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Abstract

Previous studies have demonstrated the beneficial effects of apple polyphenol (AP)

intake on muscle endurance. Since mitochondria are critical for muscle endurance,

we investigated mitochondrial enzyme activity, biogenesis, degradation and protein

quality control. Twenty-four Wistar rats were randomly fed a 5% AP diet (5% AP

group, n = 8), a 0.5% AP diet (0.5% AP group, n = 8), or a control diet (control group,

n= 8). After a 4-week feeding period, the expression level of peroxisome proliferator-

activated receptor γ coactivator-1α, a mitochondrial biosynthetic factor, did not

increase, whereas that of transcription factor EB, another regulator of mitochondrial

synthesis, significantly increased. Moreover, the mitochondrial count did not differ

significantly between the groups. In contrast, mitophagy-related protein levels were

significantly increased. The enzymatic activities of mitochondrial respiratory chain

complexes II, III and IV were significantly higher in the AP intake group than in the

control group.We conclude that AP feeding increases the activity of respiratory chain

complex enzymes in rat skeletal muscles. Moreover, mitochondrial biosynthesis and

degradationmay have increased in AP-treated rats.
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1 INTRODUCTION

Apple (Malus pumila Fuji), a member of the family Rosaceae, is themost

widely grown fruit crop worldwide. Apples, particularly unripe apple

peel and seeds, contain various polyphenols (Francini & Sebastiani,

2013). The antioxidant activity of polyphenols isolated from apples

is the strongest among all fruits (Eberhardt et al., 2000). Apple

polyphenols (AP) comprise procyanidin dimers to pentadecamers

(45%), phenolic acids (25%, mainly chlorogenic acid), monomeric

flavan-3-ols (15%, mainly catechin), phloretin glycosides (10%, mainly

phloridzin) and other components (5%, mainly quercetin glycosides).

This composition is typical of natural apple polyphenols extracted
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from unripe apples (Hammerstone et al., 2000; Kanda et al., 1998;

Ohnishi-Kameyama et al., 1997; Shoji et al., 2000; Vinson et al., 2001),

and was used in this study. Procyanidins are important components

comprising (+)-catechin and (−)-epicatechin units, which are widely

found as secondary metabolites in plants (Hammerstone et al., 2000;

Vinsonet al., 2001). Both in vitro and in vivo studies havedemonstrated

that AP and purified procyanidins have various biological functions,

including antioxidant activity (Eberhardt et al., 2000; Lee et al., 2003;

Pearson et al., 1999), immune function modulation (Kanda et al.,

1998), adipose tissue mass reduction (Nakazato et al., 2006), pre-

vention of muscle injury (Nakazato et al., 2010) and increased energy

consumption (Tamura et al., 2020).
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Nakazato et al. (2007) and Mizunoya et al. (2015) evaluated the

isometric tetanic torque of the rat ankle joint and reported improved

muscle endurance in animals fedwith 5%AP. Furthermore, the relative

amount of MyHC IIb was significantly reduced, whereas MyHC IIx

contentwas increased in the gastrocnemiusmuscles of 5%AP-fed rats.

These findings suggested that fast-to-slow MyHC changes occurred

in AP-fed rats. Additionally, oral AP administration increased skeletal

muscle capillaries inWistar rats (Yoshida et al., 2018).

During the evolution of organisms, mitochondria have been

conserved organelles that convert energy substrates into ATP via

aerobic respiration (Gray et al., 2001; Searcy, 2003). Endurance

training increases the activity of oxidative enzymes in the rat

skeletal muscle mitochondria (Holloszy, 1967). The expression of

mitochondrial-related genes is increased by endurance training

(Murakami et al., 1994). Therefore, increased mitochondrial content

and function are essential for endurance capacity (Cunningham, 1990;

Maughan & Leiper, 1983). Mitochondrial protein quality control by

molecular chaperones and mitophagy, the selective dysfunctional

mitochondrial degradation by autophagy, is also important for

maintaining and improving mitochondrial function (Jadiya & Tomar,

2020).

Although APs are candidate compounds for improving muscle end-

urance (Mizunoya et al., 2015; Nakazato et al., 2007), the effect of

APs on the mitochondria remains unclear. In this study, we focused

on whether dietary APs alter mitochondrial respiratory chain complex

enzyme activity, biogenesis and degradation, and quality control.

2 METHODS

2.1 Ethical approval

This studywas approvedby theAnimal Experimental Committee of the

NipponSport ScienceUniversity (No. 010-A01). The authors have read,

and all experiments complied with, the policies and regulations of the

Fundamental Guidelines for Proper Conduct of Animal Experiments

and Related Activities in Academic Research Institutions published by

the Ministry of Education, Culture, Sports, Science and Technology,

Japan. All experiments conformed to the principles and standards

for reporting animal experiments in Experimental Physiology (Grundy,

2015). All measures were taken tominimize animal suffering.

2.2 Animals, experimental diets

Twenty-four 9-week-old male Wistar rats were obtained from Japan

Clea (Tokyo, Japan) and maintained at 23 ± 1◦C under a 12:12 h light–

dark cycle. All animalswere fed laboratory chow (CE7; Clea) for 1week

and then fed one of the following three diets: AIN-93M-based normal

diet supplemented with 5% AP (5% AP group, n = 8), AIN-93M-based

normal diet supplementedwith 0.5%AP (0.5%AP group, n= 8) or AIN-

93M-based normal diet (control group, n = 8). Animals were weighed,

and then animals of similar weights were randomly allocated to one of

the three groups to ensure each group’s starting weight was similar.

Highlights

∙ What is the central question of this study?

Does the administration of apple polyphenols (AP)

affect mitochondrial respiratory chain complex

enzyme activity, biogenesis, degradation and

protein quality control in rat skeletal muscles?

∙ What is themain finding and its importance?

AP feeding increases respiratory chain complex

enzyme activity in rat skeletal muscle. Moreover,

AP administration increases transcription

factor EB activation, and mitophagy may be

enhanced to promote degradation of dysfunctional

mitochondria, but mitochondrial protein quality

control was not affected.

Rats were housed individually per cage and had free access to drinking

water at all times. The dietary composition of each group is shown in

Table 1. AP was provided by Asahi Breweries, Ltd. (Tokyo, Japan). All

animals were maintained on diets for 4 weeks, and their weight and

food intake were recorded every 2 days throughout the experimental

period. Theanimalswereanaesthetizedusing anoverdoseof isoflurane

inhalation (Pfizer, NewYork, NYUSA), and after confirming respiratory

arrest, killed by blood removal from the abdominal aorta. The medial

and lateral gastrocnemiusmuscles were also collected. After weighing,

the tissues were immediately frozen in liquid nitrogen and stored at

−80◦C for biochemical analyses.

2.3 Western blot analysis

Western blot analysis was performed to investigate the effects of AP

on themitochondria of the gastrocnemius muscle. Frozen tissues were

homogenized using radioimmunoprecipitation assay (RIPA) buffer

(Thermo Fisher Scientific, Waltham, MA, USA) containing protease

inhibitors (Complete Mini, Roche Diagnostics, Basel, Switzerland), and

total protein concentrations were measured using the bicinchoninic

acid (BCA) method (Pierce BCA Protein Assay Kit, Thermo Fisher

Scientific). Equal protein amounts (10−20 μg) were separated using

SDS-PAGE and transferred on polyvinylidene fluoride membranes

(IPVH00010, Merck Millipore, Burlington, MA, USA). Protein transfer

was confirmed by staining with Ponceau S (33427.01, SERVA Electro-

phoresis, Heidelberg, Germany). The transferred membranes were

blocked with a blocking reagent (NYPBR01, Toyobo Company, Ltd,

Osaka, Japan) at room temperature for 1 h with gentle shaking. The

membranes were then incubated with primary antibodies diluted in

Reagent 1 (NKB-101, Toyobo) at room temperature for 1 h with gentle

shaking.

The primary antibodies used in this study were: total OXPHOS

(1:5000; cat. no. ab 110413, Abcam, Cambridge, UK), peroxisome
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TABLE 1 Control and apple polyphenol (AP) diet composition.

Diet (g (%))

Ingredients Control 0.5%AP 5%AP

Casein 14.0 (14.0) 14.0 (13.93) 14.0 (13.33)

Cornstarch 46.5692 (46.5692) 46.5692 (46.33751) 46.5692 (44.35162)

α-Cornstarch 15.5 (15.5) 15.5 (15.42) 15.5 (14.76)

Sucrose 10.0 (10.0) 10.0 (9.95) 10.0 (9.52)

Soybean oil 4.0 (4.0) 4.0 (3.98) 4.0 (3.81)

Cellulose 5.0 (5.0) 5.0 (4.98) 5.0 (4.76)

Mineral mixture 3.5 (3.5) 3.5 (3.48) 3.5 (3.33)

Vitaminmixture 1.0 (1.0) 1.0 (1.00) 1.0 (0.95)

L-cystine 0.18 (0.18) 0.18 (0.179) 0.18 (0.171)

Choline(bitartrate) 0.25 (0.25) 0.25 (0.249) 0.25 (0.238)

t-Butylhydroquinone 0.0008 (0.0008) 0.0008 (0.00080) 0.0008 (0.00076)

AP 0 (0) 0.5 (0.50) 5 (4.8)

AIN mineral and vitamin mixtures were obtained from Oriental Yeast Co. (Tokyo, Japan). The composition of the control diet was based on AIN93M as

reported by the American Institute of Nutrition. The 0.5%AP and 5%AP diets weremodified from the control diet. Abbreviation: AP, apple polyphenols.

proliferator activated receptor γ coactivator-1 (PGC-1) C-terminus

(777–797) (1:1000; cat. no. 516557, Millipore, Darmstadt, Germany),

transcription factor EB (TFEB) (1:1000; cat. no. 32361, Cell Signaling

Technology, Danvers, MA, USA), transcription factor binding to IGHM

enhancer 3 (TFE3) (1:1000; cat. no. 14779, Cell Signaling Technology),

cytochrome c (1:1000; cat. no. 12959, Cell Signaling Technology),

voltage-dependent anion channel (VDAC) (1:1000; cat. no. 12454, Cell

SignalingTechnology), heat shockprotein60 (HSP60) (1:10000; cat. no.

ADI-SPA-806, Enzo Life Sciences, Farmingdale, NY, USA), heat shock

protein 70 (mtHSP70) (1:5000; cat. no. ALX-804-077-R100, Enzo Life

Sciences), caseinolyticmitochondrialmatrix peptidase proteolytic sub-

unit (ClpP) (1:5000; cat. no. HPA010649, Sigma-Aldrich, MO, USA),

ubiquitin (P37) (1:1000; cat. no. 58395, Cell Signaling Technology),

microtubule-associated protein 1 light chain 3B (LC3B) (1:1000; cat.

no. 2775, Cell Signaling Technology), histone H3 (1:10,000, cat. no.

4499, Cell Signaling Technology), cytochrome c oxidase subunit IV

(COX IV) (1:10,000, cat. no. 4844, Cell Signaling Technology) and heat

shock cognate (HSC70) (1:10,000, cat. no. ADI-SPA-815, Enzo Life

Sciences).

After washing with Tris-buffered saline containing 0.01% Tween

20 (T9142, Takara Bio, Shiga, Japan) (TBST), the membranes were

incubated at room temperature for 1 h with horseradish peroxidase-

labeled anti-rabbit or anti-mouse immunoglobulin (Cell Signaling

Technology) diluted in reagent 2 (NKB-101, Toyobo) as the secondary

antibody. The blots were washed with TBST, and the proteins were

detected with chemiluminescence reagents (Super Signal West Pico

Chemiluminescent Substrate, Thermo Fisher Scientific), followed by

visualization with a CCD imager (ChemiDoc XRS Plus, 170-8071, Bio-

Rad Laboratories, Hercules, CA, USA) and quantification using Image

Lab software (Bio-Rad). Ponceau S staining was used to normalize

loading, which was then normalized to the control group (protein

expression/Ponceau S [relative to Control group]).

2.4 Nuclear fractionation

Nuclear and mitochondrial fractions were obtained by differential

centrifugation with minor modifications as previously described

(Dimauro et al., 2012; Wakabayashi et al., 2020). All buffers had the

same composition, as described byWakabayashi et al. (2020).

Frozen tissues were ground using a homogenizer. Immediately

after grinding, the gastrocnemius muscles were placed in a homo-

genization buffer and homogenized for 10 strokes using a Potter

glass homogenizer. The tissue homogenates were centrifuged at

500 g for 10 min at 4◦C, and the supernatants (Solution S) were

used to subsequently isolate the mitochondrial fraction (described in

‘Mitochondrial fractionation’).

Briefly, theobtainedpelletswerewashed three timeswithawashing

buffer. The pellets were then suspended in a buffer and centrifuged at

1000 g for 15 min at 4◦C. New pellets were resuspended in nuclear

extraction buffer and incubated on ice for 30 min, with vortexing

every 5 min. After incubation, the suspensions were passed through

an 18-gauge needle 30 times. The lysates were centrifuged at 9000 g

for 30 min at 4◦C and the final supernatants were collected. Protein

concentrations were determined by the BCA method (Pierce BCA

Protein AssayKit; ThermoFisher Scientific). The lysateswere analysed

bywestern blotting.

2.5 Mitochondrial fractionation

Mitochondrial fractions were extracted from Solution S by

centrifugation as previously described, with minor modifications

(Fisher-Wellman et al., 2018; Wakabayashi et al., 2020). Briefly,

Solution S was centrifuged at 10,000 g for 10 min at 4◦C to obtain the

mitochondrial pellets, which were washed in buffer (50 mM MOPS,
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100 mM KCl, 1 mM EGTA, and 5 mM MgSO4) and resuspended in

buffer (10 mM Tris, 30 mM KCl, 10 mM KH2PO4, 5 mMMgCl2, 1 mM

EGTA, and 2.5 g/l BSA, pH 7.2). For western blotting, mitochondrial

fractions were re-pelleted and suspended in RIPA buffer. The protein

concentration was determined using the BCAmethod.

2.6 Measurements of mitochondrial content

The number of mitochondria was measured from several perspectives

usingwesternblot analysis andquantitative real-timePCR.Theprotein

expression levels of cytochrome c, VDAC, and OXPHOS complexes,

which comprise the mitochondrial respiratory chain complex (CI-

NDUFB8, CII-SDHB, CIV-MTCO1, CIII-UQCR2 and CV-ATP5A), were

examined.

2.6.1 PCR analysis of mitochondrial DNA

The mitochondrial DNA (mtDNA) and genomic nuclear DNA (nDNA)

copy numbers were performed by quantitative real-time PCR, and

the nDNA to mtDNA ratio was calculated. Total RNA was extracted

from the gastrocnemius muscle using the DNeasy Blood & Tissue Kit

(Qiagen, Shanghai, China) following the manufacturer’s instructions.

Frozen and homogenized tissues were placed in a tissue lysis (ATL)

buffer for DNA extraction (ATL and proteinase K) and incubated at

56◦C until the tissues were completely lysed. To obtain RNA-free

genomic DNA, 4 μl 100 mg/ml RNase A was added and incubated for

2 min at room temperature. Genomic DNA was precipitated using AL

buffer and 100% ethanol, and the samples were loaded onto DNeasy

mini spin columns. The columns were washed with Buffer AW and

centrifuged for 3 min at 20,000 g to dry the DNeasy membranes.

After centrifugation, purified genomic DNA was eluted with nuclease-

free water. The concentration of the purified DNA was determined by

spectrophotometric absorption (NanoDrop, Kanto Chemical Co., Inc.,

Tokyo, Japan) at 230, 260and280nm, and thequalitywas calculated as

the A260/A230 and A260/A280 ratios and used as a PCR template. After

purifying the genomic DNA, real-time quantitative PCR amplification

was performedusing aThunderbird SYBRqPCRMix kit (Toyobo). Next,

10 ng of purified DNA was used to amplify the mtDNA and nDNA

markers with a thermal cycler (CFX96 Real-Time System, Bio-Rad)

simultaneously on the same plate using the following programme: 30 s

at 95◦C, 5 s at 95◦C and 60 s at 60◦C for 40 cycles. mtDNA was

amplified using primers specific for the mitochondrial 16S rRNA gene

andmitochondrial tRNA, and themitochondrialDNAcopynumberwas

normalized to the nDNA copy number by amplifying glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) and β-actin genes (Abdullaev

et al., 2020; Sethumadhavan et al., 2012; Xie et al., 2014). The primers

used are listed in Table 2.

2.7 Mitochondrial enzyme activity

Mitochondrial enzyme activity was measured as previously described

with minor modifications (Spinazzi et al., 2012; Wakabayashi et al.,

2020). All buffers had the same composition, as described by

Wakabayashi et al. (2020). After removing any visible fat or connective

tissue, the frozen muscle was ground into small fragments. The muscle

was homogenized using an ultrasonic wave in the ice-cold buffer.

Tissue homogenates were centrifuged at 1500 g for 5 min at 4◦C and

the supernatants were collected. The concentration of each purified

protein was determined by the BCAmethod and adjusted to 2.0 μg/μl.

2.7.1 Citrate synthase

A protein suspension (10 μg) was mixed with the reaction buffer in

a 96-well plate. Changes in absorbance per minute at 412 nm were

calculated.

2.7.2 Complex I

Protein suspension (10 μg) was mixed with reaction buffer in a 96-well

plate. Changes in absorbance per minute at 340 nm were calculated.

Rotenone-sensitive enzyme activity (rotenone absence and presence)

was regarded as complex I activity.

2.7.3 Complex II

Protein suspension (10 μg) was mixed with reaction buffer in a 96-well

plate. Changes in absorbance per minute at 600 nmwere calculated.

2.7.4 Complex I+III

Protein suspension (10 μg) was mixed with reaction buffer in a 96-well

plate. Changes in absorbance per minute at 550 nmwere calculated.

2.7.5 Complex II+III

Protein suspension (10 μg) was mixed with reaction buffer in a 96-well

plate. Changes in absorbance per minute at 550 nmwere calculated.

2.7.6 Complex IV

Protein suspension (10 μg) was mixed with reaction buffer in a 96-well

plate. Changes in absorbance per minute at 550 nmwere calculated.

2.8 Statistical analysis

All values are presented as means ± standard deviation (SD). The

Shapiro–Wilk test was performed, and all data were found to be

normal. One-way analysis of variance (ANOVA) and Fisher’s least

significant difference (LSD) test were performed to compare means

among the three groups. This multiple-comparison test is effective

for comparing three groups (Hayter, 1986). Statistical significance was

defined as P < 0.05, and a trend was defined as P < 0.10. Statistical
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TABLE 2 List of primers used in RT-PCR.

Forward primer (5′−3′) bps Reverse primer (5′−3′) bps

mt–tRNA AATGGTTCGTTTGTTCAACGATT 23 AGAAACCGACCTGGATTGTC 21

GAPDH TGGCCTCCAAGGAGTAAGAAAC 22 GGCTCTCTCCTTGCTCTCAGTTAC 24

mt−16S rRNA CAATTCTCCTAGCACAAGTG 20 CCCAACCGAAATTTTTTAGTTC 22

β-Actin CTATGTTGCCCTAGACTTCGAGC 23 TTGCCGATAGTGATGACCTGAC 22
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F IGURE 1 Cumulative food intake, body weight and tissue weight. Effects of dietary AP on (a) bodyweight, (b) cumulative food intake, and
(c–e) muscle weight. Data are presented asmeans± SD. Statistical significance was evaluated by one-way ANOVAwith Fisher’s protected least
significant difference test. Control, AIN-93M-based normal diet; AP, AIN-93M-based normal diet supplementedwith apple polyphenols; n= 8 for
each group.

analyses were performed on a Windows computer with a statistical

software package (SPSS version 26; IBMCorp., Armonk, NY, USA).

3 RESULTS

3.1 Food consumption, body weight and tissue
weight

To investigate the effects of AP feeding, the amount of food consumed

and body and tissueweights weremeasured. Average bodyweight was

not significantly different among the groups (Figure 1a). Moreover, the

cumulative food intake was not significantly different (Figure 1b). The

medial and lateral gastrocnemiusmuscleweightswerenot significantly

different among the control, 0.5% AP and 5% AP groups (Figure 1c–e).

These tendencies are similar to those previously reported (Yoshida

et al., 2018).

3.2 Cytochrome c protein expression level and
citrate synthase activity

To evaluate the effect of AP on skeletal muscle mitochondria, we

first analysed cytochrome c protein expression levels and citrate

synthase activity. Cytochrome c protein levels in the 5%APgroupwere

significantly higher and tended to be higher than those in the control

and 0.5% AP groups, respectively (Figure 2b). Citrate synthase activity

in the 5% AP group was significantly higher than those in the control

and 0.5%AP groups (Figure 2c).

3.3 Mitochondrial biogenesis

As AP supplementation increases citrate synthase activity, it may

also increase mitochondrial biogenesis. Therefore, we investigated

the expression of the peroxisome proliferator-activated receptor
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expression/Ponceau S (relative to Control group). (c) Activity of citrate synthase. Data are presented asmeans± SD. Statistical significance was
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trendwas expressed by †P< 0.10. Control, AIN-93M-based normal diet; AP, AIN-93M-based normal diet supplemented with apple polyphenols;
n= 8 for each group.

γ coactivator-1α (PGC-1α) protein, a key factor in mitochondrial

biogenesis (Lin et al., 2002; Russell et al., 2004).However, no significant

differences were observed between the control, 0.5% AP and 5% AP

groups (Figure 3d).

Because transcription factor EB (TFEB) is involved in mitochondrial

biogenesis (Mansueto et al., 2017), we focused on TFEB and its related

protein, transcription factor binding to IGHM enhancer 3 (TFE3). The

level of TFEB protein was significantly higher in the 5% AP group than

in the control group (Figure 3e). However, the TFE3 levels were not

significantly different between the groups (Figure 3f). The active forms

of these transcriptional regulators translocate to the nucleus and bind

to the transcriptional regulatory region ofDNA to enhance target gene

expression levels. Therefore, we prepared the nuclear, mitochondrial

and cytosolic fractions by differential centrifugation. The purity

of the fractions was determined by measuring the expression of

compartment-specific proteins (nuclear: histone H3; mitochondrial:

COX IV; and cytosolic: HSC70; Figure 3a). PGC-1α, TFEB and TFE3

protein expression levels were measured using the nuclear fraction,

and the results showed that PGC-1α and TFE3 protein levels were

not significantly different between the groups (Figure 3g,i), whereas

TFEB protein levels were substantially increased in the 5% AP group

(Figure 3h).

3.4 Mitochondrial content

As the number of active forms of TFEB increased, we hypothesized

that the mitochondrial count would have increased. Therefore, in

this study, we investigated the protein expression level of VDAC,

an ion channel that opens in response to changes in the membrane

potential of the outer mitochondrial membrane, as a measure of

mitochondrial count, which was not significantly different (Figure 4b).

To further investigate the mitochondrial levels, we measured the

expression of OXPHOS subunit proteins: CI-NDUFB8 (complex I;

NADH dehydrogenase [ubiquinone] 1 β subcomplex subunit 8), CII-

SDHB (complex II; succinate dehydrogenase complex iron–sulfur

subunit B), CIV-MTCO1 (complex IV; mitochondrially encoded cyto-

chrome c oxidase I [COX1]), CIII-UQCR2 (complex III; cytochrome

b–c1 complex subunit 2) and CV-ATP5A (complex V; ATP synthase α-
subunit), which are individual subunits of the electron transport chain

complex.However, the expression levels of theseproteins did not differ

significantly among the three groups (Figure 4c).

Subsequently, we investigated the mtDNA copy number using real-

time PCR. The mtDNA-to-nDNA ratio was not significantly different

between the 16S rRNA and β-actin primer sets and between the tRNA

andGAPDHprimer sets (Figure 4d,e). Furthermore, real-timePCRwas

performed with combinations of 16S rRNA and GAPDH primer sets

and tRNAand β-actin primer sets and the amount ofmtDNA relative to

nDNAwas calculated; however, no significant differencewas observed

(data not shown).

3.5 Mitochondrial protein quality control

The mitochondria contain organelle-specific molecular chaperones

and proteases. To adapt to protein structural abnormalities caused by

stress, such as changes in the external environment and metabolism,

mitochondria have a protein quality control mechanism known as the

mitochondrial unfolded protein response (UPRmt) that regulates gene

expression (Haynes & Ron, 2010).

This study investigated the expression of heat shock protein

60 (HSP60), mitochondrial heat shock protein 70 (mtHSP70) and

caseinolyticmitochondrialmatrix peptidase proteolytic subunit (ClpP),

which are subunits of ClpXP (caseinolytic mitochondrial matrix
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F IGURE 3 Effect of dietary AP on themitochondrial biogenesis and related proteins in gastrocnemius. (a) The purity of the fractions was
confirmed using nuclear (Nuc; histone H3), mitochondrial (Mito; COX IV), and cytosolic (Cyto; HSC70) marker proteins. (b,c) Representative
western blot. (d–f) Protein levels of PGC-1α, TFEB and TFE3, respectively. (g–i) Protein levels of nuclear fraction of PGC-1α, TFEB, and TFE3,
respectively. Protein levels were normalized to the ponceau S and then normalized to the control group (protein expression/Ponceau S [relative to
Control group]). Data are presented asmeans± SD. Statistical significance was evaluated by one-way ANOVAwith Fisher’s protected least
significant difference test. Statistical significance was expressed by *P< 0.05 and trendwas expressed by †P< 0.10. Control, AIN-93M-based
normal diet; AP, AIN-93M-based normal diet supplemented with apple polyphenols; n= 8 for each group.

peptidase chaperone subunit X (ClpX) and ClpP complex) that reside in

themitochondrialmatrix and are encoded by nuclear genes (Neupert&

Herrmann, 2007). However, no significant differences were observed

in the expression of any of these proteins among the three groups

(Figure 5a–d).

3.6 Mitophagy

Mitophagy, a mitochondria-specific autophagy pathway, may play a

role in mitochondrial quality control by degrading and recycling excess

mitochondria, removing damaged or dysfunctional mitochondria and

protecting cells from injury (Youle & Narendra, 2011). It is induced by

decreased membrane potential-mediated mitochondrial dysfunction

(Nowikovsky et al., 2007; Priault et al., 2005).

This study investigated LC3B and ubiquitin-conjugated proteins as

autophagy markers using western blot analysis. LC3B-II and LC3B-

II/I ratios in the entire gastrocnemius muscle in the 5% AP group

were significantly higher than those in the control group (Figure 6c,d).

The mitochondrial fraction of LC3B-II protein in both the 0.5% and

5% AP groups was significantly higher than that in the control group

(Figure 6f). Furthermore, the number of ubiquitin-conjugated proteins

in the 5% AP group tended to be higher than that in the control group,

although the difference was not statistically significant (Figure 6g).
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F IGURE 4 Effect of dietary AP on themitochondrial contents in gastrocnemius. (a) Representative western blot. (b) Protein level of VDAC. (c)
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3.7 Enzymatic activity of the mitochondrial
respiratory chain complex

To investigate the effects of AP on the skeletal muscle mitochondria,

the enzymatic activity of each respiratory chain component (complexes

I, II, I+ III, II+ III and IV) wasmeasured.

The enzymatic activity of the mitochondrial respiratory chain

complex II + III in both 0.5% and 5% AP groups was significantly

higher than that in the control group (Figure 7d).Moreover, the activity

of mitochondrial respiratory chain complex IV in the 0.5% AP group

was significantly higher than that in the control group (Figure 7e).

Furthermore, the activity of complex II in the 0.5% AP group tended
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to be higher than that in the control group, although the differencewas

not statistically significant (Figure 7b).

4 DISCUSSION

This study revealed a significant increase in respiratory chain complex

enzyme activation in AP-treated rat skeletal muscles. AP treatment

increases TFEB protein expression and nuclear translocation, further

enhancingmitochondrial turnover.

Mitochondrial quality and quantity are important factors in

determining muscle endurance. In the present study, citrate synthase

activity was significantly higher in AP-treated rats. Since citrate

synthase activity correlates with mitochondrial count (Larsen et al.,

2012), we considered that the mitochondrial content may have

increased. Therefore, we investigated the expression level of PGC-1α,
but no significant difference was observed between the groups.

Recently, the existence of a PGC-1α-independent mitochondrial

regulatory pathway has been demonstrated (Canto et al., 2015;

Gomes et al., 2013; Prolla & Denu, 2014). Leick et al. (2008) showed

that PGC-1α is not mandatory for exercise-induced adaptive gene

responses in PGC-1α knock-out mouse skeletal muscle. In contrast,

TFEB, a well-known transcription factor that induces lysosomal

biogenesis (Sardiello et al., 2009), is also been reported to be involved

in mitochondrial biogenesis (Kim et al., 2018). Mansueto et al. (2017)

found that TFEB-knockout mice were exercise-intolerant, whereas

muscle-specific TFEB activation enhanced physical performance.

Additionally, mitochondrial mass and density increased in PGC-1α
knock-out mice after exercise. Our results indicated that the PGC-1α
protein expression level did not increase,whereas theTFEBexpression

level in the nuclear fraction increased. Thus, TFEB may be involved

in mitochondrial biogenesis. However, several variants of PGC-1α
have been identified (Martínez-Redondo et al., 2015), and one of

these variants was identified in this study. Some effects of TFEB

have been reported to be mediated by PGC-1α (Erlich et al., 2018).

The TFEB upregulation observed in this study may be the result of

PGC-1α-independent pathways, or it may be the result of a PGC-1α
variant that was not detected in this study; thus, further investigation

is required.

The mitochondria are continuously exposed to oxidative stress.

Accordingly, they possess mechanisms for repairing and degrading

mitochondrial DNA and proteins. Mitophagy is the selective removal

of dysfunctional mitochondria via autophagy (Choubey et al., 2022).

This study used mitochondrial fractions to detect LC3-II, which was

significantly increased in the AP-treated group. Remarkably, TFEB

regulates mitophagy (Pickles et al., 2018; Zhu et al., 2020). Ivankovic

et al. (2016) showed that the chemical induction of mitophagy

using the uncoupler carbonyl cyanide m-chlorophenylhydrazone

increased the amount of TFEB protein and p62 expression

decreased in TFEB knockdown cells. Furthermore, TFEB increased
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mitochondrial biogenesis. Therefore, TFEB is considered an important

factor in promoting mitophagy and mitochondrial biogenesis. The

mitochondrial count did not change in this study, probably due to the

balance between increased degradation by mitophagy and increased

biosynthesis.

The most important finding of this study is the increased enzymatic

activity of the mitochondrial respiratory chain complex. Enzymatic

activity of the respiratory chain complex in the inner mitochondrial

membrane is important for determining the efficiency of ATP

production via redox reactions. The activity of respiratory chain

complexes II, III and IV increased after AP intake, suggesting that the

electron transport chain pathway, starting with succinic acid oxidation,

wasmainly activated.

Epigallocatechin-3-gallate (EGCg), an abundant catechin in green

tea, increases mitophagy (Takahashi et al., 2017). Takahashi et al.

(2017) demonstrated that the LC3-II/I ratio in EGCg-treated cage-

control animal muscles was significantly greater (193.3%) than that

in vehicle-treated cage-control animal muscles. Nogueira et al. (2011)

evaluated the endurance of epicatechin- and water-treated mice.

They showed that the treadmill endurance capacity of epicatechin-

treated mice was significantly improved compared to that of water-

treatedmice. Additionally, epicatechin administration activates citrate

synthase activity and mitochondrial biosynthesis (Moreno-Ulloa et al.,

2013). The AP used in the present study contained epicatechin.

Moreover, AP ingestion degrades procyanidins in rats to produce

epicatechins (Manach et al., 2004; Shoji et al., 2006). Therefore,

procyanidins and flavan-3-ols may be candidates for increasing TFEB

expression and enhancing mitophagy in skeletal muscle. Respiratory

chain complex enzyme activity increased mainly in the 0.5% AP group,

whereas TFEB and mitophagy-related factors significantly increased

mainly in the 5%APgroup. Therefore, it is possible that these increases

were due to the different components of the AP. Further studies are

required to determine which component of AP is beneficial. It is also

necessary to measure endurance capacity using a treadmill during AP

and/or component feeding.

In summary, we conclude that AP feeding increases respiratory

chain complex enzyme activity in rat skeletal muscles, which may

increase ATP synthesis efficiency and improve muscle endurance.

Moreover, AP administration increased TFEB activation, and

mitophagy may be enhanced to promote dysfunctional mitochondrial

degradation.
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