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Synchronization plays a significant role in information transfer and decision-making by neurons and 
brain neural networks. The development of control strategies for synchronizing a network of chaotic 
neurons with time delays, different direction-dependent coupling (unidirectional and bidirectional), 
and noise, particularly under external disturbances, is an essential and very challenging task. 
Researchers have extensively studied the synchronization mechanism of two coupled time-delayed 
neurons with bidirectional coupling and without incorporating the effect of noise, but not for time-
delayed neural networks. To overcome these limitations, this study investigates the synchronization 
problem in a network of coupled FitzHugh–Nagumo (FHN) neurons by incorporating time delays, 
different direction-dependent coupling (unidirectional and bidirectional), noise, and ionic and 
external disturbances in the mathematical models. More specifically, this study investigates the 
synchronization of time-delayed unidirectional and bidirectional ring-structured FHN neuronal 
systems with and without external noise. Different gap junctions and delay parameters are used to 
incorporate time-delay dynamics in both neuronal networks. We also investigate the influence of 
the time delays between connected neurons on synchronization conditions. Further, to ensure the 
synchronization of the time-delayed FHN neuronal networks, different adaptive control laws are 
proposed for both unidirectional and bidirectional neuronal networks. In addition, necessary and 
sufficient conditions to achieve synchronization are provided by employing the Lyapunov stability 
theory. The results of numerical simulations conducted for different-sized multiple networks of time-
delayed FHN neurons verify the effectiveness of the proposed adaptive control schemes.

Synchronization plays a tremendous role in information transfer and decision-making in different fields of sci-
ence and technology1. In the past decade, many researchers have investigated different synchronization schemes, 
methodologies, and regimes for chaotic systems such as lag synchronization2, generalized synchronization3, 
phase synchronization4, projective synchronization5, anticipating synchronization6, cluster synchronization7, 
and consecutive synchronization8. Lag synchronization, introduced for drive and response systems and exten-
sively studied, is defined as an overlapping of the shifted-in-time states of two systems with a positive constant.

In neuroscience, the interactions of neurons and their networks have been the primary targets for investigat-
ing the differences in the functionality and dynamics of healthy and diseased brains9–11. For example, the brain 
responses of stroke patients have been analyzed and compared with those of healthy subjects to develop an effec-
tive rehabilitation system12,13. Neurons in the brain are connected to other neurons in the same or other regions 
to form a network of neurons for communication and efficient information processing. In the past decades, the 
internal dynamics behind the coordination and communication mechanism of neurons and their networks have 
been explored by developing different strategies and systems14–18. The processing of cognitive information in the 
brain is based upon the synchronized interactions between large numbers of neurons distributed within and 
across different specialized brain regions19. Researchers have found that synchronization between individual 
neurons or networks of neurons is an important factor for the stable and efficient working of the brain20,21. 
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Experimental and theoretical results from previous studies suggested that synchronization of neuronal activity is 
not only a major property of cortical and subcortical networks within and across different brain regions but also 
helps to perform many functions in cognitive processes19. Therefore, synchronization can be considered as the 
basis for signal transmission and processing in both healthy and abnormal brains20. For instance, previous stud-
ies found synchronization in the brain regions including hippocampal and olfactory22, and it has been reported 
that brain disorders and disorder in body functionalities such as heart rhythm and gait could be caused by the 
absence of synchronization between neurons23. Furthermore, past research showed that certain brain diseases, 
such as Alzheimer’s disease, epilepsy, Parkinson’s, autism, and schizophrenia could be caused due to abnormal/
absence neural synchronization20,22,24–26.

The synchronization of brain networks is essential for normal functioning, and understanding its dynamics is 
important to many aspects of our lives27. Research on synchronization is vital in revealing the role of communica-
tion cells in the neural network structure28–30. These communication cells are coupled by specialized intercellular 
pathways, which have been identified as gap junctions, and many researchers have been extensively studying the 
influence of the gap junctions on the synchronization behavior between two or three neuronal systems28,31 These 
gap junctions, known as protein channels, play an important role in the transmission of information between 
neurons. Many well-established mathematical models, such as the integrated-fire model (1907)32, the Hodgkin-
Huxley model (HH)(1952)33, the FHN model (1962), the Morris and Lecar model (1981)34, and the Hind-marsh 
and Rose model (1984)35, have been used to study the synchronization of neurons. Among these mathematical 
models, the FHN neuron model, developed by Fitzhugh36 and Nagumo et al.37, has been used as a primary tool 
for investigating neuronal synchronization problems20,28,38,39. Different schemes, such as the backstepping design 
method40, adaptive synchronization method41, linear and nonlinear feedback synchronization method28, sliding 
mode control method20, time-delay feedback approach42, and impulsive synchronization method43, have been 
proposed to achieve synchronization in chaotic systems.

On the other hand, time delays are a fundamental part of almost all biological phenomena. The finite propa-
gation speed of the action potential along the axons of neurons and time lapses in information transmission 
(synaptic process) and reception (dendritic process) between neurons produce time delays in real neurons and 
their networks44. Previous studies have shown that the speed of the action potential propagation could be sig-
nificantly reduced (as slow as 1 m/s) by unmyelinated axons (myelin is an insulating layer that allows electrical 
impulses to transmit smoothly and quickly along the neuron) that cause large time delays (as high as 80 m/s) in 
information processing in neuronal networks45,46. Thus, time delays play an important role in the dynamics of 
neurons and their networks and should be included in mathematical modeling and analysis28,47,48. Recently, many 
researchers have investigated the effects of time delays in neuronal networks and found many delay-induced 
phenomena49–52. For instance, it has been reported that delay-enhanced synchronization may be essential for 
information transmission in neuronal networks53,54. It has also been reported that the firing dynamics of neurons 
are affected by many factors, such as noise, connection configuration, and coupling delays. For example, a recent 
study revealed that coupling delays present in the electrical or chemical synaptic connections can influence the 
synchronization of neuronal firing55,56.

Researchers have also studied the synchronization in time-delayed neuronal systems of two coupled neu-
rons. Bin et al. used two coupled FHN neurons to examine the effects of time-delays on the synchronization 
dynamics between neurons57. Jia et al. investigated the influences and effects of time-delays on the dynamics of 
a coupled FHN neuronal system58. Wang et al. studied the synchronization phenomenon in the time-delayed 
chaotic system with unknown and uncertain parameters and developed an intermittent adaptive control scheme 
to guarantee synchronization between neurons41. Ibrahim and Jung developed an adaptive control methodology 
to guarantee synchronization between a bidirectional ring-structured FHN neuronal network under the effect 
of external electrical stimulation with single- and dual-state gap junctions1. Zhang investigated the out-lag syn-
chronization by proposing a pinning control scheme in fractional-order complex networks with coupling and 
internal delays59. Petkoski and Jirsa studied how the phase lag synchronization between the neurons of different 
brain regions is governed by the spatio-temporal organization of the brain by using self-sustained time-delayed 
chaotic oscillators60. Liu and Puming recorded electrocorticogram (ECoG) data from eleven refractory epilepsy 
patients and utilized the phase synchronization phenomenon to map brain networks61. Siddique et al. used a 
chaotic master–slave system with unknown parameters, bounded delay rates, finite time-delay, and perturba-
tions to investigate the synchronization phenomenon by developing local adaptive and robust adaptive control 
methodologies62. Siddique and Rehan proposed observer-based control strategies to realize synchronization in 
drive and response chaotic systems63. Jia et al. proposed a time-delayed coupled FHN system and studied its 
stability and Hopf bifurcation58. Riaz et al. used a nonlinear drive-response system with time-delay and under 
the effect of slope restricted input nonlinearity to investigate the synchronization phenomenon64. Zaheer et al. 
addressed the synchronization in non-linear coupled time-delayed systems by developing a novel state feedback 
delay-range-dependent control scheme65. Rehan and Hong studied the synchronization in coupled uncertain 
time-delayed FHN system with parametric variations under the effect of external electrical stimulation66.

Furthermore, the addition of noise in a dynamical system and its effects on the dynamical properties of the 
system are considered as one of the important research issues in the past decade, which has uncovered phenom-
ena such as stochastic resonance67, coherent resonance68, and noise-sustained synchronization69 in nonlinear 
dynamical systems. Previous research has shown that neurons adjust their dynamics and firing behavior to 
transmit information optimally in the presence of noise70. Therefore, the addition of noise in time-delayed FHN 
neurons will make it more realistic but complex and difficult to investigate the synchronization in a network of 
neurons. However, as discussed above, a coupled system of two or three neurons cannot depict the dynamics 
of the network of neurons. Furthermore, the synchronization of noisy FHN neurons has not been investigated 
extensively in past research. Therefore, it is important to investigate and analyze the synchronization properties 
of a time-delayed network of FHN neurons in the absence and presence of noise. Ultimately, the development 
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of control strategies for synchronization of a network of chaotic neurons with time delays, different direction-
depend coupling (unidirectional and bidirectional), and noise, particularly under external disturbances, is very 
important and challenging.

This paper examines the synchronization phenomena of unidirectional and bidirectional ring-structured FHN 
networks with and without noise under ionic and EES with different gap junctions and time-delay dynamics 
between the neurons. Each neuron of the unidirectional network is connected to the next neuron via synapses, 
and the first neuron of the network is a master neuron for connecting networks. However, each neuron in a 
bidirectional network is connected to the next neuron as well as the previous neuron behaves as a master and 
slave neuron simultaneously. The configuration of both networks is shown in Fig. 1a, b. The separation between 
each neuron in both networks is incorporated through different time-delay parameters.

This paper also investigates the influence of the time delay between connected neurons on synchronization 
conditions. Unique and different adaptive control laws are proposed for both unidirectional and bidirectional 
neuronal networks, which guarantee the synchronization of time-delayed FHN networks in the absence and 
presence of noise. Necessary and sufficient conditions were driven using the Lyapunov theory of stability, which 
also assures the synchronization of delayed FHN networks. Furthermore, the proposed control schemes were 
verified using multiple networks consisting of five, ten, fifty, one hundred, two hundred and fifty, five hundred, 
and one thousand time-delayed FHN neurons with and without noise through numerical simulations.

The main contributions of this paper include (1) investigating the synchronization of a unidirectional net-
work of n-FHN neurons in the absence and presence of noise with different gap-junctions and time delays, (2) 
investigating the synchronization of a bidirectional network of n-FHN neurons in the absence and presence of 
noise with different gap-junctions and time delays, (3) the development of unique and different adaptive control 
laws for both unidirectional and bidirectional networks, and (4) achieving the synchronization of membrane and 
recovery states for both unidirectional and bidirectional FHN neurons using the proposed adaptive schemes.

Time‑delayed FHN neuronal networks and control design.  This section presents the mathematical 
formulation of the synchronization problem for unidirectional and bidirectional neuronal networks of n time-
delayed FHN neurons with and without noise connected in a ring structure, under ionic and EES, and with 
different time delays and gap junctions. Based on the literature, we hypothesized that both unidirectional and 
bidirectional time-delayed FHN neuronal networks will show very complex and unpredictable behaviors and 
dynamics with delays in gap junctions. Furthermore, the inclusion of the noise and dynamic effects of ionic gate 
disturbances in the network will make it more realistic but more challenging to analyze.

Definition  A system of neurons is said to be synchronized if for all initial conditions xi(0) and yi(0) , 
lim
x→∞

∥

∥exi
∥

∥ = 0 and lim
y→∞

∥

∥eyi
∥

∥ = 0.

Unidirectional time‑delayed FHN neuronal networks. 

(a)	 Network without noise

Let us consider a unidirectional ring-structured FHN network with different gap-junctions, time delays, and 
without any external noise between the synapses of connecting neurons. Mathematically,

Figure 1.   Schematic diagram of ring-structured delayed FHN neuronal networks. (a) Unidirectional coupling. 
(b) Bidirectional coupling.
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where xi and yi are stated action potential and recovery variables, respectively; r , b , and c are positive constants; 
d = 0.01 sin(0.2t) is the ionic gate disturbance;I = A

ω
cos(ωt) is the stimulus current; gi represents the coupling 

strength of the gap junction between master and slave neurons; τi is non-negative delay parameter; ui represents 
the control; and i = 1, 2 . . . , n is the number of FHN neurons.

(b)	 Network with noise

Let us consider a unidirectional ring-structured FHN network with different gap-junctions, time delays, and 
external noise between the synapses of connecting neurons. Mathematically,

where ϕ1(t) is a Gaussian noise70 source having zero mean and correlation function:

(c)	 Control laws design

The error states of the systems described by Eqs. (1) and (2) can be defined as

Taking the time derivative of the error system, Eq. (4) can be expressed as shown in Eq. (5).

Next, we propose a unique control scheme by using Lyapunov stability and adaptive control theories.

Theorem 1  Consider the unidirectional time-delayed FHN systems as described in Eqs. (1) and (2) with the dynami-
cal error system described by Eq. (5). If the controllers ui in the system defined by Eq. (5) are defined as

then the synchronization of unidirectional networks of the time-delayed FHN systems described in Eqs. (1) and (2) 
can be achieved by converging the error of the synchronized system to zero.

Proof  Please see the supplementary information for the proof.

Bidirectional time‑delayed FHN neuronal networks. 

(a)	 Network without noise

Let us consider a bidirectional ring-structured time-delayed FHN network with different gap junctions and 
without any external noise. Mathematically,

where g2j−1 and g2j represent the coupling strength of the gap junction between the master and slave neurons, 
and τj−1 and τj are the delay parameters between the neurons, for j = 1, 2, 3, …, n.

(b)	 Network with noise

Let us consider a bidirectional ring-structured time-delayed FHN network with different gap junctions and 
external noise. Mathematically,

(1)
ẋi = xi(xi − 1)(1− rxi)− yi − gi(xi(t − τi)− xi+1)+ I + d + ui

ẏi = bxi − cyi

(2)
ẋi = xi(xi − 1)(1− rxi)− yi − gi(xi(t − τi)− xi+1)+ I + d + ϕ1 + ui

ẏi = bxi − cyi

(3)�ϕ1(t)ϕ1(t
′)� = 2Dδ(t − t ′).

(4)exi = xi(t − τi)− xi+1, eyi = yi(t − τi)− yi+1

(5)

ėxi = −rexi
(

x2i (t − τi)+ xi(t − τi)xi+1 + x2i+1

)

+
(

rexi + exi
)

(xi(t − τi)+ xi+1)− exi

− eyi − gi(xi(t − 2τi)− xi+1(t − τi))+ gi+1(xi+1(t − τi+1)− xi+2)+ ui − ui+1

ėyi = b(xi(t − τi)− xi+1)− ceyi

ui = (b+ c)
[

(xi−1(t − τi−1)− xi)
(

exp ((xi(t − τ1))+ (xi+1(t − τ1)+ 1))
)]

,

(6)

ẋj = xj(xj − 1)(1− rxj)− yj − g2j−1(xj − xj−1(t − τj−1))− g2j(xj(t − τj)− xj+1)

+ I + d + uj

ẏj = bxj − cyj
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where ϕ2(t) is the Gaussian noise70 source having zero mean and the following correlation function:

(c)	 Control laws design

Taking the derivative of Eq. (4) with respect to time, the error system for the time-delayed FHN networks 
described in Eqs. (6) and (7) can be expressed as shown by Eq. (9).

Next, we propose a unique control scheme by using Lyapunov stability and adaptive control theories.

Theorem 2  Consider bidirectional time-delayed FHN networks as described in Eqs. (6) and (7) with the dynamical 
error system of Eq. (9). If the controllers uj in the error system are defined as

then this will ensure the synchronization of the bidirectional networks of the time-delayed FHN systems described 
in Eqs. (6) and (7) by converging the error of the synchronized system to zero.

Proof  Please see the supplementary information for the proof.

Results
After creating an accurate model for the dynamics of the ring-structured network of n-identical FHN neurons 
with and without noise, we establish a synchronization control scheme for achieving the coherent behavior of the 
neurons. Numerical simulations were executed to verify the proposed control laws and examine their impact on 
the synchronization of time-delayed unidirectional and bidirectional ring-structured FHN networks composed 
of five, ten, fifty, one hundred, two hundred and fifty, five hundred, and one thousand neurons. The parameter 
values used in this study are listed in Table 1. The values for g, τ , and initial conditions are randomly chosen from 
(0–0.1), (3–35), and ((0–0.5), (0–0.5)), respectively.

Analysis of unidirectional time‑delayed FHN networks. 

(a)	 Networks without noise

The proposed unidirectional networks of five, ten, fifty, one hundred, two hundred and fifty, five hundred, 
and one thousand neurons with different gap-junctions and time delays can be modeled as presented in Eq. (1) 
with i = 1, 2, . . . , 1000.

In the case of the unidirectional network without any noise, the unsynchronized error dynamics for the 
membrane potential states and recovery variable states for the network of five neurons (blue line), ten neurons 
(red line), fifty neurons (black line), one hundred neurons (green line), two hundred and fifty neurons (magenta 
line), five hundred neurons (brown line), and one thousand neurons (cyan line) are shown in Figs. 2a and 3a. 

(7)

ẋj = xj
(

xj − 1
)(

1− rxj
)

− yj − g2j−1(xj − xj−1(t − τj−1))− g2j(xj(t − τj)− xj+1)

+ I + d + ϕ2 + uj

ẏj = bxj − cyj

(8)�ϕ2(t)ϕ2(t
′)� = 2Dδ(t − t ′).

(9)

ėxj = −rexj

(

x2j
(

t − τj
)

+ xj
(

t − τj
)

xj+1 + x2j+1

)

+

(

rexj + exj

)

(

xj
(

t − τj
)

+ xj+1

)

− exj

− eyj − g2j−1

(

xj
(

t − τj
)

− xj−1

(

t − τj − τj−1

))

− g2jexj
(

t − τj
)

+ g2j+1

(

xj+1 − xj(t − τi)
)

− g2j+2exj+1

+ uj − uj+1

ėyj = b
(

xj
(

t − τj
)

− xj+1

)

− ceyj

uj = (b+c)
[(

xj−1

(

t − τj−1

)

− xj
)(

exp
((

xj(t − τ1)
)(

xj+1(t − τ1)+ 1
)))]

+
(

xj−1

(

t − τj−1

)

− xj
)

Table 1.   Values of the parameters used in the numerical simulations.

Parameter Value

r 10

b 1

c 0.003

A 0.1

w 2πf

f 0.131
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These figures show the error dynamics of five randomly selected pairs of neurons from each network. These plots 
reveal that the error dynamics are not convergent for both states and the activity of neurons in all networks is 
highly non-synchronized.

Next, we analyzed the results shown in Figs. 2b and 3b after the implementation of the proposed control laws 
for the unidirectional time-delayed network without noise. We analyzed the effectiveness of the proposed control 
scheme by examining the synchronization dynamics of the ring-structured delayed FHN neuronal network, 
with and without the adaptive control. The outcomes of this examination are shown in Figs. 2b and 3b. The pro-
posed controllers for the unidirectional network were activated at t = 130. The results show oscillatory and non-
synchronized behavior for all networks before the application of the proposed controller. In contrast, when the 
controller was activated at t = 130, the errors between the membrane potential and recovery variables converged 
to zero, indicating the synchronization between both states of the delayed unidirectional FHN neuronal networks. 
Furthermore, we calculated the mean errors for both membrane potential states and recovery variable states in 
each network to show the overall effectiveness of the proposed control scheme for the non-noisy unidirectional 
network of time-delayed FHN networks. The results of this analysis are listed in Table 2. It can be visualized that 
the error for both states in each network is almost zero, indicating the synchronized behavior of the network.

(b)	 Networks with noise

Next, we investigated the synchronization problem in unidirectional networks with noise. The results of this 
analysis are shown in Figs. 4 and 5 and Table 3. The results in Figs. 4a and 5a show the unexpected behavior of 
the neurons in each network and indicate that the primary neuronal networks of delayed unidirectional FHN 
neurons with noise are not synchronized. It can be concluded at this stage that the non-synchronized behavior 
is present during the firing of the unidirectional neurons of the delayed networks. The results in Figs. 4b and 
5b illustrate the effectiveness of the proposed control scheme for noisy networks of FHN neurons. Initially, the 
controller was switched off until t = 130, and it can be seen that five randomly selected error dynamics show 
non-zero and non-convergent spikey behavior, indicating that the activity of the neurons in each network is 
non-synchronized. In contrast, the error dynamics converged to zero and all the networks achieved synchroni-
zation as soon as the controller is switched on at t = 130. Furthermore, the mean errors for each state and each 

Figure 2.   (a) Without control synchronization dynamics of the membrane potential states (x-states) of different 
time-delayed unidirectional FHN networks without noise. (b) Controlled synchronized error dynamics of the 
membrane potential states (x-state) of different time-delayed unidirectional FHN networks without noise.
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network—listed in Table 3—show that the proposed control scheme is successful in guaranteeing the synchro-
nization of noisy FHN neuronal networks regardless of the size of the network.

Analysis of bidirectional time‑delayed FHN networks. 

(a)	 Networks without noise

Similar to the unidirectional network’s analysis, we considered bidirectional networks of five, ten, fifty, one 
hundred, two hundred and fifty, five hundred, and one thousand neurons with different gap-junctions and time 
delays. The results of this analysis are illustrated in Figs. 6 and 7 and Table 4. The non-synchronized activity of 
neurons in different bidirectional networks without noise can be visualized in Figs. 6a and 7a as the time dynam-
ics of the errors are non-zero and non-convergent for both membrane potential states and recovery variable 

Figure 3.   (a) Without control synchronization dynamics of the recovery variable states (y-states) of different 
time-delayed unidirectional FHN networks without noise. (b) Controlled synchronized error dynamics of the 
recovery variable states (y-states) of different time-delayed unidirectional FHN neuronal networks without 
noise.

Table 2.   Mean errors in the synchronization dynamics of the membrane potential states and recovery variable 
states for different-sized unidirectional networks of FHN neurons without noise.

Number of neurons in network Membrane potential states Recovery variable states

5  − 1.2734 × 10−21 0

10  − 1.0508 × 10−20 3.0227 × 10−20

50  − 1.4520 × 1023  − 3.2524 × 10−21

100 6.8429 × 10−22 4.6108 × 10−22

250 2.9745 × 10−21 1.0913 × 10−20

500 8.0480 × 10−23 0

1000  − 5.3321 × 10−23  − 9.0176 × 10−22
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states. Contrastingly, both states of the networks achieved zero error after the application of the proposed control 
scheme at t = 130, as shown in Figs. 6b and 7b. The mean errors for both states of each network are listed in 
Table 4. These results suggest that each state of the delayed neuronal network achieved synchronized behavior 
with the state of the corresponding slave neuron because the outcome of the time dynamics of error converged 
to zero.

(b)	 Networks with noise

The dynamical structure of the bidirectional delayed network with noise is more complex and complicated 
than that of the unidirectional delayed FHN neuronal networks, but the results of the numerical simulations 
suggest that synchronization can be achieved successfully with the activation of the proposed controller at t = 130. 
The time–error dynamics of different-sized networks revealed in Figs. 8a and 9a show the unsynchronized neu-
ronal activities between all neurons for all networks. Next, we analyzed the results after the implementation of 
the proposed control law for the bidirectional delayed network in Figs. 8b and 9b. These results show the error 
dynamics before and after the application of the proposed adaptive controller. Similar to the previous cases, the 
delayed networks showed highly non-synchronized behavior until the proposed controller was switched on. 
Then, as soon as the controller was applied, all the errors converged to zero, indicating the effectiveness of the 
proposed scheme. Furthermore, the results listed in Table 5 with very low mean errors also show that different 
bidirectional networks of noisy time-delayed FHN neurons achieved synchronization, indicating the effective-
ness of the proposed scheme.

The convergence of the error dynamics to zero in all cases guaranteed the synchronization of the different-
sized ring-structured networks of FHN neurons in the absence and presence of noise with different gap-junctions 
and time delays under conditions of EES and ionic gate disturbance. It was also observed that the errors between 
neurons for unidirectional and bidirectional gap-junction networks converged to zero very rapidly in all cases, 
showing the efficiency of the proposed control schemes.

Figure 4.   (a) Without control synchronization dynamics of the membrane potential states (x-states) of different 
time-delayed unidirectional FHN networks with noise. (b) Controlled synchronized error dynamics of the 
membrane potential states (x-state) of different time-delayed unidirectional FHN networks with noise.
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Discussion
The processing of cognitive information in the brain is based upon the synchronized interactions between large 
numbers of neurons distributed within and across different specialized brain regions. Experimental and theoreti-
cal results from previous studies suggested that synchronization of neuronal activity is not only a fundamental 
property of cortical and subcortical networks within and across different brain regions but also serves a variety of 
functions in cognitive processes. It is evident from past research that certain brain disorders, such as Alzheimer’s 
disease, epilepsy, Parkinson’s, autism, and schizophrenia are associated with abnormal neural synchronization19. 
Researchers have studied the synchronization problem in neurons by using different mathematical models of 
neurons71–73. Among those, FHN is the most commonly used model to investigate the synchronization of cou-
pled neurons because of its wide applicability and complex dynamical aspects. In the literature, the subject of 
neuronal synchronization, using the FHN model, has been intensively examined as a potential application in 
cognitive engineering1,20,28,47,57. Researchers have developed adaptive20,41, nonlinear28, robust control23, neural-
network-, fuzzy74, and observer-based control schemes63 to study the synchronization phenomenon in FHN 

Figure 5.   (a) Without control synchronization dynamics of the recovery variable states (y-states) of different 
time-delayed unidirectional FHN networks with noise. (b) Controlled synchronized error dynamics of the 
recovery variable states (y-states) of different time-delayed unidirectional FHN neuronal networks with noise.

Table 3.   Mean errors in the synchronization dynamics of the membrane potential states and recovery variable 
states for different-sized unidirectional networks of FHN neurons with noise.

Number of neurons in network Membrane potential states Recovery variable states

5  − 2.0014 × 10−21 8.7445 × 10−20

10 1.6192 × 10−21  − 2.0768 × 10−20

50 4.5356 × 10−22  − 1.5868 × 10−20

100  − 1.0464 × 10−22 1.0685 × 10−22

250 2.1871 × 10−22  − 1.0531 × 10−21

500  − 7.8048 × 10−22  − 1.7182 × 10−22

1000 5.3821 × 10−24  − 4.8910 × 10−22
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Figure 6.   (a) Without control synchronization dynamics of the membrane potential states (x-states) of different 
time-delayed bidirectional FHN networks without noise. (b) Controlled synchronized error dynamics of the 
membrane potential states (x-state) of different time-delayed bidirectional FHN networks without noise.

Figure 7.   (a) Without control synchronization dynamics of the recovery variable states (y-states) of different 
time-delayed bidirectional FHN networks without noise. (b) Controlled synchronized error dynamics of the 
recovery variable states (y-states) of different time-delayed bidirectional FHN neuronal networks without noise.
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neurons under external electrical stimulations. However, these conventional methodologies were developed for 
two or three coupled neurons and cannot guarantee synchronization of distant neurons if used for synchroniz-
ing the activity of networks of neurons because the mathematical models ignore the time delays arising from 
the separation between coupled neurons, and hence cannot synchronize distant FHN neurons. Therefore, the 
addition of a delay term in mathematical models accounting for the distant communication between neurons 
makes it realistic but more complex to study the synchronization problem. Furthermore, the integration of the 
gap-junction strength in FHN neurons renders the synchronization dilemma nontrivial75. Moreover, previous 
studies assumed bidirectional coupling between the neurons whereas experimental observation suggests that 
the coupling between neurons could be unidirectional and may result in different coupling strengths for each 
neuron75,76. Therefore, the dynamical effects of unidirectional gap junctions while entertaining time delays (due 
to neuronal separation) in the mathematical models should not be ignored. Additionally, it is evident from past 
research that the presence of noise can affect the dynamical behavior of the neuronal system and neurons adjust 
their firing properties to transmit information optimally70. Therefore, researchers should entertain the noise 
effect in their mathematical models to study the synchronization problem.

To overcome the shortcomings of previous studies, this study investigated the synchronization problem in 
the network of coupled FHN neurons by incorporating time delays, different direction-dependent coupling 

Table 4.   Mean errors in the synchronization dynamics of the membrane potential states and recovery variable 
states for different-sized bidirectional networks of FHN neurons without noise.

Number of neurons in network Membrane potential states Recovery variable states

5 8.9592 × 10−22 0

10 5.1245 × 10−20 1.7956 × 10−19

50  − 3.8708 × 10−20 4.8477 × 10−21

100 2.6293 × 10−20 9.3919 × 10−21

250  − 1.8942 × 10−21 4.0780 × 10−21

500  − 3.5844 × 10−21 2.0709 × 10−20

1000 1.5764 × 10−21  − 1.0755 × 10−21

Figure 8.   (a) Without control synchronization dynamics of the membrane potential states (x-states) of different 
time-delayed bidirectional FHN networks with noise. (b) Controlled synchronized error dynamics of the 
membrane potential states (x-state) of different time-delayed bidirectional FHN networks with noise.
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(unidirectional and bidirectional), noise, and ionic and external disturbances in mathematical models. In contrast 
to traditional techniques, we proposed simple adaptive control schemes that guarantee the synchronization of 
unidirectional and bidirectional time-delayed networks of FHN neurons in the absence and presence of noise. 
The efficacy of the proposed control laws is shown through numerical simulations of different-sized networks 
consisting of five, ten, fifty, one hundred, two hundred and fifty, five hundred, and one thousand neurons. The 
results presented in Figs. 2, 3, 4, 5, 6, 7, 8 and 9 and Tables 2, 3, 4 and 5 validate the efficiency of the proposed 
control laws.

Although the present study proposed efficient control schemes that guarantee the synchronization of net-
works of time-delayed FHN neurons, it also has some limitations/drawbacks. One obvious of this study is that 
we considered the networks of identical FHN neurons with known fixed parameters in the present configura-
tions. However, the possibility of two coupled neurons to be non-identical cannot be ignored, and the actual 
model parameters cannot be completely known, owing to the known dynamics of the brain and biological 
restrictions. Therefore, considering a network of large numbers of non-identical neurons having unknown 
parametric values where several hundred neurons communicate with each other under different direction-
dependent couplings (unidirectional and bidirectional), can enhance the complexity and analysis of neuronal 
synchronization. The understanding of the physical theory behind direction-dependent couplings, it’s discrete 

Figure 9.   (a) Without control synchronization dynamics of the recovery variable states (y-states) of different 
time-delayed bidirectional FHN networks with noise. (b) Controlled synchronized error dynamics of the 
recovery variable states (y-states) of different time-delayed bidirectional FHN neuronal networks with noise.

Table 5.   Mean errors in the synchronization dynamics of the membrane potential states and recovery variable 
states for different-sized bidirectional networks of FHN neurons with noise.

Number of neurons in network Membrane potential states Recovery variable states

5  − 4.9363 × 10−21  − 1.1989 × 10−20

10  − 5.0001 × 10−21  − 3.4012 × 10−20

50 1.3890 × 10−21 4.0569 × 10−21

100 7.9239 × 10−22 2.6784 × 10−21

250  − 5.9572 × 10−22  − 1.0239 × 10−22

500  − 1.2124 × 10−21  − 5.6866 × 10−22

1000  − 2.7764 × 10−21 2.0092 × 10−21
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modeling, and simulations is a complex and tedious job; hence, it is a challenging task for the research com-
munity. Thus, it is our immediate future plan to study the synchronization of the network of non-identical FHN 
neurons with unknown parameters and disturbances. Moreover, in the current configurations, the coupling 
between the neurons of each network is assumed to be unidirectional or bidirectional, but in a real scenario, a 
network may have both types of direction-dependent coupling that will enhance the complexity of the network. 
Another possible future direction of the current study is that we could investigate the link between mathematical 
simulations and experimental data recorded from real neurons, as this could help to understand the dynamics 
of various brain disorders19. This could be done by estimating the parameters of FHN neurons to replicate the 
experimental data. For instance, Che et al.77 developed an identification method to estimate the parameters of 
FHN models to replicate the experimental data recorded from real neurons. Furthermore, in the present study, 
only synchronization within a network of neurons is considered and how two or more networks with different 
dynamics and configurations (non-identical neurons, unknown parameters, external disturbances, and different 
direction-dependent coupling) communicate and synchronize their activities is yet to be explored in future work.

Conclusion
The development of control strategies for synchronization of a network of chaotic neurons with time delays, 
different direction-dependent coupling (unidirectional and bidirectional), and noise, particularly under external 
disturbances, is essential and very challenging. Most of the previous studies developed control strategies for 
two or three coupled neurons with bidirectional coupling and without incorporating the effect of noise, but not 
for time-delayed neural networks. To overcome these limitations, this study investigated the synchronization 
problem in the network of coupled FHN neurons by incorporating time delays, different direction-dependent 
coupling (unidirectional and bidirectional), noise, and ionic and external disturbances in mathematical models. 
Both unidirectional and bidirectional time-delayed FHN neuronal networks have very complex and unpredict-
able behavior and dynamics. In this study, the lag synchronization of a network of delayed FHN neurons with 
unidirectional and bidirectional coupling in the absence and presence of noise was addressed. Different gap junc-
tions and time-delay parameters were used to incorporate the dynamics of time delays in neurons. Two different 
networks, one with unidirectional coupling between two neurons and the other with bidirectional coupling in 
membrane states, were considered. To achieve the synchronization between the states of the delayed neuronal 
networks, we designed two different adaptive control strategies, which compensated for the nonlinear dynamics 
without direct cancelation. Lyapunov stability theory was used to derive sufficient conditions that guarantee the 
synchronization of the delayed FHN neuronal networks. Numerical simulations with networks of five, ten, fifty, 
one hundred, two hundred and fifty, five hundred, and one thousand neurons were performed to demonstrate 
the efficiency of the proposed control schemes.
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