all other types)1 ns2 ns <0.0001 0.007 0.02 ns 0.005 0.02 0.01 0.04 0.002 

Clear and granular (3) 3/3 2/2 0/3 0/3 0/3 0/2 0/2 0/3 0/3 0/3 3/3 
P values (vs clear)1 ns 0.007 0.03 0.03 ns ns ns 0.02 

Granular (3) 0/3 0/3 0/3 0/3 0/3 0/3 1/3 0/3 0/3 0/3 1/2 
P value (vs clear)1 0.01 ns 0.007 0.03 0.03 ns ns ns ns ns 

Oxyphil (3) 2/3 2/3 0/3 2/3 3/3 1/3 0/3 0/3 0/3 0/3 3/3 
P value (vs clear)1 ns ns 0.007 ns ns ns 0.03 ns ns ns 0.02 

Tubulopapillary (1) 1/1 0/1 0/1 0/1 0/1 1/1 1/1 0/1 0/1 1/1 

Grading3

GI (13) 9/13 6/10 5/11 7/13 9/13 4/10 6/10 1/13 3/13 2/10 7/12 
GII (13) 11/13 8/13 8/13 7/13 6/13 7/13 7/13 4/13 4/13 5/12 2/8 
GIII (5) 3/5 2/5 3/5 3/5 3/5 2/5 3/5 3/5 2/5 2/5 1/1 

Staging 
T1,N0,M0 (17) 12/17 8/14 7/15 8/17 10/17 5/14 8/14 1/17 3/17 5/14 7/12 
T2,N0,M0 (6) 4/6 3/6 2/6 3/6 2/6 2/6 2/6 1/6 1/6 1/6 2/3 
T3a/3b,N0,M0 (5) 4/5 3/5 4/5 3/5 3/5 3/5 3/5 3/5 2/5 1/4 0/4 
T3a/T4,N2,M0 (3) 3/3 2/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 2/3 1/2 

P-value4 ns ns ns ns ns ns ns 0.002 0.03 ns ns 

1P values are derived from Fisher’s exact test, clear cell RCC were compared against all non-clear-cell RCC, the other groups were compared against clear-cell
RCC as far as the minimal number of 3 samples had been tested. 
2ns: not significant. 
3no statistically significant differences were found in dependence of tumour grading. 
4P values are derived from the exact Jonckheere–Terpsta test, which describes a trend from T1, N0,M0 towards T3/T4,N2,M0. 
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Figure 5 Differential gene expression in histopathological subtypes of RCC: Differential expression of 11 genes was evaluated by Northern blot analysis of
matched normal kidney and RCC tissue and is shown for 20 clear cell, 3 mixed clear and granular, 3 granular, 3 oxyphil, 1 tubulopapillary and 5 histologically
undefined RCC. White squares indicate that the gene was not differentially expressed; nt: not tested 
exception of clear cell RCC, the numbers of samples of the
different histological types were too small to allow a statistical
analysis between these groups, they could be compared to the
group of clear-cell RCC. The group of clear-cell RCC was
British Journal of Cancer (2001) 85(9), 1372–1382
compared to all non-clear-cell RCC. Overexpression of some of
the RCC-associated genes appears to be preferentially associated
with the histological type, e.g. overexpression of C1-CR,
SUPT5H, VEGF, ARP2, ATX, LO and SemG has been mainly seen
© 2001 Cancer Research Campaign
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in clear cell RCC, whereas BACE2 was overexpressed in mixed
(clear and granular cell) and oxyphil RCC. The failure to detect
overexpression of most of the genes in RCC of the granular type
was somehow unexpected. Thus, it is desirable to confirm these
expression profiles with larger numbers of samples. 

We did not detect any significant differences in the gene expres-
sion profile between well versus poorly differentiated RCC.
However, there has been a trend towards overexpression of ATX and
LO with tumour progression. It remains to be explored in a follow-up
study and evaluating 5 years survival rate, recurrence and metastatic
spread, whether this trend will be of prognostic relevance. 

DISCUSSION 

Until now there has been a lack of knowledge regarding renal cell
carcinoma (RCC)-associated molecules that might be suitable as
therapeutic targets. Our search for such molecules involved 2
different approaches. Patient-matched cDNA from normal kidney
and RCC tissue were used for suppression subtractive hybridiza-
tion and screening of cDNA (Atlas) arrays. 17 genes were found to
be significantly overexpressed in one RCC tissue, 14 of which
were also detected in additional RCC tissues and lines, but not in
normal kidney tissue. 

Taking into account that some of the clones identified by SSH
contained fragments of identical genes, we recovered 44 differen-
tially expressed genes, while only 6 genes were recovered by
hybridization of a blot containing 588 genes known to be tumour-
related. The fact that SSH and cDNA array analysis both showed a
false positive rate of approximately 50% illustrates the point that
all of the techniques used to identify differentially regulated genes
must be confirmed by Northern blot hybridization to the original
samples. The same RCC tissue (T9) was analysed by differential
display RT-PCR in a previous study (Stassar et al, 1999). As
compared to differential display RT-PCR, SSH yielded a higher
number of differentially expressed genes and the rate of false posi-
tives was significantly lower. Thus, searching for therapeutic
targets, SSH may be the more suitable method as compared to
differential display RT-PCR and appears to be, at least, equal to
cDNA arrays and distinct from cDNA arrays of known genes, SSH
has the additional advantage of uncovering unidentified genes. By
using a pool of 6 RCC versus the pool of matched normal kidney
tissue for SSH, differential expression of 5 of the 11 genes identi-
fied with T9 was confirmed, which strengthens the reliability of
SSH. On the other hand and without question, the screening
process can be strongly accelerated by the use of cDNA arrays. 

The gene products identified in this study by both methods, SSH
and cDNA arrays, are involved in proliferation/resistance towards
apoptosis, neo-angiogenesis and cell adhesion/motility. These
features and our point of view should be discussed in some detail. 

3 of the 5 tumour growth-related genes are well known. Thus,
the EGFR gene, which has been detected by Atlas blot hybridiza-
tion, is one of the key molecules in epithelial tumour cell growth
regulation (Ullrich and Schlessinger, 1990). The EGFR might also
contribute to tumour cell motility and has been associated with
metastatic spread (Lager et al, 1994; Yoshida et al, 1994). Up-
regulation of EGFR expression has frequently been found in RCC
(Freeman et al, 1989; Sargent et al, 1989; Ishikawa et al, 1990). 

Cyclin D1, named according to its cell cycle (G1 phase)-depen-
dent appearance, sequentially activates cyclin-dependent kinases,
which phosphorylate various substrates, the retinoblastoma
protein being the most prominent target (Weinberg, 1995). Cyclin
© 2001 Cancer Research Campaign
D1 overexpression has been reported in many tumours including
breast carcinoma and squamous cell carcinoma of the head and
neck, oesophagus and cervix (Somers and Schechter, 1992;
Bartkova et al, 1994; Jares et al, 1994; Zhang et al, 1994; Kurzrock
et al, 1995). 2 studies reported an overexpression of cyclin D1 in
approximately 50% of RCC. In both studies no correlation with
tumour stage, differentiation and survival time was found (Lin et
al, 1998; Hedberg et al, 1999). 

SUPT5H together with SUPT4H and SUPT6H are believed to
play a critical role in transcription, being involved in transcription
elongation and in activation of transcription (Wen and Shatkin,
1999, Kaplan et al, 2000; Yamaguchi et al, 2001). A direct involve-
ment of SUPT5H in tumour progression has not yet been reported. 

IGFBPs are usually known for their growth inhibitory effects by
competitively binding insulin-like growth factor (Li et al, 1997).
IGFBP-3, as well as several other IGFBPs, can also promote prolif-
eration by a regulated release of insulin-like growth factor, which
protects its receptor from down-regulation by exposure to high
concentrations of insulin-like growth factor (Conover and Powell,
1991). One of the recently identified genes, which was selectively
expressed in RCC, is a homologue of a human MLRQ subunit of
the NADH: ubiquinone oxidoreductase, known as the first and
largest enzyme of the mitochondrial respiratory chain (Weiss et al,
1991). Though additional experiments are required for defining the
function of this subunit, we hypothesize that this molecule is
responding to the high metabolic demand of tumour cells.

An emerging tumour initiates its own blood supply by stimu-
lating surrounding vessels to grow into the tumour mass. These
newly formed vessels are highly irregular and tortuous which is
accompanied by hypoxia (Vaupel, 1997; Brown, 1999). Hypoxia
initiates a genetic programme leading to up-regulation of key pro-
angiogenic molecules and of factors directly influencing tumour
cell survival (Avantaggiati, 2000). VEGF is known to play a
crucial role in these events: it is a major inducer of neovasculariza-
tion (Gerwins et al, 2000), and additionally up-regulates the
expression of anti-apoptotic factors like XIAP and survivin (Tran
et al, 1999). A correlation between the expression of VEGF and its
receptor and the degree of vascularization has been described in
many tumour systems including RCC (Tomisawa et al, 1999). It is
also of prognostic relevance with respect to the risk of metastasis
formation (Weidner, 1995). Although expression of different
VEGF isoforms is frequently observed in tumour tissues, it has
been described that particularly expression of the higher molecular
weight isoforms VEGF

165
and VEGF

189
correlates with high vessel

counts and poor prognosis (Oshika et al, 1998; Lee et al, 1999;
Tomisawa et al, 1999). 

Transcription of EPAS1, also called hypoxia-inducible factor
(HIF)-2α, is induced by hypoxia. EPAS1 is a transcription factor
that binds to HIF-1 and activates downstream genes such as VEGF
and endothelial cell specific receptor tyrosine kinases (Tian et al,
1997; Wiesener et al, 1997; Conrad et al, 1999). In fact, we
observed a good correlation between the expression of EPAS1 and
the overexpression of VEGF (Maemura et al, 1999). 

Although a direct association of angiopoietin-related proteins
with tumour growth has not been reported, both ARP2 and CP are
indirectly involved in angiogenesis. ARP2 acts as an anti-apoptotic
factor on vascular endothelial cells (Kim et al, 1999). CP is
responsible for the accumulation of copper ions at the apical
growth cone of newly forming blood vessels (Raju et al, 1982). CP
overexpression has already been described in human tumours
(Kanapuli et al, 1987). 
British Journal of Cancer (2001) 85(9), 1372–1382
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We also identified several genes associated with cell motility,
another important factor in the process of tumour progression. ATX
is an autocrine tumour cell motility factor (Stracke et al, 1997),
whose expression also has been described to inversely correlate
with cell differentiation (Yang et al, 1999). ATX was found to 
be overexpressed in a variety of tumours such as malignant
melanoma (Stracke et al, 1992), teratocarcinoma (Lee et al, 1996),
neuroblastoma (Kawagoe et al, 1997) and non-small-cell lung
carcinoma (Yang et al, 1999). However, this is the first report of
ATX overexpression in RCC. Interestingly, ATX was neither
expressed in RCC lines nor in LC lines. Lysyl oxidase has 
been reported to influence tumour cell motility/invasiveness
(Kirschmann et al, 1999) by reshaping the collagen matrix
(Williamson et al, 1985). However, details on how LO functions
remain to be explored. 

Protocadherin 2 has also been shown to promote metastasis
formation by supporting cell adhesion (Obata et al, 1995).
Overexpression of other members of the cadherin superfamily,
such as cadherin 6, have been described in several tumours
including RCC (Shimoyama et al, 1995), and the aberrant expres-
sion of cadherin-6 correlates with poor prognosis (Paul et al, 1997;
Shimazui et al, 2000). Vimentin, found in this study by Atlas blot
hybridization and reported before by Moch et al (1999) to be aber-
rantly expressed in RCC, has been repeatedly shown to correlate
with high metastatic potential (Thompson et al, 1994; Hendrix 
et al, 1996). 

BACE2 is a transmembrane aspartic protease (Bennett et al,
2000), which so far is mainly known for its involvement in
Alzheimer’s disease (Vassar et al, 1999). It has, however, been
described that BACE2 is differentially expressed in breast cancer
cell lines and it was suggested to contribute to the proteolytic
cascade in neoplastic cells, which facilitates the process of tumour
progression (Xin et al, 2000). Interestingly the target molecule of
BACE2, the amyloid beta protein precursor, has been described to be
involved in the growth of human colon carcinoma cells. The authors
suggest that this is due to a Kunitz-type inhibitor domain of the
molecule (Meng et al, 2001). It remains to be explored whether up-
regulation of the BACE2 aspartic protease in RCC can counteract
the serine protease inhibition by amyloid beta protein precursor.

The functional activity of the human homologue of semaphorin
G in RCC also remains to be explored. Several semaphorins have
been reported to be expressed in association with tumours.
Overexpression of semaphorin E and H has been reported in
metastases (Christensen et al, 1998; Martin-Satue and Blanco,
1999) while it has been hypothesized that semaphorin 3f might be
involved in cell adhesion and motility (Brambilla et al, 2000).
Since semaphorins are phylogenetically conserved proteins that
mediate repulsive guidance events during neuronal development
(Mark et al, 1997), we speculate that SemG will serve a similar
motility function. 

Three additional aspects should be mentioned. First, it is
frequently argued that long-cultured tumour cell lines cannot be
considered as relevant with respect to the gene expression profiles
seen in primary tumours. With the exception of ATX, this does not
seem to be true for RCC. On the other hand, we observed marked
differences between expression profiles in RCC lines and lung
cancer cell lines. This finding was also surprising since all of the
genes overexpressed in RCC have been discussed to be associated
in general with the malignant phenotype. Additional studies with a
variety of tumour types are required to ascertain whether tumours
arising from different tissues express distinct cancer-related gene
British Journal of Cancer (2001) 85(9), 1372–1382
profiles. It also remains to be explored, whether such expression
patterns may relate to differences in the preferential target organ of
metastasis. Such features of gene expression profiles could
become of diagnostic relevance. 

Second, one could argue that our study provides evidence for
clusters of gene expression. Thus, in a first screening of 9 RCC, all
or nearly all of the genes discovered by SSH were overexpressed
in 5 RCC tissues, while four other RCC tissues expressed only
some, but not necessarily the same genes. To corroborate the
hypothesis, we tested a larger panel of kidney and RCC tissue for
differentially expressed genes and compared the gene expression
profile in RCC tissue with histopathology and clinical staging.
Although we could define a correlation between clinical features
and clusters of overexpressed genes, some of the genes, like e.g.
C1-RC were preferentially overexpressed in clear cell RCC,
whereas overexpression of BACE2 was rare in clear cell RCC, but
frequent in oxyphil RCC. We noted no correlation to the tumour
grading, i.e. the expression profile appeared to be independent of
whether the tumour was highly or poorly differentiated. Because
with few exceptions tumours were derived from patients without
apparent metastatic spread, we only could evaluate whether there
is a trend towards overexpression in relation to tumour progres-
sion. Such a trend has been observed for ATX and LO. It will be
most interesting to see in a follow-up study whether expression of
these genes will be of prognostic relevance. 

Third, RCC are supposed to be immunogenic and are described
to express e.g. RAGE and certain MAGE, genes. In fact, we have
described recently the expression of MAGE-9 as revealed by SSH
(Pitzer et al, 1999). Why did we not detect any of these genes 
in the RCC T9 tissue? First, it should be stated that the RCC T9
does not express RAGE, MAGE-1, MAGE-3 and MAGE-9.
Furthermore, we also know that the serum of the RCC T9 patient
does not contain antibodies against a variety of RCC antigens,
which have been defined by a SEREX analysis (S. Lubitz et al,
unpublished finding). Thus, the RCC T9 apparently is non-
immunogenic. These features may explain why we did not detect
any immunogenic entities in the T9 RCC even by screening of a
testis cDNA array. Besides, it should be noted that SSH would not
be the method of choice when searching for immunogenic entities
because point mutations, which frequently account for immuno-
genic tumour antigens, can easily be missed by the suppressive
hybridization. 

In summary, genes found in this study to be overexpressed in
RCC are related to the main features of malignancy, i.e. growth
dysregulation, angiogenesis and motility. Furthermore, some of
these genes can be considered as central inasmuch as they support
survival as well as spreading of tumour cells. This accounts in
particular for EGFR known to influence proliferation, motility and
angiogenesis as well as for VEGF, which has bearing on angio-
genesis, motility/invasiveness and apoptosis via uPA and
survivin/XIAP. Since some of the described molecules are
frequently overexpressed in RCC, it will now be of great interest to
experimentally support the supposed interconnections and to
explore whether these molecules could potentially serve as thera-
peutic targets. 
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