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Background: Sacral fractures are often difficult to diagnose on radiographs. Computed tomography (CT) and magnetic
resonance imaging (MRI) can improve the detection rate but cannot always be performed. The accuracy of artificial
intelligence (AI) in detecting orthopaedic fractures is now comparable with that of orthopaedic specialists. However, the
ability of AI to detect sacral fractures has not been investigated, to our knowledge. We hypothesized that the ability to
detect sacral fractures on radiographs could be improved by using AI, and aimed to develop an AI model to detect sacral
fractures accurately on radiographs with better accuracy than that of orthopaedic surgeons.

Methods: Subjects were patients with suspected pelvic fractures for whom radiographs and CT scans had been obtained.
The radiographswere labeled according to sacral fracture status based onCT results. The data set was divided into a training
set (2,038 images) and a test set (200 images). Eight convolutional neural network (CNN) models were trained using the
training set. Post-trained models were used to evaluate their discrimination ability. The detection ability of 4 experienced
orthopaedic surgeons was also measured using the same test set. The results of fracture assessment by the orthopaedic
surgeons were compared with those of the 3 CNNs with the greatest area under the receiver operating characteristic curve.

Results: Among the 8 trainedmodels, the highest areas under the curve were for InceptionV3 (0.989), Xception (0.987), and
Inception ResNetV2 (0.984). The detection rate was significantly higher for these 3 CNNs than for the orthopaedic surgeons.

Conclusions: By enhancing the processing of probabilistic tasks and the communication of their results, AI may be better
able to detect sacral fractures than orthopaedic surgeons.

Level of Evidence: Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.

S
acral fractures are a heterogeneous group of fractures that
occur in young people following high-energy trauma or
in elderly individuals with osteoporosis following minor

trauma1. Sacral fractures have particularly serious consequences
because the sacrum is the keystone of the pelvic girdle and pro-
vides approximately 60%of pelvic stability, and is thus subjected to
high stress. Spinopelvic dissociation due to high-energy trauma
has been reported to have a poor clinical outcome in up to 42% of
cases at 1 to 10 years of follow-up2. Moreover, undiagnosed low-
energy fractures have been found to be associated with high
mortality, with a 12-month mortality rate of 28% and with loss of
pre-injury ability in 34% of cases3. Diagnosis of a sacral fracture
may be missed or delayed in 25% to 70% of cases4-6. Furthermore,
Hussin et al. and Denis et al. showed that even when a correct
diagnosis is made, patients may develop neurologic deficits, un-
derscoring the importance of this injury7,8. Therefore, accurate
diagnosis and treatment are essential in managing sacral fractures.

Detecting sacral fractures on pelvic radiographs is often
complicated by bowel gas and sacral inclination, and occa-
sionally complicated by an overlying anterior portion of the
pelvis. It can also be complicated by bone rarefaction leading to
decreased contrast, particularly in elderly patients9-11. The detec-
tion rate is improved by performing computed tomography (CT)
andmagnetic resonance imaging (MRI)12. However, these imaging
modalities are not suitable for some suspected pelvic fractures
because of their cost and the patient’s clinical status12,13.

Artificial intelligence (AI) has been used to improve the
diagnosis of orthopaedic fractures, and its accuracy is now
comparable with that of orthopaedic specialists14,15. However,
using AI to detect sacral fractures has not been investigated, to
our knowledge. We hypothesized that AI could be used to
improve the ability to detect sacral fractures on radiographs.

The methods used in AI include convolutional neural net-
works (CNNs), linear discriminant analysis, quadratic discriminant
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analysis, and support vector machines. CNNs are employed in
deep learning, a machine learning method that has great potential
in diagnostic imaging, and CNNs are already being actively used in
the analysis of medical images16. Thus, we aimed to develop CNN-
based AI models that can accurately detect sacral fractures on
radiographs. And we hypothesized that the accuracy of detection
would be better for the developed AI models than for orthopaedic
surgeons.

Materials and Methods

This study was approved by the ethics committee of Jikei
University School of Medicine for Biomedical Research

(registration number 33-029[10639]) and conducted in accor-
dance with the ethical standards of the amended Declaration of
Helsinki.

Subjects
We retrospectively identified all consecutive patients examined
for suspected pelvic fractures at Jikei University School of
Medicine or Jikei University Kashiwa Hospital between January
2014 and September 2020. Anteroposterior radiographs were
made according to the Advanced Trauma Life Support guide-
lines. CTscans were performed at a pitch of 2 mm by either of 2
orthopaedic surgeons (N.I., S.I.). After excluding patients with
metal implants, 652 patients (231men, 421women)were enrolled.
Most (75.8%) were ‡65 years of age (mean, 71.8 years; range, 20 to
103 years); 197 had sacral fractures and 455 did not. Maximum
displacement of the sacral fracture was measured on CT. Sacral
fracture morphology was classified as Denis type 1, 2, and 3 in 132,
43, and 22 cases, respectively. Fracture displacement was ‡2mm in
43 cases and <2 mm in 154 cases.

Data Preparation and Image Selection
Anteroposterior pelvic radiographs were made with the patient
in the supine position. The imaging conditions were 70 kV,
200 mA, 0.4 s, and 100-cm tube-to-film distance, and digital
images were obtained. Multiple pelvic radiographs of each
patient were made within 1 month after injury. Uncompressed

imaging data were stored on a DICOM (digital imaging and
communication in medicine) server (Toshiba Medical Systems
Corporation). Images extracted from the server were converted
into 8-bit JPEG images. A square region showing both sacro-
iliac joints and the sacrum was cropped from the anteropos-
terior pelvic radiograph (Fig. 1). The image was resized to 256
· 256 pixels and labeled by 2 orthopaedic surgeons (N.I., S.I.)
according to the presence or absence of sacral fractures based
on the CT results. CT findings were used because the accuracy
of CT for diagnosing sacral fractures is higher than that of
radiography4. We used 2,238 images (770 with and 1,468 without
sacral fractures). The images in the data set were randomly divided
into a training set (670 with and 1,368 without sacral fractures)
and a test set (100with and 100without). In the training set, sacral
fracture morphology was classified as Denis type 1, 2, and 3 on
465, 148, and 57 images, respectively. Fracture displacement was
‡2 mm on 121 images and <2 mm on 549 images. In the test set,
sacral fractures were classified as Denis type 1, 2, and 3 on 74, 15,
and 11 images, respectively. Fracture displacement was ‡2mm on
13 images and <2 mm on 87 images.

Hardware and Software
All computations were performed on desktop workstations
optimized for deep learning with an Intel core i9 processor, 128
Gb RAM (random-access memory), and an NVIDIA Quadro
GV100 or NVIDIA RTX A6000 GPU.

The operating system was Ubuntu Linux versions 18.04
to 20.04. To train and test multiple CNN models for detection
of sacral fractures, we created each program using Python
version 3.8; TensorFlow version 2.5.0, which is an open-source
platform developed for machine learning; and Keras version
2.4.0, which is a library for machine learning.

Training
Our 8 CNN models were designed to tweak the parameters of
already pre-trained open-source models downloaded from 2
websites (https://keras.io/, https://github.com/qubvel/classification_
models) and adapted to our new task. The first fine-tuning task was

Fig. 1

A square region of the sacrum showing both sacroiliac joints was cropped from an anteroposterior radiograph of the pelvis.
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to freeze the ImageNet weights and add a new, fully connected layer.
The second fine-tuning task was to unfreeze some of the upper
layers of the frozen model base and jointly train both the newly
added fully connected layer and thefinal layers of the basemodel. All
base CNNmodels were pre-trained on ImageNet. To compare these
models and ensure reproducibility of the training results, the ran-
dom seed was fixed by setting an arbitrary seed value. The images
used to train these training models were 256 · 256 or 224 · 224
pixels (Table I). Model fitting was performed in 50 epochs, and a
callback (early stopping feature) was introduced to stop training
before overtraining occurred. Training was stopped if there was no
improvement of val_loss (value of the cost function of the cross-
validation data) within 10 epochs. The ReduceLROnPlateau func-
tion in Keras was used to reduce the learning rate by 0.1 if no
improvement was seen for 3 epochs.

Testing and Evaluation
We conducted a test using each CNN model created by the
training. Indicators used to evaluate the accuracy of the test
results for each model were precision, sensitivity (recall), speci-
ficity, accuracy, F1 score, and area under the receiver operating
characteristic curve (AUC). The F1 score is the harmonic mean of
precision and recall. The AUC measures classification perfor-
mance at various threshold settings; it represents the degree of
separability of the classes (the extent to which a model can dis-
tinguish between classes).

Detection Ability of Orthopaedic Surgeons
Four experienced orthopaedic surgeons (mean experience, 10.8
years [range, 7 to 15 years] since graduation frommedical school)
reviewed the same 200 test set images on a color LCD (liquid
crystal display) monitor (EV2450; EIZO) with a resolution of
1,920 · 1,080 pixels, contrast ratio of 1,000:1, and brightness of
250 cd/m2 and classified each sacral image for the presence or
absence of fractures. Brightness, contrast, and zoom settings were
routinely adjusted when fractures were unclear.

Statistical Analysis
We compared the ability of the AI with the highest AUC in each
CNN model and the 4 experienced orthopaedic surgeons to
detect sacral fractures on test images. Significance of the results

was analyzed using the McNemar test in the Python statistical
library.

Heat Map
TensorFlow (version 2; Google) and gradient-weighted class acti-
vationmapping (Grad-CAM)were used to create a heatmap image
of the sacral region for the CNNmodel showing the best accuracy17.

Source of Funding
There was no external funding source for this study.

Results

Among the 8 trained CNN models, InceptionV3 had the
highest AUC (0.989; 95% confidence interval [CI], 0.975

to 1.000), followed by Xception (0.987; 95% CI, 0.970 to 1.000)
and Inception ResNetV2 (0.984; 95% CI, 0.966 to 1.000)
(Fig. 2, Table II). InceptionV3 was the most accurate, followed
again by Xception and Inception ResNetV2. Test results for the
orthopaedic surgeons are shown in Table III. The McNemar
test showed that the results for the 3 CNNs with the highest
AUC (InceptionV3, Xception, and Inception ResNetV2) were
significantly more accurate than those for the orthopaedic
surgeons. When 68 heat map images on Grad-CAM were
analyzed to predict the presence of a sacral fracture, 67.8% of
the activation area was located at the sacral fracture site.

Discussion
AI Performance

Toour knowledge, this report is the first to describe using an
AI method to detect sacral fractures on radiographs. In-

ceptionV3 showed precision of 0.989, sensitivity of 0.880, speci-
ficity of 0.990, an F1 score of 0.931, accuracy of 0.935, and anAUC
of 0.989, explaining its high discrimination ability. In contrast,
the orthopaedic surgeons showed precision of 0.484 to 0.625,
sensitivity of 0.460 to 0.750, specificity of 0.420 to 0.700, accuracy
of 0.485 to 0.600, and an F1 score of 0.472 to 0.643. A previous
study found that orthopaedic surgeons had a sacral fractures
detection accuracy of only 53% on anteroposterior pelvic radio-
graphs4, which is consistent with our results and highlights the
difficulty that orthopaedic surgeons have in diagnosing sacral
fractures using radiographs alone. Previous studies of the

TABLE I Comparison of the Pre-Trained Convolutional Neural Networks

Model Total Parameters Trainable Parameters Total Layers Input Size

Xception 22,961,706 22,907,178 135 256 · 256

InceptionV3 23,903,010 23,903,010 314 256 · 256

Inception ResNetV2 55,912,674 55,852,130 783 256 · 256

ResNet50 25,687,938 11,035,650 178 256 · 256

ResNet101 44,758,402 11,035,650 348 256 · 256

SeResNeXt50 27,679,346 4,875,010 1,330 256 · 256

SeResNeXt101 49,144,498 4,944,642 2,724 256 · 256

NASNet-Mobile 5,354,134 1,151,298 772 224 · 224
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feasibility of using CNNs to detect fractures on radiographs have
had promising results. Olczak et al. trained a Visual Geometry
Group 16-layer (VGG_16) network to detect hand, wrist, and
ankle fractures and found its diagnostic accuracy to be comparable
with that of radiologists (0.83 versus 0.82)18. Cheng et al. evaluated
the ability of the ResNet model to detect fractures of the humerus
on shoulder radiographs and found that accuracy was better for
theCNN than for orthopaedists (0.96 versus 0.93)15. Urakawa et al.
reported that the VGG_16 network could detect intertrochanteric
fractures on radiographs with an accuracy of 0.96, compared with
an accuracy of 0.92 for orthopaedic surgeons14. These studies
suggested that the ability of CNNs to detect fractures approaches
or exceeds that of specialists14,15,18. The ability of our CNNs to
detect sacral fractures was greater than that of orthopaedic sur-
geons, and there are several reasons for this clear difference in
discrimination ability.

First, the creation of our training data differed from that
in previous studies. Training data are typically created by clinical
specialists using radiographs, and CNNs trained using such data

are unlikely to be better at discrimination than the specialists.
However, in our study, training data were created based on CT
findings, so using the results of higher-level tests as the basis for
classifying the results of lower-level tests could create a high-
quality CNN for lower-level tests. This novel method could be
used in the future to develop a CNN with high accuracy for other
fractures that are difficult for specialists to detect.

Second, the images that we used were created manually
by cropping them into certain matrix sizes before the images
were put into the CNNs. Since the images were uniform and
had concentrated matrix sizes, the region of interest (ROI) on
the images was recognized more rapidly and accurately by the
CNN models, thereby markedly improving model efficiency in
learning and test procedures14,15,18. We believe that limiting the
ROI to the sacral region improved the ability to discriminate
sacral fractures, which are difficult to detect.

Third, the orthopaedic surgeons also viewed the radio-
graphs that had been cropped to show only the sacrum, rather
than the original whole-pelvis radiographs. Orthopaedic surgeons

Fig. 2

Receiver operating characteristic curves for the8models.Fig. 2-AXception.Fig. 2-B InceptionV3.Fig. 2-C InceptionResNetV2.Fig. 2-DResNet50.Fig. 2-E

ResNet101. Fig. 2-F SeResNeXt50. Fig. 2-G SeResNeXt101. Fig. 2-H NASNet-Mobile.

TABLE II Mean Ability of Each Post-Trained Convolutional Neural Network Model to Detect Sacral Fractures in the Test Data

Model Precision Sensitivity Specificity F1 Score Accuracy AUC

Xception 0.966 0.860 0.970 0.910 0.915 0.987

InceptionV3 0.989 0.880 0.990 0.931 0.935 0.989

Inception ResNetV2 0.976 0.820 0.980 0.891 0.900 0.984

ResNet50 0.893 0.250 0.970 0.391 0.610 0.850

ResNet101 1.000 0.150 1.000 0.261 0.575 0.821

SeResNeXt50 0.892 0.740 0.910 0.809 0.825 0.935

SeResNeXt101 0.963 0.770 0.970 0.856 0.870 0.965

NASNet-Mobile 0.783 0.650 0.820 0.710 0.735 0.837
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cannot detect sacral fractures as well on sacral radiographs alone;
they make the diagnosis based on deformities of the entire pelvis
and anterior fractures19,20. The limited ability of our orthopaedic
surgeons to detect sacral fractures may thus reflect the fact that
these sacral fractures were not visible on cropped radiographs.
Further research is needed to determine the difference in detec-
tion rate between cropped and whole-pelvis radiographs.

Visualization by AI
A heat map can provide influential information underlying a
decision about an image, so the heat maps may represent an

additional factor in favor of sacral fracture detection by AI17. In
our study, Grad-CAM roughly visualized a high-signal region
consistent with the fracture site approximately 70% of the time.
A typical example is shown in Figure 3. This result suggests that
the AI models could visualize fractures in many of the test
images. That could be due partially to callus on the radiographs
that were made 1 month after injury. However, some images
failed to show a causal relationship with the high-signal area or
details of the type of fracture, reflecting the current problems
with Grad-CAM. We anticipate further development of heat
map technology.

TABLE III Ability of Each Experienced Orthopaedic Surgeon to Detect Sacral Fractures*

Orthopaedic Surgeon Years of Experience Precision Sensitivity Specificity F1 Score Accuracy

A 13 0.564 0.750 0.420 0.643 0.585

B 15 0.484 0.460 0.510 0.472 0.485

C 7 0.625 0.500 0.700 0.556 0.600

D 8 0.542 0.520 0.560 0.531 0.540

*McNemar tests showed that the ability of the best 3 convolutional neural networks to detect sacral fractures was significantly higher than that of
the experienced orthopaedic surgeons.

Fig. 3

Visualization of fractures by the different models. The top row shows a Grad-CAM image of fractures in a 77-year-old woman who fell on her buttocks. The

fracture line was not clear on an anteroposterior pelvic radiograph, but a CT scan showed bilateral sacral fractures (Denis type 1). The bottom row shows a

Grad-CAM image of a sacral fracture in a 20-year-old woman who was injured in a road traffic accident. The fracture line was not clear on an anteroposterior

radiograph. However, a CT scan showed a fracture of the right sacrum (Denis type 2).
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Status of Computer-Aided Diagnosis of Sacral Fractures
We believe that our AI method can be used by orthopaedic
surgeons as a diagnostic screening test for sacral fractures
before proceeding to CT. Berg et al. reported that the accuracy
rate for sacral fracture detection was 53% on anteroposterior
pelvic radiographs and that addition of an inlet or an outlet
radiographic view allowed the identification of anterior pelvic
ring injuries with 78% and 74% sensitivity, respectively4. These
results indicate that additional views are necessary to ensure
accurate diagnosis of sacral fractures on radiographs alone.
Many clinicians use CT and MRI to improve their rate of
diagnosis of sacral fractures12. MRI detects occult posterior
pelvic fractures that cannot be visualized on CT, but whether all
of these fractures require surgical treatment is controversial21,22.
Although CT has become the gold standard for detecting sacral
fractures12,23, it is not feasible to obtain CT scans in all cases
because of clinical resources, cost, and the clinical status of certain
patients. Several papers have suggested criteria for appropriate CT
use. Scheyerer et al. found that exclusion of posterior lesions by
CT was essential because most anterior pelvic fractures involve
additional fracture sites20. However, this method can be used only
for anterior pelvic fractures. McCormick et al. recommend using
the results of palpation of the posterior portion of the pelvis in
patients with pelvic fractures (sensitivity, 0.98; specificity, 0.94)
as a basis for determining whether CTshould be used13. However,
their patients had other types of trauma and were fully conscious.
Moreover, palpation of the posterior portion of the pelvis has
limited practical value because many patients with sacral fractures
have other trauma or impaired consciousness24. Our AI method
may help to solve these problems because it is not affected by the
fracture type or the patient’s condition, although CNN can only
detect sacral fractures and cannot determine the fracture type,
which determines the treatment plan. Thus, our CNN method is
valuable because it can be used for screening until CT can be
performed. However, it is currently unclear whether using this AI
method as an aid improves examiner accuracy. Clinical workflow
is also a subject for future research, in which challenges regarding
ethical deployment, regulatory approval, and the clinical superi-
ority of AI over traditional statistical methods and decision-
making will need to be addressed25.

Limitations
This study has 4 main limitations. First, we did not use MRI to
detect fractures, so it is possible that some fractures were
missed. Second, the original sample size in our data set was
small, which might have limited the improvement in the per-
formance of our CNNs in the training and test procedures.
Third, we created an artificial, nonclinical process by cropping

the images and utilizing an image processing system. The
sacrum should be cropped from pelvic radiographs made for
clinical use before surgeons can use these CNNs. Also, the
training images identified by the orthopaedic surgeons will not
have been perfectly accurate; training on more accurate data
should be performed before the AI model is incorporated into
the clinical workflow. Lastly, the diagnostic imaging in this
study was performed by orthopaedic surgeons rather than
radiologists. However, which experts interpret these radio-
graphs may depend on their country’s health-care system.
Furthermore, even if radiologists generally interpret patient
radiographs, orthopaedic surgeons make the final decision
about performing CT based on the radiologists’ interpreta-
tions. Also, Kuo et al. reported that orthopaedic surgeons and
radiologists had very similar ability to diagnose fractures on
radiographs26; thus, the demonstrated accuracy of AI that far
surpasses that of orthopaedic surgeons appears valuable.

Conclusions
We have successfully developed AI models to detect sacral
fractures on radiographs. Our CNN models were trained using
pelvic radiographs, which had been classified according to the
presence or absence of fractures based on the results of CT, and
had a discrimination ability far surpassing that of orthopaedic
surgeons. By enhancing the processing of probabilistic tasks
and the communication of their results, AI has the potential to
become a useful screening tool for diagnosing sacral fractures
before CT can be performed. n
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