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When the digesta pass from the small to the large intestine 
via the caecum, a dramatic change takes place. Bacterial 
counts surge from below 104 CFU·mL−1 to levels above 
1011 CFU·mL−1, the highest level of microorganisms found 
in any ecosystem [9]. Since microbiota are extremely flex-
ible in degrading whatever energy-rich material has escaped 
the digestive processes of the small intestine, one advantage 
of this arrangement is to allow the host to extract usable 
calories from otherwise indigestible polysaccharides [13]. 
Due to the anaerobic milieu in caecum and colon, carbo-
hydrate breakdown is halted at the level of short chain fatty 
acids (SCFA), which are absorbed and utilized by the host as 
a source of energy or to synthesize more complex carbohy-
drates. On the downside, an imbalance in the gut microbial 
community can trigger immunological responses that range 
from simple diarrhea to chronical inflammatory bowel dis-
ease [1] via pathways that are currently very poorly under-
stood. There is considerable evidence to suggest that the 
shift from traditional, poorly digestible plant-based foods 
to refined sugar and animal fat plays a major role in the 
current world-wide epidemic of both Crohn’s disease and 
colitis ulcerosa, highlighting the complex interplay between 
dietary, microbial, immunological and genetic factors that 
lead to either health or disease in individuals [5, 12].

The caecum plays a central role in ensuring that the 
digesta flowing into the hindgut are inoculated with an opti-
mal bacterial flora [14]. A minimal requirement for the sur-
vival of this flora is keeping luminal pH in a range around 
6.5 [6]. This is no small task considering that SCFA rise to 
levels over 100 mmol·L−1 in the caecum, releasing an almost 

equimolar amount of protons. Buffering is urgent and must 
be fine-tuned to reflect the requirements of the moment, 
which vary with the influx and composition of the digesta. 
However, very little is currently known about the signalling 
that makes this possible.

One of the substrates produced by microbials in the fer-
mentational process is propionate. It has been known for 
some time that binding of propionate to G-protein coupled 
SCFA receptors (FFAR2 and FFAR3) induces a release of 
acetylcholine from non-neuronal cells in the caecum and 
colon [3, 15]. According to the established notion, acetyl-
choline binds to muscarinic receptors, inducing an increase 
in the short circuit current in Ussing chambers that — with 
good reason — was originally thought to reflect secretion of 
chloride via the traditional coupling of NKCC with CFTR. 
In the current issue of Pflüger’s Archiv, Ballout and Diener 
break with this assumption, demonstrating that at least in 
the caecum, a major part of the current reflects secretion 
of HCO3

−. Basolateral expression of NBCe2B and NBCn1, 
which mediate electrogenic and electroneutral cotransport of 
Na+ and HCO3

−, generate the driving force. That HCO3
− is 

a substrate of CFTR is hardly new [2, 7, 11], but just why 
some secretagogues primarily induce secretion of Cl− via 
CFTR, while others primarily drive efflux of HCO3

− remains 
to be clarified. Both the formation of signalling complexes 
between receptors and transporters and differential expres-
sion by distinct cell types along the crypt-villus axis are pos-
sibilities that need to be explored. Thus, in the small intes-
tine, a cell-specific distribution pattern of CFTR, NKCC1 
and NBCe1 has been reported that can be modulated by 
carbachol [8].

However this may be, propionate-induced secretion of 
HCO3

− as demonstrated by Ballout and Diener provides 
additional buffering via bicarbonate precisely when micro-
bial activity commences and levels of SCFA and protons 
surge. This is important for preventing a shift in the micro-
bial flora towards an acidophile, lactate producing micro-
biome which would eventually damage the epithelium [6]. 
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Furthermore, enhanced secretion of HCO3
− promotes the 

unfolding of mucine, which is central to protecting the epi-
thelium from microbial damage [4, 10]. While it is clear 
that much work still needs to be done before the factors 
leading to the current surge in inflammatory bowel disease 
are understood [5, 12], unravelling the secrets of epithelial-
microbial crosstalk in the caecum is certainly a worthwhile 
starting point.
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