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Anthocyanins are high-value compounds, and their use as functional foods

and their natural colorant have potential health benefits. Anthocyanins seem

to possess antioxidant properties, which help prevent neuronal diseases

and thereby exhibit anti-inflammatory, chemotherapeutic, cardioprotective,

hepatoprotective, and neuroprotective activities. They also show di�erent

therapeutic e�ects against various chronic diseases. Anthocyanins are present

in high concentrations in onion. In recent years, although both conventional

and improved methods have been used for extraction of anthocyanins,

nowadays, improved methods are of great importance because of their higher

yield and stability of anthocyanins. In this review, we compile anthocyanins

and their derivatives found in onion and the factors a�ecting their stability.

We also analyze di�erent extraction techniques of anthocyanins. From this

point of view, it is very important to be precisely aware of the impact

that each parameter has on the stability and subsequently potentiate its

bioavailability or beneficial health e�ects. We present up-to-date information

on bioavailability, dietary e�ects, and health implications of anthocyanins such

as antioxidant, antidiabetic, anticancerous, antiobesity, cardioprotective, and

hepatoprotective activities.
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Introduction

Anthocyanins are a class of plant phenolic pigments and dietary compounds

that have a role in human diseases, and these water-soluble pigments are the largest

group of plant pigments, contributing different colors, such as the purple, red, and

blue, present in fruits, flowers, vegetables, and grains (1). Currently, more people are
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GRAPHICAL ABSTRACT |

health-conscious of what they are eating, and as a result,

public demand for synthetic pigments such as indigo carmine,

Alura Red, and brilliant blue have decreased. Even the

food processing and regulatory authorities are seeking to

minimize the use of synthetic food dyes and colorants.

Nowadays, extensive research focuses on natural colorants like

anthocyanins and their health benefits in functional foods (2).

Anthocyanins, beyond their bioactivity, are used in foods as

natural colorants, fulfilling the public demand for clean labels

in food products (3). Anthocyanins seem to possess antioxidant

properties, which help prevent neuronal diseases and thereby

exhibit anti-inflammatory, cardioprotective, chemotherapeutic,

hepatoprotective, and neuroprotective activities, as well as

therapeutic effects against other human diseases (4, 5). Because

of various health and other benefits, anthocyanins have been

Abbreviations: AURKA, aurora kinase A; Akt, protein kinase B; BIRC5,

baculoviral IAP repeat containing 5; C4H, cinnamate-4-hydroxylase;

4-CL, coumaroyl CoA ligase; COX-2, cyclooxygenase-2; DPPH, 2,

2
′

-diphenyl-1-picrylhydrazyl; EAE, enzyme-assisted extraction; EGF,

Epidermal growth factor; ERK1/2, extracellular signal-regulated kinase

1/2; HPLC, high-performance liquid chromatography; HPLC/DAD-

ESI/MS, high-performance liquid chromatography with diode

array and mass spectrometry; HPLC- MS, high-performance liquid

chromatography–mass spectrometry; HVED, high-voltage electrical

discharge; HPLE, high-pressure liquid extraction; iNOS, inducible

nitric oxide synthase; MAE, microwave-assisted extraction; NF-kB,

nuclear factor kappa-light chain-enhancer of activated B cells; ORAC,

oxygen radical absorbance capacity methods; PTGS2, prostaglandin-

endoperoxide synthase 2; SFE, supercritical fluid extraction; PEFE, pulsed

electric fields; UHPLC, ultrahigh-performance liquid chromatography;

UAE, ultrasound-assisted extraction.

accepted by most people as a feed ingredient in recent years. In

addition, as a phytonutrient, anthocyanins have anti-mutation

and antioxidant activities are important to human health (6).

In nature, more than 600 structurally distinct anthocyanins

have been identified and characterized (7). For a long time, for

enhancing aesthetics and appearance, synthetic colorants have

been used. However, because of regulatory concerns, decreasing

demands for synthetic colorants, and increasing demands for

natural colorants, the food industry and research have shifted

toward natural alternatives (8, 9).

Onions are the most important and frequently cultivated

vegetable in India as well as worldwide, and the color of the

bulb due to flavonoid compounds is an economically important

trait. Red- and white-colored bulbs are used for cooking and

salad, respectively (10–12). Onion has diverse phytochemicals,

such as anthocyanins, flavonoids, phenolic compounds,

triterpenoids, and organosulfur compounds, and due to these

compounds, it has antioxidant, antibacterial, antidiabetic, and

anti-inflammatory activities (13–17). Anthocyanins are the

flavonoid compounds responsible for the purple/red color of

onion and are highly concentrated in the skin (18). The onion

waste is also a rich source of anthocyanins and is reused in foods

as bioactive ingredients (19). In red onion, different types of

anthocyanins, such as cyanidin 3-laminariobioside, cyanidin

mono- and diglucosides, petunidin glucoside, peonidin mono-

and diglucosides, and 5-carboxypyranocyanidin 3-glucoside,

have been reported (20). Dietary flavonoids found in onions play

an important role in human health and nutrition, and studies

have reported that onions display many activities including

anticancer (21–23), antibacterial (24), hepatoprotective (25),

antioxidant (26, 27), antiplatelet (28), immunoprotective

(29), anti-cholelithogenic (30), antithrombotic (31), anti-

inflammatory (32), and neuroprotective (33) properties. Onion
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wastes also exhibit inhibitory activity against oxidative stress

and enzymes responsible for metabolic syndrome (34–36). Due

to their high health benefits to humans, the anthocyanin content

of red onion bulbs and skin is extracted during processing (37).

For anthocyanins, different extraction processes have been

used, while nowadays, improved methods are used to obtain

high yield and improved stability. Anthocyanins are unstable, so

it needs procedure optimization to prevent oxidation. Various

factors such as temperature, UV radiation, enzymes, pH,

chelating metal ion, SO2, and ascorbic acid affect its stability,

resulting in degradation and color change (38–42).

Therefore, the present review is aimed to deliver a synthesis

method from the literature that discusses anthocyanins found

in onions, their stability, and extraction technologies that

preserve the anthocyanin content. Furthermore, we also discuss

the application of anthocyanins in foods and their various

implications on human health.

Anthocyanins found in onion and
their stability

In many fruits and vegetables (including onion bulbs),

flavonoids and anthocyanins, which are secondary metabolites,

are responsible for their vivid colors. Researchers have recently

been paying attention to phytochemicals because of their

antioxidant properties (43–45). One of their best-described

properties is their ability to inhibit free radicals created by

cells or environmental factors (44). Despite this, the outermost

layers of onions are often discarded while used in raw or in

cooked forms, thereby losing a valuable antioxidant component.

Onion bulbs and skin contain many bioactive substances, such

as fructo-oligosaccharides (FOSs), organosulfur compounds

(OSCs), thiosulfinates, polyphenols, and flavonoids (46–48).

There are a variety of colors of onions, such as white, yellow,

red, pink, orange, and gold (Figure 1), which are primarily due

to the presence of two kinds of flavonoids, namely, anthocyanin

and flavonols. Anthocyanin generates a wide diversity of colors

ranging from red and orange to blue and violet, and flavonols

like quercetin and its derivatives give yellow and brown colors to

develop in the epidermal cells of scale leaves.

Anthocyanins and flavonoids have distinct chemical

structures, react with powerful free radicals, and possess

antioxidants, anti-inflammatory, and anticancer properties

and Alzheimer’s and Parkinson’s disease prevention properties

(49–51). Research has been conducted on anthocyanins

present in onions, leading to the identification of about

10 different types of anthocyanins. Among them, (3-(3-

glucosyl-6-malonylglucoside), 3-(6”-malonylglucoside),

3-(3”-glucosylglucoside), and 3-glucoside of cyanidin) are

primary anthocyanins (52). White onions have less anthocyanin

than red onions. This may have resulted from anthocyanin

contents found in each layer of onion. These facts show that

red onions are a good source of anthocyanins (50). Among

25 anthocyanins found in red onions, cyanidin 3-O-glucoside

is the primary anthocyanin present in the epidermal cells.

However, derivatives of cyanidin and peonidin have also been

reported. Approximately half of the red onion bulbs contain

anthocyanins in the outer epidermis, but the inner epidermis

contains smaller amounts (53). Despite being concentrated in

the shell or skin, anthocyanin pigments are not present much in

the edible portion of red onions. On the other hand, the highest

concentrations of anthocyanins were found in the dry skin of

red onions, which varied from 109 to 219 mg/100 g on average

(50). In contrast to red onion, the white onion skin was reported

to contain the lowest content of anthocyanin (0.75 mg/100 g),

followed by yellow onion (9.64 mg/100 g) (54). Cyanidin

3-(6-malonylglucoside) (20.95 ± 0.60 mg/kg FW) is detected as

major anthocyanin present in bulbs of red onion (Allium cepa

L.) landrace “Krishnapuram” (KP) (55). The total anthocyanin

content reported in onion was (28.6 mg/kg FW), and that of

cyanidin 3-glucoside was 1.6 mg/kg FW) (56). Likewise, in

Montoro ecotype, the cyanidin 3-glucoside content was 1.19

mg/kg FW (57). The different types of anthocyanins and their

derivatives found in different types of onion are presented in

Table 1, along with their various detection techniques.

Anthocyanins contain an anthocyanidin core that consists

of a heterocyclic skeleton (Figure 2; called anthocyanidin or

aglycon) and -OH or -OCH3 groups along with specific sugar or

acylated sugar residues primarily at C3, C5, and/or C7 positions,

and these can be modified further. It is thought that there are

around 20 different core structures, which are named after the

plants from which they were isolated: cyanidin, delphinidin,

malvidin, pelargonidin, peonidin, and petunidin (Figure 3).

As far as onions are concerned, they are frequently reported

to contain cyanidin derivatives, as well as a few peonidin,

pelargonidin, and delphinidin derivatives (66, 67). According

to Bystricka et al., a variety of red onions contain anthocyanin

glycosides, including cyanidin, peonidin, and pelargonidin (68).

There has been some evidence that the edible portion of red

onion contains about 250 mg/kg anthocyanins with cyanidin-

3-glucoside as major components (44, 50, 54). The other

derivatives of acylated and non-acylated anthocyanins, such

as cyanidin mono- and diglucosides, peonidin mono- and

diglucosides, petunidin glucoside, cyanidin 3-laminariobioside,

and 5-carboxypyranocyanidin 3-glucoside, have been found in

red onions (60).

Biosynthesis of anthocyanin occurs as part of a specific

section of the flavonoid synthesis pathway, which is controlled

on several levels. Through cinnamate-4-hydroxylase (C-4-H)

and 4-coumaroyl CoA ligase (4-CL), phenylalanine is converted

into cinnamic acid, which then undergoes conversion into 4-

coumaryl CoA, an anthocyanin precursor. The next step is

the condensation of one 4-coumaroyl CoA molecule and three

malonyl CoA molecules using the chalcone synthase, which

produces chalcones. In the final stage, a series of enzymatic
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FIGURE 1

Variety of onion colors and anthocyanins biosynthesis pathway regulated by di�erent enzymes.

reactions results in the synthesis of main anthocyanins. As

anthocyanins are synthesized in the cytosol, they are transported

to the vacuole, where they are stored in the form of

color coalescences called anthocyanic vacuolar inclusions (53)

(Figure 1). Various transcription factors and regulatory proteins

are responsible for flavonoid biosynthesis (67). There is little

information available on how flavonoids are regulated in onions.

Recently, a report described the role of MYB1 as a transcription

factor controlling anthocyanin biosynthesis in onions (69).

The researchers also identified putative R2R3MYB genes in

onions that are involved in the biosynthesis of anthocyanins

and flavonols.

Factors a�ecting anthocyanin stability

Varying anthocyanin intensities and stability depend

on several factors including the quantity and structure of

anthocyanins, pH, temperature, light intensity, nature, and

the existence of other pigments in conjunction with metal

ions, enzymes, oxygen, sulfur dioxide, ascorbic acid, sugar,

sugar metabolites, etc. (70). Based on structural activity

studies, it was found that anthocyanins can be stabilized by

the modification of their molecules through polymerization,

cleavage, and derivatization. Anthocyanins are cleaved to

produce colorless compounds, polymerization leads to

browning, and derivatization produces colored compounds

(71). Stabilizing reactions can be accomplished via glycosylation,

methylation, and acylation, as well as anthocyanin aglycone

synthesis (72). As anthocyanidins are hydroxylated, for instance,

delphinidin pigments are shifted toward blue color, whereas

when -OCH3 groups are glycosylated, red pigments with higher

stability are synthesized (52). The stability is also enhanced by

the acylation of the sugar moiety with aliphatic or aromatic

acids. Numerous aromatic acids can be co-acylated, such as

p-coumaric acid, gallic acid, sinapic acid, and ferulic acid, in

addition to a wide variety of aliphatic acids, such as malic,

tartaric, succinic, oxalic, and acetic acid (72, 73). Despite

this, the colors formed by anthocyanins will also be affected

by both the vacuolar environment and the structure created

by anthocyanins.

pH

pH is a major factor that affects anthocyanins. Anthocyanins

exist in six different states in the acidic vacuole of the

plants. With pH 3 or less, the flavylium cation dominates and

creates purple, orange, and red colors as the ionic nature of
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TABLE 1 Di�erent anthocyanin concentrations present in onions and their detection techniques.

Anthocyanins and its

derivative

Part used Detection

technique*

Concentration References

Anthocyanins (cyanidin, peonidin,

pelargonidin, delphinidin, and

petunidin)

Bulb HPLC 0.3–0.19 mg/100 g DW (58)

Anthocyanins (cyanidin, peonidin,

pelargonidin, delphinidin, and

petunidin)

Bulb HPLC 1,555–250 mg/kg DW (59)

Anthocyanin Peel pH differential 21.99 mg/g DW (60)

Anthocyanin Red onion wastes pH differential 748–840 mg/100 g (61)

Total anthocyanin Red, yellow, and white

onion

HPLC/DAD-ESI/MS (29.99± 1.19), (9.64±

1.30), and (0.75± 0.40)

mg 100 g−1

(50)

Anthocyanin (cyanidin, peonidin) Honeysuckle (HSRO)

and sweet Italian red

onion (SIRO)

LC-ESI-QTOF-MS HSRO- 0.103 mg/g

SIRO- 0.086 mg/g

(18)

Anthocyanin (cyanidin) Red onions UHPLC 0.056 mg/g (62)

Total anthocyanin Korean red onions Colourimetric method 0.02–0.12 mg/g (63)

Anthocyanin (Cyanidin and

delphinidin)

Red and white onion Colourimetric method Red onion-0.3587 mg/g

White onion- 0.014 mg/g

(64)

Cyanidin, Peonidin, Pelargonidin,

Delphinidin, and Petunidin

Bulb HPLC-MS 0.21–0.45 mg/100 g DW (65)

*For details, refer to the list of abbreviations.

FIGURE 2

Basic structure of anthocyanins.

anthocyanins is found in different forms, which depend on pH.

The flavylium form of anthocyanins is found at acidic pH =

1, and the quinoidal form is found at pH between 2 and 4,

while the carbinol pseudobase form is found at pH between

5 and 6. Finally, at a pH higher than 7, anthocyanins will be

degraded (52, 74–76). It has been shown that decreasing pH 2.8

in anthocyanin can increase the transfer of the structure to the

flavylium cation, thereby improving stability; however, changing

the pH of a liquid or gel could affect its sensory characteristics

(77). It has been found that the color of anthocyanins can change

because anthocyanins interact with other pigments and stack to

form supermolecular structures, which stabilize at acidic pH of

the colored forms and help in interaction withmetal ions (53, 78,

79). Also, anthocyanin is much more soluble in water at lower

pH as a result of the flavylium cation. Anthocyanins can undergo

various acid–base, hydration, and tautomeric reactions when

dissolved in water (80). With an increase in pH, the hydration

reaction of the flavylium cation becomes more competitive with

the proton transfer reactions involving acidic hydroxyl groups

(60). In a pH range of 5-6, chalcone and carbinol pseudobase

appear, and both are colorless (81). In addition, at a pH higher

than 7, anthocyanins undergo degradation, depending on the

substituent groups. Due to anthocyanin stability at low pH

levels, foods with low pH levels are ideal for using anthocyanins.

The presence of hydroxyl or methoxyl groups is responsible

for the stability of anthocyanins. In neutral pH, mono- and

diglycoside derivatives are more stable, while aglycones are

not stable because in mono- and diglycoside derivatives of

the sugar moieties will avoid the degradation of anthocyanins

(82, 83). In short, the stability of anthocyanins decreases with

an increasing number of hydroxyl groups, while it increases

with increasing methylation and acylation, thus improving the

stability of anthocyanins (84).
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FIGURE 3

Di�erent types of anthocyanins present in onion that contain -OH or -OCH3 groups at di�erent positions.

Temperature

Another important factor that influences the anthocyanin

stability is temperature. Heat generally affects the anthocyanin

stability through the activation of degradation, causing native

enzymes. With an increase in temperature, there are a variety

of mechanisms through which anthocyanins can be damaged

and lost such as glycosylation, cleavage, nucleophilic attack

by water, and polymerization (85). Although anthocyanins are

weak substrates for enzymes, it has been demonstrated that B-

glucosidase can affect anthocyanin persistence by generating

anthocyanidins that can be further oxidized, by polyphenol

oxidase (PPO) and/or peroxidase (POD) (86, 87). According to

Jeya Krithika et al., anthocyanin in onion peels degrades when

the temperature reaches a maximum of 100◦C. Anthocyanin

also interacts with objects due to its light sensitivity (60).

Therefore, light is a major factor that influences the strength of

anthocyanin. A recent study by Chithiraikannu et al. revealed

that half of the pigments were destroyed when onion peels were

placed in darkness for 135 days at 20◦C, suggesting that acylation

played a protective role (60). It was proven that an enhanced

adjustment of the particle of anthocyanin in pH 1 buffer

can increase absorbance because of the excitation of flavylium

cations. Since anthocyanins are unsaturated molecules, they are

susceptible to degradation by oxygen in two different ways:

by direct oxidation and by enzyme-mediated decomposition

(88). By contrast, some researchers found that phenols and

anthocyanins in food increase during the first 7 days of cold

storage if it is stored in an oxygen-enriched environment at

a low temperature, during the initial days of storage (89).

These enzymes cause anthocyanins to lose their solubility

and transform them into colorless compounds, thus losing

the pigment intensity of color (70). In addition, different

plant regions and types of plants exhibit different amounts of

anthocyanin depending on the regulatory molecules (precursors

and enzymes) of biosynthesis and degradation pathways (52,

70, 90). Due to high temperature, anthocyanins undergo
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degradation by different mechanisms such as polymerization,

glycosylation nucleophilic attack of water, and cleavage (85, 91).

Therefore, with the increasing temperature, the degradation of

anthocyanins occurs (92). The acylated form of anthocyanins

has more stability than the non-acylated form at higher

temperatures (93). However, heat treatment for a short period

of time inhibits the enzymes and improves the stability of

anthocyanins (94, 95) while at the same time prevents the

thermal degradation of anthocyanins by decreasing the pH

value. Furthermore, the decrease in oxygen concentration

prevents the thermal degradation of anthocyanins (96, 97).

Extraction technology of
anthocyanins

The anthocyanin extraction methods are broadly classified

into two groups: first, conventional methods such as maceration,

soaking, and heat-assisted extraction, which are easy to use and

do not require much instrumentation but have limitations such

as the possibility of solvents in the extract, toxicity of solvents,

low yield, and thermal deterioration of anthocyanins; second,

advanced technologies such as microwave-assisted extraction

(MAE), high-pressure liquid extraction (HPLE), supercritical

fluid extraction (SFE), ultrasound-assisted extraction (UAE),

pulsed electric field extraction (PEFE), enzyme-assisted

extraction (EAE), and high-voltage electrical discharge (HVED)

(Figure 4), which are sophisticated but have advantages such

as high stability of anthocyanins, lower or zero use of solvents,

higher yield, and lower energy cost (38, 39, 41, 42, 64, 98–101).

Conventional methods

Conventional methods depend on the solubilizing capacity

of solvents and for anthocyanins, ethanol, water, methanol,

acetone, or mixtures thereof used. Anthocyanin is an unstable

compound, so for stabilizing, weak acids such as citric acid,

formic acid, or acetic acid are added in the solvent because

anthocyanins are more stable at acidic pH. In addition to the

solvents, the yield of anthocyanin depends on the size of the

solid powder, time, temperature, and solvent-to-solid ratio. The

anthocyanins are extracted by different polar solvents because of

polar characteristics of anthocyanins, and selection of suitable

solvents such as acetone, water, methanol alcohol, acidified

methanol, or acidified acetonitrile is a crucial step because

anthocyanins are highly reactive molecules (102–104). Zhang

et al. reported using 0.1% hydrochloric acid in an 8:2 ratio

of ethanol and water and found a higher concentration of

anthocyanins and antioxidant activities in red, yellow, and white

onions (50). Using the acidified ethanol andwater, it was possible

to extract a higher anthocyanin content of 22 mg/g dry material

(105). Chandrasekhar et al. reported that using 50% (v/v)

ethanol in water, the maximum anthocyanin content of 381.1

mg/L was extracted, while the higher anthocyanin content was

recovered using acetone (425.9 mg/ L) and 1% HCl in methanol

(419.7 mg/L) because of more polar solvents (106). Musso et al.

observed that when the extract with water ethanol was stirred for

half an hour at 300 rpm, the anthocyanin contents found in the

alcoholic and aqueous extracts were 4 and 0.6 mg/L, respectively

(107). Galvao et al. also observed that in a magnetic stirred batch

with water, methanol, isopropanol, and ethanol at a controlled

temperature of 25 C for a period of 3 h, the anthocyanin contents

were found to be 50.37, 19.44, 0.77, and 0.76 mg/ L, respectively

(108). Stirring in an orbital shaker with acidified water (0.05M

H3PO4) at 90 rpm for 12 h, the anthocyanin concentration was

32.05 mg/L (109). The conditions were optimized to extract

anthocyanins with ethanol (9.1% v/v) acidified to pH 3 using

citric acid because in acid pH, stabilization of the anthocyanin

structure is high. It is concluded that with mild temperatures,

the amounts of anthocyanins increased, while with longer time

and high ethanol concentration, it decreased because longer time

led to breakdown of cyanidin-3-O-glucoside compounds (110).

Backes et al. also observed that using a mixture of ethanol (100%

v/v) acidified to pH 3 and citric acid because in acidic pH,

the degradation of anthocyanins is less because the structure of

anthocyanins is more stable (111). The author revealed the yield

of anthocyanin contents increased with the increase in ethanol

concentration and temperature.

Improved methods

To overcome the disadvantages of conventional extraction

methods, improved methods have been introduced for

extraction. These methods are mainly focused on higher

yield, environment-friendly, and industrial use. Among these

improved methods are microwave-assisted extraction (MAE),

high-pressure liquid extraction (HPLE), supercritical fluid

extraction (SFE), ultrasound-assisted extraction (UAE), pulsed

electric field extraction (PEFE), enzyme-assisted extraction

(EAE), and high-voltage electrical discharge (HVED).

Microwave-assisted extraction (MAE)

The MAE method uses radiation in the microwave region

such as electromagnetic radiation and to rupture the cell wall

(112–114). Thus, the extract easily comes out of the cell to the

solvent. Different conditions should be optimized during the

MAE process, such as microwave power, liquid-to-solid ratio,

time, particle size, and temperature. Xue et al. reported that

the highest anthocyanin content was found at a temperature of

50.75◦C (115), and Sun et al. also found the lowest degradation

of anthocyanins was at a temperature of 53.3◦C (116). Xue et

al. found that the highest anthocyanin content was observed

at 8-s irradiation time and a temperature of 50◦C (117). The
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FIGURE 4

Di�erent anthocyanin extraction methods.

anthocyanins were found maximum (1,023.39 mg/ kg) at the

conditions of a solid-to-water ratio of 1.3 g/ml, 800W of

microwave power, and 8min of extraction time. These results

indicated that reduction in extraction time enhances the extract

concentration due to lower degradation of anthocyanins (118).

Recently, the same results were also revealed by Nguyen et

al., who found that the reduction in extraction time enhances

the anthocyanin content. They found the optimal condition for

maximum anthocyanin content (73.89 mg/L) was 60% ethanol

concentration, 600W of microwave power, a solid-to-solvent

ratio of 1.30, and 2-min extraction time (119). Using ethanol

as a solvent (100%; pH 3), optimized anthocyanin extraction

conditions were a temperature of 62◦C, time of extraction of

300 s, and 100:5 (mL/g) liquid-to-solid ratio. The anthocyanin

content found was 411 mg/g of DW, and they also concluded

that anthocyanins are more stable at lower pH (111). Farzaneh

and Carvalho also optimized the conditions using water as a

solvent at a temperature of 50◦C, a time for extraction of 114 s,

and a 30:1 (mL/g) liquid-to solid-ratio; the anthocyanin content

found was 273.3 mg/L (120).

Ultrasound-assisted extraction (UAE)

The UAE method is based on ultrasound force that causes

cavitation and breaks the cell wall (121, 122). The extraction

of anthocyanin in the UAE method depends on different

parameters such as temperature, solvent composition, time,

the liquid-to-solid ratio, particle size, moisture content in the

matrix, pulse cycle, and ultrasound power (110, 113, 123–

126). The results obtained show a better yield (32 mg/g) of

anthocyanin extracted from jabuticaba (110), which is in line

with the results of Backes et al. and Demirdoven et al. that

showed a higher yield of anthocyanin obtained by using the UAE

method from red cabbage and fig peels, respectively (111, 127).

Demirdoven et al. extracted anthocyanins using ethanol, water,

and formic acid in an ultrasound bath operating at 37 kHz

frequency. They extracted 11.92%more anthocyanins than those

extracted using conventional methods at optimal conditions

40◦C of temperature, 75min of extraction time, and 45% of

ethanol concentration. So, the anthocyanins were extracted

at low temperature and low solvent concentration because at

higher temperature, the degradation of anthocyanins is high

(127). Ghavidel et al. also optimized the conditions for the

extraction of anthocyanins using an ultrasonic power of 35 kHz,

and the extracted concentration of anthocyanins was 9.468158

mg/L, with an ethanol-to-hydrochloric acid (15:85) at 60.94◦C

for 40min (128). The anthocyanin yield was maximum (20.9

mg/L) using water as a solvent at 30min of extraction at 15◦C

and 100W using the UAE method because higher temperature

and longer time of extraction degraded anthocyanins (124, 129,

130). Ravanfar et al. also revealed the optimal condition for

extraction using water as a solvent at a different temperature,

extraction time, ultrasonic power, and ultrasonic pulse duration

for maximum anthocyanin yield (60 mg/L): power of 100W,

15◦C of temperature, 90min of extraction time, and pulsation

mode of 30 s (131). Using ethanol as solvent (34.47%) and

anthocyanin extraction conditions optimized at a temperature of

35◦C, time for extraction of 24min, 100:5 (mL/g) liquid-to-solid

ratio, the anthocyanin content was 32 mg/g of the extract (110).

Pressurized liquid extraction (PLE)

PLE is based on the use of solvents at different temperatures

and pressure. The extraction yield of anthocyanins depends on

different parameters such as temperature, static time, pressure,

and the number of cycles (132–135). Wang et al. reported a

higher yield of anthocyanins (8.15 mg/g) at 70 bar and 130◦C

during 90min by using the PLE method (136). Kang et al.

also found a maximum yield of anthocyanins at 100 bar and

130◦C for 3min from blueberries (74). Another method based
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on PLE is the high-pressure liquid extraction (HPLE) method,

which is based on high pressure and keeps the solvent above its

boiling point (100). In the HPLEmethod, the recovery efficiency

mainly depends on the solvent, pressure, temperature, and the

solvent-to-solid ratio (41). The optimal condition for maximum

recovery of anthocyanins was found at 384 MPa pressure, for

15min with 35% (v/v) ethanol (137) and increased with time

from 15.1 to 39.4% from 5 to 15min (138). Arapitsas and

Turner, extracted anthocyanins with water + ethanol + formic

acid in conditions temperature 80–120◦C, sample amount 1–

3 g, extraction time 6–11min at a pressure of 50 bar, and

anthocyanin yield was 662µg/g of the sample. They revealed

that the best conditions for anthocyanin extraction was at 2.5 g

of sample, 7min of extraction time, 99◦C of temperature at 50

bar of pressure, and solvent composition of 94/5/1(v/v/v) of

water/ethanol/formic acid (139). Pereira et al. also optimized the

conditions for extraction of anthocyanins and found 10.21mg

malvidin-3-O-glucoside/g DW at an ethanol concentration of

50%, reactor volume of 50mL, extraction time of 220min,

solvent flow of 5 g/min, temperature of 100◦C, and pressure of

100 bar (140).

Pulsed electric field extraction (PEFE)

PEFE application is based on the increase in the

electropermeabilization process to enhance the cell membrane

permeability by an electrical force. The recovery of anthocyanins

in the PEFE method depends on the electric field strength, the

exposition time, initial temperature, and the total specific energy

(42, 141–144). Thus, Gagneten et al. observed the effect of the

temperature at 10 or 22◦C and found higher extraction recovery

at 22◦C (145). Many studies have observed that recovery of

anthocyanins increased with increase in the pulse number and

pulse intensity (146–148). In the PEF method using water as a

solvent with the conditions as a temperature of 22◦C, electric

field strength of 2.5 kV/cm, and specific energy of 15.63 J/g,

the anthocyanin concentration was 44 to 889µg/mL. Total

anthocyanin extraction increased by 2.12 times because the

non-acylated forms of anthocyanins have high proportion than

the control (149).

Enzyme-assisted extraction (EAE)

In the enzyme-assisted extraction (EAE)method, pectinases,

proteases, cellulases, and hemicelluloses have been used to

accelerate and enhance the recovery of pigments from different

matrices (150, 151). EAE has higher efficiency than the

conventional methods for the extraction of pigments, and

extraction depends on different conditions such as pH, the

composition of the enzymatic mixture, temperature, liquid-

to-solid ratio, and time (150–154). In EAE, using pectinex

containing pectinase, cellulose, and hemicellulase at pH of

3.5, temperature of 45◦C, liquid-to-solid ratio of 10:1, and

hydrolysis time of 120min, the anthocyanin concentration was

675mg/100 g of the extract (151, 155). Li et al. also optimized the

conditions using pectinase enzyme at pH of 5.9, temperature of

45◦C, liquid-to-solid ratio of 20:1, and hydrolysis time of 58min,

anthocyanin concentration was 6.04 mg/g of sample (156).

Supercritical fluid extraction (SFE)

SFE efficiency depends on different conditions and needs

to be optimized during the extraction process, and these

conditions are pressure, amount of co-solvent, temperature,

particle size, extraction time, moisture content, the flow rate

of CO2, and the liquid-to-solid ratio (157–164). Maran et

al. optimized the conditions for maximum recovery and

found a higher yield at 50◦C and 2 g/min solvent flow rate

(163). Jiao et al. showed a higher yield of anthocyanins and

antioxidant activity were obtained by using the SFE method

than by using conventional extraction methods (164). Jio

and Kermanshahi optimized the extraction conditions for the

extraction of anthocyanins with a flow rate of 10 mL/min and

found the anthocyanin concentration was 16.7–57.7%, which

was more than that obtained using conventional methods

(164). Researchers optimized the extraction conditions using

acidified water under pressurized CO2 at different temperatures,

extraction times, and pressure levels and found the optimal

conditions at 60◦C, 10 Mpa of pressure, and extraction time of

20min yielded higher anthocyanin contents. They reported that

the reduction in extraction time helps in increased efficiency

of anthocyanin extractions (165). SFE with CO2 and co-

solvent water is used for the extraction of anthocyanins. The

anthocyanin yield was 25 mg/g of DW at pressure of 450 bar,

flow rate of 15min static time, and 20min dynamic time at

10 mL/min (164). Maran et al. also optimized the extraction

of anthocyanins with ethanol co-solvent, and the anthocyanin

concentration found was 231.28 mg/100 g of the raw material at

a pressure of 162 bar and a flow rate of 2 g/min (163).

Applications in foods and health
benefits

As a necessary consequence, several studies on the delivery

of anthocyanins from various sources into foods and their

products like beverages, dairy products, soft drinks, jams,

confectionery, and more have been carried out in recent years

(42, 166, 167). Recent studies on in vitro experimental systems

using anthocyanin-rich extracts or purified anthocyanins have

confirmed high potential to applications in foods. Protection

against liver damage, improvement in eye sight, significant

reduction in blood pressure, strong anti-inflammatory and

antimicrobial activities, and suppression of human cancer cell
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proliferation are all demonstrable benefits (Figure 5). Also,

Figure 5 demonstrates that whenever there is any inflammation

in the body or any chronic disease, parasitic infection, or

microbial infection, it causes oxidative stress due to release of

free radical species in the body. When anthocyanins are used,

they act as an antioxidant and neutralize the free radicals and

thereby decrease the oxidative stress.

Bioavailability and dietary e�ects of
anthocyanins

Food extracts high in anthocyanins have been used in

the development of dietary food supplements. Anthocyanins

extracted from purple corn are used as an antioxidant dietary

supplement are good health promoters. Anthocyanin is a

bioactive component found in foods used as an appetite

stimulant, phyto-pharmaceutical drug, and choleretic agent and

for treatment of many other diseases (168). Most studies on

the bioavailability of anthocyanins indicate that it is absorbed

rapidly following consumption (about 0.22 to 2 h) and that it

is excreted within 6 h (169, 170). In vitro studies on humans

and animals show that anthocyanins are absorbed in their intact

glycosidic form, unlike other flavonoids (171–173). Evidence

shows that <1% of consumed anthocyanins are detected in

the urine or plasma of humans (174–176). The bioavailability

of anthocyanin as a nutraceutical is critical for maintaining

good health and disease prevention like malvidin-3-glucoside,

and cyanidin-3-glucoside is well-documented among major

anthocyanins. Peonidin glycosides have the highest relative

bioavailability, followed by cyanidin, malvidin, delphinidin,

and petunidin glycosides of red wine anthocyanins (177,

178). Recently, anthocyanins are encapsulated with different

dietary fibers such as gum arabic (179) or β-cyclodextrin

(180) for their low release of anthocyanins during digestion.

The encapsulation techniques enhanced the bioavailability of

anthocyanins in the colon and delayed the release (181, 182).

A study demonstrated the bioavailability and absorption of

malvidin-3-glucoside anthocyanins, and it was observed that

anthocyanins were found in the plasma and urine after 3 and

6 h of ingestion of red wine and red grape juice, respectively

(183). Another finding also observed anthocyanins in the urine

of volunteers who consumed 218mg anthocyanins via 300ml

red wine and found that anthocyanins peaked in urine after

6 h of consumption. Recently, through 13C-tracer methodology,

methylated and sulfo-conjugated metabolites were identified in

urine and helped in the identification of degradation products

during circulation through urine (184). Anthocyanins help

reduce cholesterol levels and marketed as dietary supplements

(185). Additionally, blue wheat bran was also used as dietary

supplements and processed to produce an anthocyanin-rich blue

wheat powder (186).

Anthocyanins are absorbed rapidly in the oral cavity of

humans and appeared in the bloodstream after consumption,

and degradation started in mouth. Absorption and degradation

processes depend on oral microbiota (187). Anthocyanins have

the ability to cross the blood–brain barrier and were observed

in the endoepithelial cells, but not in certain tissues. Nowadays,

different health organization suggested consumption of colorful

vegetables and fruits because they provide essential nutrients

and bioactive compounds (188, 189).

Physiological and health implications

There has been much research on anthocyanins that

shows their therapeutic and food applications. As previously

demonstrated, anthocyanins have a wide range of health and

therapeutic effects (Figure 6). Table 2 presents the biological

activities of anthocyanins in different systems and their

health effects.

Antioxidant e�ects

Antioxidants in the diet can help reduce the generation of

reactive oxygen species (ROS) and free radicals, lowering the

risk of cancers and heart diseases. The antioxidant properties

of anthocyanins are superior to well-known antioxidants such

as butylated hydroxyl anisole (BHA) (212, 213). In addition

to the ability of anthocyanin compounds to act as radical

scavengers, the possess the ability to attack 2,2-diphenyl-1-

picrylhydrazyl (DPPH) free radicals. DPPH is a stable free

radical as the majority of its electrons are distributed over

the whole molecule (214, 215). It has been suggested that

the differences in DPPH-scavenging capacities of delphinidins

and cyanidin-based anthocyanins are due to their molecular

structure, which can determine their antioxidant properties

and their bioactivity. For example, there are several natural

antioxidants, but their amounts are low or they are primarily

located in the pericarp and the embryo, which almost get

destroyed in the processing (216). Using a genetic engineering

technique called biofortification, we can generate different

varieties with high anthocyanin contents, and this may help

in the prevention of diseases (217). Antioxidant activity has

been reported in different onion landraces such as “Cipolla

di Giarratana” (218), “Vatikiotiko” (219), “Tropea” (220), and

“Bianca di Pompei” (221). Vijayalakshmi et al. reported that

onion extracts protect erythrocytes effectively (23%), against

oxidative damage induced by hypochlorous acid in human

erythrocytes (55), and Tedesco et al. also found onion extract

inhibits hemolysis of blood cells induced by hypochlorous acid

(222). In recent years, there has been an increase in interest

in foods and plants containing antioxidant properties. The

phytochemical compounds present in vegetables and colored

fruits with these capacities are vitamins C and E, carotenoids,
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FIGURE 5

Mechanism of antioxidant potential of anthocyanins and reduction of chronic diseases, microbial, and parasitic activities.

and flavonoids. These pigments, which are the most important

groups of flavonoids, act as acidic compounds because they

contain flavylium ions (AH+). As a result, their antioxidant

activity is directly influenced by their structure (78, 222–226).

According to Aprile et al. (227), the fully matured stage of

olive, which is the best harvest time to obtain a table olive, is

rich in phenolic compounds, anthocyanins, and other health-

promoting nutrients. These compounds are used as antioxidants

and anti-inflammatory agents and for preventive measures

against several pathological states, such as cardiovascular

diseases and tumors (6). In another study by Kim et al.

using liquid chromatography and ultra-high-performance liquid

chromatography, in combination with electrospray ionization

and quadrupole time-of-flight, the antioxidant activity and

anthocyanin composition of 12 cultivars of mulberry fruit were

investigated and found major anthocyanins like cyanidin-3-

O-glucoside and cyanidin-3-O-rutinoside showed significantly

higher antioxidant activity (228).

Anticarcinogenic e�ects

In the past, hundreds of compounds including naturally

occurring compounds and drugs have been identified

as potential chemopreventive agents. Among them,

compounds that naturally have the capability of inducing

differentiation/apoptosis of cancer cells are the primary

anticancer and chemopreventative agents (229). The potential

for chemoprevention of cancer has been identified in hundreds

of compounds, including drugs and naturally occurring

components. According to Liu et al., raspberries inhibit the

proliferation of hepatocellular liver carcinoma in a dose-

dependent manner (230). Based on their research, Bonesi

et al. found that cyanidin-3-glucoside causes apoptosis and

cytodifferentiation in several leukemic cell lines (231).

Antiobesity and antidiabetic properties

Evidence suggests that a diet low in fat and high in

fruits and vegetables reduces the risk of obesity and type-2

diabetes because they are rich in polyphenol compounds, a

condition associated with insulin resistance. This condition

occurs when insulin fails to effectively stimulate glucose

transport in skeletal muscles and fat and fails to suppress

hepatic glucose production (232). Anthocyanin has been

shown to have lipid-lowering and antioxidant properties as

blueberries can inhibit the early inflammatory response in

adipose tissue to protect against whole-body insulin resistance

and improve glycemia (233). Anthocyanins also play a role

in insulin secretion. It protects pancreatic beta cells, from

glucose-induced oxidative stress. The anthocyanin extract from

colored rice increased the gene expression of genes associated

with insulin secretion in rat pancreatic beta cells (234).
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FIGURE 6

Physiological and health implications of anthocyanins.

According to the results, both anthocyanins and anthocyanidins

stimulate insulin secretion, and delphinidin-3-glucoside was

the most potent compound and significantly affected insulin

secretion in comparison to untreated control cells at glucose

concentrations of 4 and 10 mol/L (235). Diabetes mellitus

(DM) is a chronic metabolic disease characterized by high

blood sugar levels (236). Approximately 415 million adults

between the ages of 20 and 79 years had diabetes mellitus

in 2015, according to the International Diabetes Federation

(IDF) (237). Over the past two decades, many efforts have been

made to develop natural and less toxic antidiabetic agents.

Scientists have been searching for new antidiabetic compounds

made from natural sources to minimize side effects (238).

Foods that are rich in bioactive compounds such as alkaloids,

phenols, flavonoids, saponins, polysaccharides, terpenoids,

glycosides, and xanthones can be consumed daily (239).

Examples of food containing anthocyanins are berries such

as cranberries, chokeberries, blackberries, gooseberries, black

grape, bilberries, blueberries, red raspberries, blackcurrants,

redcurrants, strawberry, pomegranates, apples, nectarine,

peaches, plum radish, and plums; vegetables as red onion, red

cabbage, eggplant, and purple potatoes; and seeds as black

beans (240).

Cardioprotective roles of anthocyanins

The aging of the cardiovascular system involves endothelial

dysfunction, intimal hyperplasy, and arterial stiffness, which

may lead to arterial arteriosclerosis and atherosclerosis (241).

Nutritional interventions are promising approaches to slow

down the aging process of the cardiovascular system (241,

242). As a prerequisite for understanding the mechanisms of

action of fruits and vegetables, it is imperative to identify

bioactive compounds responsible for such beneficial effects

and to demonstrate causality using accredited end points. It

is also essential to study how such compounds are absorbed,

distributed, metabolized, and excreted by healthy humans.

Until now, polyphenols are the most promising class of food

bioactive compounds found in fruits and vegetables (243,

244). Blueberries are not just a rich source of polyphenols,

such as anthocyanin (ACN) but also contain flavonoids,

flavonols, and phenolic acids, along with fiber, vitamins, and
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TABLE 2 Biological activities of anthocyanins and their health e�ects.

Cell culture, in vivo or clinical

study

Biological activity Health benefits References

Cell Studies Serviceable against insulin resistance and diabetes Anti-diabetic effects (190)

Oral capsule Improvement of vision in patients with

open-angle glaucoma

Beneficial for eye health (191)

Primary intravenous in rats Protective effect during retinal inflammation Eye health (192)

Bioassay-directed fractionation Suppressed cell proliferation, inflammation, and

angiogenesis and induced apoptosis in esophageal

tissue of rats

Anticancer effects (193)

Male Wistar rats were fed the

anthocyanin-rich (ACN-rich) or the

anthocyanin-free (ACN-free) diet

Decreased susceptibility to ischemia-reperfusion

injury and infarct size with increased myocardial

antioxidant enzyme

Beneficial against

Cardiovascular diseases

(194)

Anthocyanins was added to the animals’

water bottles every day

Promoted apoptosis in benign prostatic

hyperplasia rats

Anticancer effects (195)

Oral squamous cell Decreases NF-kB1 and PTGS2 activity Anticancer effects (196–198)

Carcinoma patients Increases AURKA, BIRC5, and EGF activity Anticancer effects (198)

MDA-MB-453 breast cancer cells Increases Caspase-3 cleavage activity Anticancer effects (199)

Esophageal squamous cancer cell in rats Decreases COX-2 and iNOS activation of ERK

AKT expression

Anticancer effects (198–200)

Microbial strains Highest sensitivity to Aeromonas hydrophila and

Listeria innocua

Antimicrobial effects (201)

Oral capsule Improvement of dyslipidemia, enhancement of

antioxidant capacity, and prevention of insulin

resistance in human with type 2 diabete

Antidiabetic effects (202)

Oral solution Amelioration of renal apoptosis in diabetic

nephropathy mice

Antidiabetic effects (203)

Fat diet-induced mouse model Suppression of body weight gain and improve

blood lipid profile in rats

Antiobesity effects (204)

In vitro simulated gastroduodenal

digestion

Increasing glucose absorption, decreasing glucose

diffusion rate and promoting glucose transport

across the cell membrane

Antioxidant,

hypoglycemic, and

hypolipemic effects

(205)

Cell Study Modulatory effect on the composition and

abundance of human intestinal microbiota.

Prebiotic activity (206)

Cell study Enhance the high glucose plus palmitic acid

induced ROS

Antimicrobial effects (207)

Cell study α-glucosidase inhibitory activity and ROS

scavenging activities o

Antioxidant activity (208)

Trolox equivalent antioxidant capacity

(TEAC) was measured

Falicitate unique structural features like

4’-glycosylation and unsusual substitution pattern

of sugar moities

Antioxidant activity (44, 209)

HPLC, DPPH (radical-scavenging

activity), ORAC methods

Preventing the growth of tumors Antiproliferative effects (58, 210, 211)

HPLC Increase in total flavonoids, total phenolic content,

total anthocyanins, protein, and calories

Antioxidant activity (18)

minerals (245). According to the Nurses’ Health Study II,

consuming large quantities of blueberries and strawberries,

as well as large quantities of anthocyanin (as calculated

per food frequency questionnaire), was associated with a

lower risk of myocardial infarction (246). Even though these

results suggest that anthocyanin intake with blueberries could

lower cardiovascular risk, epidemiological data inherently only

provide associative evidence, further limited by the lack
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of biomarkers of intake. Rodriguez et al. in their study

suggested that anthocyanin metabolites contribute to healthy

cardiovascular aging through mediating biological activities of

blueberries and also induced gene expression in a manner that

inhibits inflammation and reduces the risk of cardiovascular

disease (247). Studies to be conducted in future will enhance

our understanding of the mechanisms of action of individual

metabolites, establish general structure–function relationships,

and identify relevant interactions.

Hepatoprotective role of anthocyanins

The hepatotoxic compounds such as carbon tetrachloride

(CCl4), allyl alcohol, 1-naphthyl isocyanate, and thioacetamide

are proven to cause liver tissue necrosis in various areas of the

liver in experimental medicine (248). While molecular CCl4

is not toxic, its hepatotoxicity arises from the formation of

trichloromethyl radicals (∗CCl3) and trichloromethyl peroxide

of the radicals (CCl3O
∗
2) following liver metabolism (249, 250).

Romero et al. studied the effects of CCl4 intoxication on

protein synthesis (251). Therefore, the total protein content

can be considered as a useful index of cellular dysfunction in

liver disorders. In a recent study, the ethyl acetate fraction

of Justicia spicigera was evaluated for its efficiency against

CCl4-induced liver damage. As indicated by the attenuation

of liver function indices and improvement in markers of

oxidative stress, ethyl acetate (EA) fraction protects the liver in

a pathological condition (252). However, such types of studies

have not been undertaken for onion-related anthocyanins and

can be investigated in future research projects.

Conclusion

Recently, anthocyanins from onion are gaining popularity

because of diverse health-promoting effects and natural

colorants as natural antioxidants. The extraction methods of

anthocyanins from onion need optimized conditions because

of the sensitivity of anthocyanins. However, the extracted

anthocyanins are susceptible to degradation effects by different

factors such as pH, light, temperature, enzymes, and oxygen.

Although the advanced technology showed a better potential

to retain anthocyanins, the use of advanced methods needs

further investigation toward industrial application, and due to

the high cost of extraction, research could focus on assessing the

economic viability of the methods.

Anthocyanins can be helpful in treatment of diseases

and show different preventive activities such as antioxidant,

antidiabetic, anticancerous, antiobesity, cardioprotective, and

hepatoprotective properties. In order to extend the efficiency

of anthocyanins to prevent diseases, new directions of research

involve the incorporation of anthocyanins into targeted

delivery systems that prevents the degradation of anthocyanins,

enhances the bioavailability, and provides the stability in

different conditions. Thus, different delivery systems have been

developed such as dietary fiber-based, emulsions, microcapsules,

or liposomes to enhance the bioavailability, and the effects

produced by anthocyanins would be stronger. However, future

studies are needed to focus on how to reduce the negative impact

of each factor that influences the stability of anthocyanins.
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