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ABSTRACT

Next-generation sequencing (NGS) technologies-
based transcriptomic profiling method often called
RNA-seq has been widely used to study global gene
expression, alternative exon usage, new exon dis-
covery, novel transcriptional isoforms and genomic
sequence variations. However, this technique also
poses many biological and informatics challenges
to extracting meaningful biological information.
The RNA-seq data analysis is built on the foundation
of high quality initial genome localization and
alignment information for RNA-seq sequences.
Toward this goal, we have developed RNASEQR
to accurately and effectively map millions of
RNA-seq sequences. We have systematically
compared RNASEQR with four of the most widely
used tools using a simulated data set created
from the Consensus CDS project and two ex-
perimental RNA-seq data sets generated from a
human glioblastoma patient. Our results showed
that RNASEQR yields more accurate estimates
for gene expression, complete gene structures
and new transcript isoforms, as well as more
accurate detection of single nucleotide variants
(SNVs). RNASEQR analyzes raw data from
RNA-seq experiments effectively and outputs
results in a manner that is compatible with a wide
variety of specialized downstream analyses on
desktop computers.

INTRODUCTION

Analyzing the spectrum of poly-adenylated RNA using
conventional Sanger sequencing has provided rich bio-
logical information on gene-expression levels, alternative
RNA splicing events and common and rare genetic vari-
ations in the last few decades (1–3). Recently, RNA-seq, a
deep transcriptome profiling approach based on the
next-generation sequencing (NGS) platforms, provides
an enormous amount of sequence information and offers
a larger dynamic range than other transcriptome profiling
methods (4,5). Prior studies have also shown that
gene-expression profiles obtained by RNA-seq correlate
well with quantitative polymerase chain reaction
(qPCRs) measurements (4).
The millions of short sequences from NGS platforms

pose a challenge for experimental biologists to analyze
and extract meaningful biological information (6). The
sequences from the early versions of NGS technology
ranged from 25 to 50 bp. With improvements in the chem-
istry and instrumentation the length of sequences
generated from NGS is becoming longer, which should
improve the accuracy of RNA sequence analysis.
However, the longer sequences involve additional chal-
lenges in data analysis since these sequences are more
likely to span multiple exons. A recent study indicated
that �30% of the sequences in a 75-bp RNA-seq library
extend across at least one exon junction (7), which makes
it more difficult to accurately map and align these se-
quences. Previous approaches to address this challenge
have been focused on creating splice junction reference
libraries built from either known gene models (8–10) or
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predicted exons (11–13). Other approaches have also been
adapted to assist the alignment of RNA-seq sequences,
such as using: seed matching followed by a heuristic iden-
tification of splice junctions (14–17); in silico prediction of
splice junctions (18); clustering or assembly of RNA-seq
sequences (19–22); and comprehensive hash-based align-
ment (23,24). However, these approaches are heavily de-
pendent on computational resources and still have a
significant frequency of mis-aligned sequences.
We have developed a new sequence mapper/aligner,

RNASEQR, specifically for RNA-seq data analysis.
RNASEQR takes advantage of annotated transcripts
and genomic reference sequences to obtain high quality
mapping/alignment results. To evaluate the performance
of RNASEQR, we compared the results to those from
other widely used RNA-seq tools, including ERANGE
(8), MapSplice (16), SpliceMap (12) and TopHat (11),
with a simulated dataset derived from the Consensus
CDS (CCDS) project (25) and two experimental data
sets generated from a patient with glioblastoma
multiforme (GBM). RNASEQR significantly improves
the mapping results, especially on transcripts containing
smaller exons, which results in more accurate assessment
of gene-expression profiles and better transcript struc-
tures. The RNASEQR pipeline also significantly reduces
false identification of single nucleotide variants (SNVs)
near the splice junctions. We report in this manuscript a
comprehensive comparison between RNASEQR and four
other most widely used RNA-seq tools by evaluating their
performance in several downstream analyses. RNASEQR
and its open source code are available at https://github
.com/rnaseqr/RNASEQR.

MATERIALS AND METHODS

RNASEQR pipeline

RNASEQR was written in Python 2.7 and runs on 64-bit
Linux systems. It employs a Burrows–Wheeler transform
(BWT)-based and a hash-based indexing algorithm.
Briefly, there are three sequential processing steps: the
first step is to align RNA-Seq sequences to a
transcriptomic reference; the second step is to detect
novel exons; the third step is to identify novel splice junc-
tions using an anchor-and-align strategy.
In the first step, RNA-seq sequences are mapped to a

pre-built transcriptomic reference sequence using Bowtie
(26), and sequences are classified into three categories
based on the mapping results: unique, multiple, and un-
assigned. RNASEQR records a maximum of 40 alignment
records for each sequence by default. To obtain genomic
coordinates for each mapped sequence, RNASEQR
applies a two-level data structure to record the exon in-
formation of each transcript. The first level records the
identifier of each transcript, while the second level
records the information of chromosome, orientation,
start, and length for each exon in a transcript. This
unique data structure maintains a constant processing
time for converting transcriptome-genome coordination.
The positions of both uniquely- and multiply-assigned

sequences on gene transcripts are converted to the

coordinates on the genomic reference sequence, and se-
quences satisfying the following criteria are recorded as
having unique genomic positions:

Given a scoring function F and genome reference G, one
read r is said to have a unique alignment if and only if there
exists one alignment v of r such that F(v,G)> F(v’,G) for
all alignments v’ of r besides v.

The scoring function F is calculated using Hamming
distance that measures the minimum number of substitu-
tions required to change one string to the other.

In the second step, RNASEQR maps the unassigned
sequences to a pre-built BWT-based genomic index
using Bowtie (26). The current version of RNASEQR
only records sequences mapped uniquely on the genomic
reference sequences.

In the third step, RNASEQR applies an anchor-and-
align strategy. To generate anchors, RNASEQR splits
each unassigned sequence into multiple substring se-
quences of fixed-length (25 bp by default) and even distri-
bution. These anchors are then mapped to pre-built
BWT-based transcriptomic and genomic indexes simul-
taneously using Bowtie (26). Sequences with a specified
number of anchors (two anchors by default) pointing to
a unique genomic location are aligned locally to candidate
chromosomal regions using BLAT (27).

To map the paired-end RNA-seq reading results,
RNASEQR maps such sequences to a transcriptomic ref-
erence using Bowtie with built-in paired-end feature. The
remaining unmapped paired-end sequences were then sep-
arately mapped as single-end reading using Bowtie and
BLAT in the second and the third steps. The un-paired
mapped sequences are then examined for pairing based on
their genomic distance and sequence orientation.

The final mapping result of each sequence is reported
in the SAM file format with extended CIGAR string
format (28).

RNA-seq of a glioblastoma tumor and matched
peripheral brain tissue

Tumor and peripheral brain tissues were obtained from a
GBM patient at the Chang Gung Memorial Hospital in
Taiwan under proper IRB approval (CGMH IRB No.
94-0182 and WIRB 20070569). Total RNA was extracted
from 0.5 g of frozen tissue using the miRNeasy mini kit
(Qiagen, Germantown, MD, USA), and the RNA quality
was checked using Agilent 2100 Bioanalyzer (Agilent,
Santa Clara, CA, USA). We performed 75-bp single-end
RNA sequencing (RNA-seq) on the Illumina Genome
analyzer II following the manufacturer’s suggestion
(Illumina, San Diego, CA). In short, 10 mg high-quality
RNA was used to enrich poly-adenylated RNA, which
was then fragmented, reverse transcribed followed by the
synthesis of the second strand. Each double-stranded
cDNA fragment resulting was then blunt-ended,
adenylated, ligated to adaptors, and size-purified for
�200-bp fragments. These size-selected cDNA templates
were further enriched using PCR and checked for quality
on the Agilent 2100 Bioanalyzer (Agilent, Santa Clara,
CA, USA). We performed 75-bp sequencing using the
SBS sequencing kit v2 (Illumina, San Diego, CA, USA)
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one lane for each sample, and obtained 25.3 million, and
23.2 million high quality sequences for the tumor and the
peripheral brain RNA samples, respectively. The raw
sequence data was deposited to the Gene-expression
Omnibus (GEO) database and is accessible through acces-
sion number GSE33328.

Genomic and transcriptomic reference sequence and
simulated RNA-seq library

We compiled the sequences of each full-length transcript
annotated on the UCSC KnownGene (29), NCBI RefSeq
(30), Ensembl Genes (31) and Consensus CDS (CCDS)
Genes (25) databases using the human genome reference
sequence (GRCh37). We used Bowtie to create a pre-built
index from the compiled transcriptomic reference
sequence for all gene databases. The index of genomic
references was downloaded from the Bowtie webpage
(http://bowtie-bio.sourceforge.net/).

We performed a simulation test using the transcripts
annotated in CCDS Gene (25). Full-length sequences of
each transcript in CCDS Gene were assembled using
human genome reference (GRCh37), and then split into
overlapping 75-bp simulated sequences by sliding a 75-bp
window one nucleotide at a time. Positions of these unique
sequences were recorded for further evaluating mapping
and alignment accuracy.

Some publicly available mapping programs and
downstream analysis tools

The mapping performance of RNASEQR was compared
with that of ERANGE (8) (version 3.2.1), MapSplice (16)
(version 1.14.1), SpliceMap (12) (version 3.3.5.1) and
TopHat (11) (version 1.1.1). We ran the SAMtools (28)
(version 0.1.8) to detect SNVs presented in the mapping
result. SNVs with read-depth fewer than five were
manually removed. We ran the Scripture program (7) to
assemble the mapping results, construct transcript struc-
tures, and determine alternative isoforms, and calculate
gene-expression levels for each transcript from the
mapping results. Novel exons and novel splice junction
sites were identified by comparing the assembled tran-
script structures to that annotated in the Ensembl
Genome Browser. Sequence mapping result, SNVs, and
assembled transcripts were visualized using the
Integrative Genomics Viewer (32).

RESULTS

RNASEQR adapted a three-step ‘align and remove’
strategy to streamline the RNA-seq sequence mapping
and alignment process (Figure 1). Sequences were first
mapped to a set of full-length RNA transcripts
(transcriptomic reference), which assigned a majority of
the sequences and left a smaller portion of sequences un-
determined. This allowed us to fully implement computa-
tionally intensive algorithms with limited resources in the
following steps. Sequences that failed to map to the
transcriptomic reference were subsequently compared to
a genomic reference sequence to identify novel exons.

To identify new exon junctions, we adopted BLAT (27),
a memory-efficient hash-based alignment algorithm.
Collectively, the three-step process yielded high-quality
mapping results for both known and novel transcripts.
To test the performance of RNASEQR, we used three

different datasets, one simulated and two experimental
RNA-seq datasets. The simulated dataset contained
38 506 959 sequences, which were generated by sliding a
75-bp window along the sequence of all annotated tran-
scripts in CCDS (25). Of the two experimental datasets,
one of them was generated from a tumor tissue and
the other was from the corresponding peripheral normal
(reference) brain tissue obtained from a GBM patient.

Figure 1. RNASEQR sequence mapping procedure. RNA-seq se-
quences read by NGS instruments are derived from either one or
multiple exons. RNASEQR first maps the sequences to a set of
full-length transcripts and calculates the genomic coordinates for their
mapped reads. Unmapped sequences are then compared to a genomic
reference sequence in the next step to identify novel exons. Novel splice
junctions are identified in the third step using a gap-tolerant alignment
algorithm. The result of uniquely mapped sequences is recorded in the
Sequence Alignment/Map (SAM) format.
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Taken together, the two experimental libraries yielded
48 643 647 single-end 75-bp high-quality sequences,
respectively.

The effect of different transcriptomic annotations on the
performance of RNASEQR

Several independent efforts, including the Ensembl
Genome browser (31), the UCSC Genome browser (29),
the NCBI Reference Sequence (30) and the Consensus
CDS (25), are dedicated to annotating transcribed
regions of the genome (herein Ensembl, UCSC, RefSeq
and CCDS). Each annotation effort has implemented dif-
ferent inclusion criteria for transcripts, which might affect
the results generated from RNASEQR. To address this,
we compared the results with RNASEQR using a
transcriptomic reference library built from different anno-
tations. Approximately 35 million sequences were mapped
uniquely in the first and second steps (Table 1) using
transcriptomic references based on either Ensembl,
UCSC or RefSeq. Since CCDS collects only protein-
coding transcripts, only one-third of the sequences were
assigned in the first step, but an equivalent number of
mapped sequences were obtained after the second and
the third steps analysis in RNASEQR. The number of
uniquely mapped sequences differed by only 1.71%, sug-
gesting that different transcriptomic reference databases
used did not significantly affect the overall performance
of RNASEQR.

Comparing the mapping performance of RNASEQR with
other RNA-seq tools

The mapping performance of RNASEQER was compared
to some widely used RNA-seq tools including ERANGE
(8), MapSplice (16), SpliceMap (12) and TopHat (11)
using the simulated dataset created from CCDS tran-
scripts. Among 38 506 959 non-redundant sequences,
RNASEQR assigned more sequences uniquely than the
other tools with highest overall accuracy of 99.91%
(Table 2). The aligned sequences were further broken
down into two groups based on whether the sequence

originated from a single exon: a total of 23 187 354 se-
quences were from single exon (unspliced) and
15 319 605 sequences were from more than one exon
(spliced). All tools performed equally well with high sen-
sitivity for sequences originating from a single exon.
RNASEQR provided a better mapping result in both sen-
sitivity and specificity with sequences that came from one
or more than one exon (Table 2). This finding suggests
that RNASEQR is particularly effective and accurate in
assigning sequences correctly to splice junctions and that it
will be increasingly effective as the length of the RNA
sequence reads increases.

Since no sequence variation was introduced in the
simulated dataset, we could fully evaluate the impact of
incorrect mapping by means of the identification of SNVs.
RNASEQR gave the lowest number of incorrectly
mapped sequences, and most of these sequences were par-
tially correct (Table 3). RNASEQR also yielded the lowest
number of SNVs due to its highly accurate alignment
results (Table 3). Most other tools reported a higher
number of spurious SNVs identified near the splice junc-
tions (�5 bp, Table 3). Further analysis showed that these
spurious SNVs were the consequences of incorrect identi-
fication of splice junctions (data not shown).

Evaluate the performance of RNASEQR with
experimental data

The two experimental libraries derived from a single GBM
patient had 25 384 704 (tumor) and 23 258 943 (reference)
single-end sequences, respectively. RNASEQR mapped
58% of the sequences with unique genomic coordinates
to the UCSC transcriptomic reference. In the second
and third mapping steps additional 6 704 035 (tumor)
and 731 426 (reference) sequences with novel exons or
splice junctions were assigned to the genome with unique
locations. In summary, RNASEQR assigned �78.3% of
the sequences to unique regions on the genome, 2.1% of
the sequences were assigned to multiple locations, and
20.8% sequences are still unmapped. Most of these

Table 1. RNASEQR mapping results of two RNA-seq libraries using various transcriptomic references

Transcriptome ref. Ensembl UCSC RefSeq CCDS
Annotated transcripts 151 185 77 614 37 162 23 754

Step Reference Mapping Reads

I Transcriptome Unique 8 034 365 6 998 920 16 024 976 10 570 226
Unique a 20 099 654 21 143 858 11 228 678 3 829 696
Multipleb 1 016 650 625 143 411 881 240 348

II Genome Input 17 015 881 17 398 629 18 501 015 31 526 280
Unique 6 411 301 6 704 035 7 478 666 19 518 521
Multiple 258 860 342 518 598 051 1 010 132

III Split reads 10 345 720 10 352 076 10 424 298 10 997 627
Transcriptome and genome Anchored 2 765 619 2 769 510 2 798 471 3 052 090
Genome Unique 731 426 742 058 751 073 882 532

Total mapped uniquely, n (%) 35 276 746 (76.41) 35 588 871 (77.09) 35 483 393 (76.86) 34 800 975 (75.38)

aOn multiple transcripts but unique genomic location.
bOn multiple transcripts and multiple genomic locations.
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unmapped sequences were poor quality sequences based
on the Phred quality score (Supplementary Figure S1).

Comparing the mapping results with other programs,
RNASEQR assigned �3% more sequences than the
other programs with various number of mismatches
allowed in mapping (Figure 2A). Using default settings,
RNASEQR allowed three mismatches in the first and
second steps; ERANGE and SpliceMap also allowed
three mismatches, while MapSplice tolerated up to five.
TopHat mapped 0.5% more sequences than RNASEQR
by tolerating more mismatches and truncating low quality

sequences. The mapped sequences under default setting
were further classified as spliced and unspliced.
Accurately mapped and assigned spliced sequences are es-
sential to obtain complete gene structures. RNASEQR
mapped 7.3 million spliced sequences that is 17–106%
more than the other tools mapped (Figure 2B).
The accuracy of the mapping process inevitably influ-

ences the quality of downstream analysis. To investigate
the influence of mapping accuracy on gene-expression
level estimation, we ran a program called Scripture (7)
to calculate the expression levels of genes that have been

Figure 2. Numbers of uniquely mapped RNA-seq sequences. (A) RNASEQR assigned more sequences than the other tools with default threshold.
(B) Using the default threshold, RNASEQR mapped more spliced sequences than the other programs.

Table 2. Mapping result of a 75-bp CCDS derived library in human

RNASEQR ERANGE MapSplice SpliceMap TopHat

Uniquely mapped reads,a n (%) 37 634 842 (97.74) 37 128 297 (96.42) 37 459 713 (97.28) 34 516 928 (89.64) 35 770 965 (92.89)
Mapped unspliced readsb 22 619 568 22 480 501 22 496 259 21 619 384 22 487 761

Sensitivity (%) 97.54 96.95 97.02 93.15 96.98
Specificity (%) 99.94 92.82 92.66 90.68 79.11

Mapped spliced readsc 15 015 274 14 647 796 14 963 454 12 897 544 13 283 204
Sensitivity (%) 97.98 88.41 90.26 69.29 65.36
Specificity (%) 99.90 99.85 99.50 88.90 99.15

Overall mapping accuracy (%) 99.91 96.95 96.69 87.48 90.50

aTotal 38 506 959 unique sequences (reads).
bTotal 23 187 354 reads originated from a single exon.
cTotal 15 319 605 spliced reads originated from at least two exons.

Table 3. Incorrectly mapped reads and location of resulting SNVs

RNASEQR ERANGE MapSplice SpliceMap TopHat

Incorrectly mapped reads 32 184 1 133 128 1 240 521 4 322 547 3 399 156
Partially correct a (%) 86.31 49.01 41.89 43.08 42.77

Resulting false SNVs
Coding exon 719 53 735 27 090 53 362 126 812
Non-coding exon 37 3991 5132 5053 51 461
Intron (�5 bp from exon) 330 382 742 249 573 507 627 704 682
Intron (>5 bp from exon) 39 302 1523 1523 252 773
Intergenic region 86 875 2065 2065 248 298

aCorrect position either at the beginning or the end of sequence.
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annotated in Ensembl. Different RNA-seq mapping tools
gave high overall expression correlations when comparing
the results for those genes with expression levels greater
than 1 RPKM (reads per kilo per million) (Figure 3A and
B). The RNASEQR result showed that underestimated
gene expression was inferred by the other tools and this
was seen in protein-coding gene transcripts (Figure 3C
and D). This was predominately seen especially in low
abundant transcripts (dots in the red circle in the
Figure 3A and B). The RNASEQR result showed that
21 549 Ensembl transcripts showed a 2-fold change in
expression level in the glioblastoma tumor compared
to that in the peripheral brain tissue (Supplementary
Table S1).
In addition, we observed that transcripts containing

small exons (exon length shorter than the sequence read
length) could lead to an underestimation of gene expres-
sion, as expected. For example, ST13, suppression of

tumorigenicity 13 (colon carcinoma), is an example of a
gene with 12 exons where 5 of them are <76 bp (RNA-seq
sequence length). RNASEQR was the only tool that could
detect all exons in ST13, which may provide better
transcriptional abundance information (Figure 4A).
RNASEQR failed to detect 4658 exons and 4762 exons
in the gene transcripts with expression level >1 RPKM in
the peripheral brain tissue and the glioblastoma tumor,
respectively. RNASEQR showed a significantly lower
ratio of the unidentified exons when the exons are
<76 bp (Figure 4B).

Identifying genes with alternative exon usage is one of
the most powerful applications for RNA-seq. For
example, adenylate kinase 2 (AK2) has seven known
exons. RNASEQR identified two novel exons and four
isoforms (Figure 5). Two of these isoforms were seen
only in the tumor RNA-seq library. The two novel
exons and the tumor specific isoforms were experimentally

Figure 3. Expression levels of gene transcripts annotated in Ensembl in reference brain (A and C) and tumor tissues (B and D). (A) and (B) represent
transcripts with expression levels >1 RPKM. The numbers indicate the Pearson’s correlation and coefficient of expression levels between different
tools. Red circles indicate low abundant transcripts underestimated by the other tools. (C) and (D) denote the numbers of gene transcripts with
expression levels of >2-fold when comparing RNASEQR to the other tools.
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verified (Supplementary Figure S2). All the other tools
failed to reveal the complete gene structures for the AK2
gene.

We used SAMtools (28) to identify SNVs in the
RNA-seq dataset. As expected, the tumor harbored
more SNVs than the reference brain tissue (Table 4). As
with the simulated dataset, the RNASEQR identified

fewer SNVs in splice junction regions in GBM samples
compared to other tools, especially near the splice sites
(Supplementary Figure S3), and hence provides more
accurate assessments of variation in junctional sequences
(Figure 6). These results suggested that RNASEQR
provided more accurate alignment results that gave more
reliable transcripts and associated SNVs.

Figure 4. (A) Detail sequence mapping result on the gene ST13. Gray peaks indicate the sequence depth (coverage). Blue lines and blocks indicate
sequences that spanned splice junctions. The result was visualized using the Integrative Genomics Viewer. (B) Ratio of unidentified exons in the
transcripts with expression levels >1 RPKM. Exons in these gene transcripts were classified according to their length, <76 bp or �76 bp.
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DISCUSSION

Current NGS technology can produce tens of billions of
raw sequence data in a few days in routine operation; this
creates an enormous challenge for the efficiency and
accuracy of subsequent data analysis. Compared to the
size of human genome (�3 billion base pairs),
transcriptomic reference databases are much smaller and

range from 40 million base pairs in CCDS to 240 million
base pairs in the Ensembl genome browser. The UCSC
transcriptomic annotation that is used as default reference
for transcriptomic data in RNASEQR is �200 million
base pairs, 1/15 the size of the human genome. The
BWT-based indexing allows large genomic sequences to
be searched efficiently in a workstation computer

Figure 5. Gene structure of the gene adenylate kinase 2, AK2, assembled from the sequences in (A) reference brain and (B) tumor tissues. Uniquely
mapped RNA-seq sequences were assembled using Scripture to build the gene structure. RNASEQR identified two novel exons and four isoforms
with complete gene structure.
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equipped with small memory. RNASEQR also takes ad-
vantage of the BWT-based alignment algorithm and
parallel computation to shorten the processing time. For
a 25 million-read library, RNASEQR takes �200min on a
single-thread 2.4GHz Xeon CPU and 100min if a
four-threaded process is applied (Supplementary Figure
S4). It requires as little as 4GB of computer memory and
can efficiently run on a standard desktop computer. As far
as we know, the RNASEQR is the fastest pipeline with
least hardware requirements for RNA-seq data processing.

Mapping RNA-seq sequences to full-length gene tran-
scripts is intuitive and has been discussed elsewhere (33);
however, the limitation in using transcriptomic references

alone is the inherent inability to identify novel transcripts,
exons or alternative splicing events. RNASEQR uses both
transcriptomic and genomic references so that it can
effectively assess the expression levels of known tran-
scripts and identify novel exons, transcripts and alterna-
tive uses of known exons. We set the default
transcriptomic reference as the UCSC genome browser
transcriptome in RNASEQR. The performance of
RNASEQR is little affected by the specific use of the
transcriptomic reference. Therefore, other databases
could be selected as references for this purpose.
The results from some RNA-seq data analysis programs

show a preference to map sequences to pseudogenes in the

Figure 6. Detail sequence alignment result on an exon–intron junction (chr1:220,311,381 to 220,311–391) in IARS2.

Table 4. SNVs identified in peripheral brain and glioblastoma tissues

RNASEQR ERANGE MapSplice SpliceMap TopHat

Peripheral brain
Coding exon 22 986 19 944 50 714 19 641 21 871
Non-coding exon 1378 1103 3091 1194 4826
Intron (�5 bp from exon) 82 6209 1637 7984 9850
Intron (>5 bp from exon) 2130 1555 4196 1250 2035
Intergenic region 5626 4077 11 119 9916 13 491
Subtotal 32 202 32 888 70 757 39 985 52 073

Glioblastoma
Coding exon 26 763 24 220 53 429 24 062 26 456
Non-coding exon 1898 1494 3952 1504 5894
Intron (�5 bp from exon) 104 3994 2607 9756 32 796
Intron (>5 bp from exon) 3697 2911 7109 2146 3333
Intergenic region 7495 9281 15 192 12 396 17 169
Subtotal 39 957 41 900 82 289 49 864 85 648
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genome (data not shown) because of their high sequence
similarity to the functional, spliced protein-coding genes—
most of them do not contain intronic sequences. This can
lead to inaccurate measurement of gene-expression levels
as well as transcript-associated SNVs. The implementa-
tion of transcriptomic references in the first step in
RNASEQR greatly reduces the problem of ‘preferentially’
aligning the sequences to pesudogenes located in the
genome for two reasons: the first is that full-length RNA
sequences do not require tolerating sequence gaps in
mapping and alignment; the second is that RNA-seq se-
quences match to their origins better when both coding
and pseudogene sequences are provided in the
transcriptomic references.
To deal with sequences that span more than one exon,

ERANGE uses a splice junction library generated from
annotated exons in the UCSC Genome browser while
MapSplice, SpliceMap and TopHat detect splice junctions
with their de novo methods. RNASEQR takes a third
route by utilizing the sequences of full-length gene tran-
scripts for the known exon junctions and a hash-based
local alignment algorithm to detect novel splice sites.
Based on our test, the three-step framework implemented
in RNASEQR best explores annotated and novel
transcriptomic repertoires, and is also able to identify in-
sertions and deletions (data not shown).
Tolerating some mismatched sequences in sequence

alignment is necessary because of SNVs, sequencing
errors, and even the possibility of RNA editing.
However, mismatch allowances should be minimized to
avoid false identification of SNVs. Compared to other
programs, RNASEQR aligns more sequences with fewer
mismatches and uses only full-length RNA-seq sequences
to avoid spurious results. Short exons represent another
class of genomic features that may affect the performance
of RNA-seq data analysis. In Ensembl, 17.5% of the
annotated exons were <76 bp, and half of the genes in
the human genome have at least one exon <76 bp. Poor
mapping of small exons and associated splice junctions
will result in an underestimation of expression levels and
the overestimation of transcripts with alternative exon
usages. However, the calculation for differential expres-
sion for abundant transcripts between samples will not
be affected because undetected small exons are not
observed in all analyzed RNA-seq samples. But underesti-
mation of low abundant transcripts could prevent these
transcripts from the downstream differential expression
analysis (Supplementary Tables S2–S5). The RNASEQR
performed much better than other tools in handling small
exon associated sequences and accurately provided
complete gene structures (Figure 4A).
Sequence variations near splice junctions could have

biological implications, for functions such as alternative
exon usage. Most, if not all, programs have problems
aligning sequences near splice junctions (Supplementary
Figure S5). To avoid false identification of SNVs due to
mis-alignment, approaches including additional local
alignments to remap sequences mapped near splice junc-
tions (34,35) and de novo RNA-seq sequence assembly
are used. However, these approaches take significant
time and computation resources. RNASEQR adapted

anchored-and-align approach to deal with this problem
and delivered the lowest number of falsely identified
SNVs.

Various important biological questions are being
addressed by using RNA-seq techniques, such as the as-
sessment of transcriptional regulation (36,37), the identi-
fication of novel regulatory RNAs (7), the expression of
quantitative trait loci (38,39), and the assessment of allelic
expression imbalances (40,41), to name just a few areas.
The file output for RNASEQR is compatible with tools
such as DEseq (42), DEGseq (43), SAMtools (28), GATK
(44), SNVMix (45), MISO (37), Cufflink (36) and
Scripture (7) to estimate gene-expression levels, identify
transcripts associated SNVs, discover alternative exon
usage and assemble complete gene structures. The
current version of RNASEQR can read both the
color-space and nucleotide sequence formats for both
single-end and paired-end sequence analyses, and it can
easily be adapted to take the results from future NGS
technology, such as single molecular sequencing, for
more sophisticated experimental designs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1–5, Supplementary Figures 1–5,
and Supplementary Methods.
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