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Abstract

Platelet-derived growth factor (PDGF) plays critical roles in mesangial cell (MC) proliferation in mesangial proliferative
glomerulonephritis. We showed previously that Smad1 contributes to PDGF-dependent proliferation of MCs, but the
mechanism by which Smad1 is activated by PDGF is not precisely known. Here we examined the role of c-Src tyrosine kinase
in the proliferative change of MCs. Experimental mesangial proliferative glomerulonephritis (Thy1 GN) was induced by a
single intravenous injection of anti-rat Thy-1.1 monoclonal antibody. In Thy1 GN, MC proliferation and type IV collagen
(Col4) expression peaked on day 6. Immunohistochemical staining for the expression of phospho-Src (pSrc), phospho-
Smad1 (pSmad1), Col4, and smooth muscle a-actin (SMA) revealed that the activation of c-Src and Smad1 signals in
glomeruli peaked on day 6, consistent with the peak of mesangial proliferation. When treated with PP2, a Src inhibitor, both
mesangial proliferation and sclerosis were significantly reduced. PP2 administration also significantly reduced pSmad1, Col4,
and SMA expression. PDGF induced Col4 synthesis in association with increased expression of pSrc and pSmad1 in cultured
MCs. In addition, PP2 reduced Col4 synthesis along with decreased pSrc and pSmad1 protein expression in vitro. Moreover,
the addition of siRNA against c-Src significantly reduced the phosphorylation of Smad1 and the overproduction of Col4.
These results provide new evidence that the activation of Src/Smad1 signaling pathway plays a key role in the development
of glomerulosclerosis in experimental glomerulonephritis.
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Introduction

Glomerulonephritis is usually progressive and remains an

important cause of end stage renal disease. In sclerosing

glomerulonephritis, accumulation of the extracellular matrix

(ECM) is a critical process in progressive glomerular injuries

[1,2]. Type IV collagen (Col4) is one of the most important

components of the expanded ECM [3]. Moreover, smooth muscle

a actin (SMA) is a known common molecular marker of

phenotypic changes of mesangial cells (MCs) in many glomerular

diseases. We previously reported that Smad1 participates in the

development of glomerulosclerosis in experimental glomerulone-

phritis [4]. We also reported that Smad1 transcriptionally

regulates the expression of Col4 and SMA [5,6]. However, the

mechanisms by which Smad1 is activated in glomerulonephritis

have not been fully elucidated.

Platelet-derived growth factor (PDGF) is known to be a critical

mitogen for MCs in vitro and in vivo [1,7]. It is noteworthy that

mice deficient for PDGF B or PDGF receptor show abnormal

glomeruli due to a lack of MC development [8–11]. Several lines

of evidence indicate that PDGF plays a key role in the

development of glomerulosclerosis not only in experimental

models but also in human glomerular diseases [12,13]. The

introduction of a neutralizing anti-PDGF antibody has shown that

both mesangial proliferation and glomerulosclerosis can be

markedly ameliorated in a rat glomerulonephritis model [14].

Moreover, we previously showed that the development of

glomerulosclerosis from mesangial proliferation is dependent on

PDGF-induced Smad1 activation [4], but little is known

concerning the regulatory mechanisms of Smad1 activation by

PDGF in glomerulonephritis. c-Src is a ubiquitously expressed

non-receptor protein-tyrosine kinase [15] that is involved in

multiple pathways regulating cell growth, migration, and survival

[16]. c-Src is also an important component of the PDGF signal

transduction pathway [17]. Several reports have demonstrated

that PDGF plays a key role in MC proliferation and glomerulop-

athy in vivo and in vitro [7,18,19]. Previously we demonstrated that

Smad1 is phosphorylated by PDGF in MCs [4]. However, the

exact role of c-Src in MCs as well as in glomerulonephritis remains

unclear.

In the present study, we demonstrated that c-Src is activated in

experimental proliferative glomerulonephritis and that the reduc-

tion of c-Src ameliorates the development of glomerulosclerosis by

blocking of the Smad1 signal transduction pathway. We further
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showed that c-Src plays an important role as a switch molecule for

the activation of Smad1 downstream of PDGF signaling. These

findings unveil the molecular mechanisms underlying the

induction of MC proliferation and MC phenotype alteration,

resulting in proliferative glomerulonephritis. Taking these results

together, we hypothesized that the Src/Smad1 pathway may be

critical in the pathogenesis of proliferative glomerulonephritis.

Materials and Methods

Animals
Full details of the animal experimental protocols were approved

and ethical permission was granted by the Review Board of Kyoto

University (Permit Number: Med Kyo 08508). We used age-

matched male Wistar rats (8 to 12 weeks old, 180 to 200 g) bred at

the Shimizu Laboratory Animal Center (Hamamatsu, Japan). The

animals were housed under specific pathogen-free conditions at

the Animal Facility of Kyoto University. Levels of serum

creatinine and blood urea nitrogen were measured using a Hitachi

Mode 736 autoanalyzer. The urinary albumin concentrations

were measured from 24-h urine collections by Nephrat and

Albuwell (Exocell), according to the manufacturer’s protocols.

Cell culture experiments
A glomerular mesangial cell line was established from glomeruli

isolated from normal 4-week-old mice (C57BL/6JxSJL/J) and was

identified according to a method described previously [7]. The

MCs were plated on 100-mm plastic dishes (Nunc) that were

maintained in B medium (a 3:1 mixture of minimal essential

medium/F12 modified with trace elements) supplemented with

1 mM glutamine, penicillin at 100 units/ml, streptomycin at

100 mg/ml, and 10% fetal calf serum (Irvine Scientific). The cells

were passaged weekly with trypsin-EDTA. The cultured cells

fulfilled the previously described criteria generally accepted for

glomerular mesangial cells [20]. Stimulation with angiotensin II

(Ang II) (Sigma), PDGF, PP2 (Calbiochem, Darmstadt, Germany),

or olmesartan (Cosmo Bio, Tokyo, Japan) was carried out in

DMEM containing 0.5% FCS at 37uC for the indicated times. A

rat monoclonal anti-PDGFb-receptor antibody (APB5) and its

antagonistic effects on the PDGFb-R signal transduction pathway

in vitro have been described previously [4].

Constructs, transfection, and co-immunoprecipitation
Src cDNAs (pUSE Src wild type, pUSE Src kinase mutant, and

empty vector) were obtained from Upstate Biotechnology, Inc.

(Lake Placid, NY). MCs were transfected using FuGene6 (Roche,

Mannheim, Germany) according to the manufacturer’s protocol.

After 48 h of transfection, the cells were washed with PBS, and

1 ml ice-cold lysis buffer (25 mM Tris-HCl pH 7.4, 100 mM

NaCl, 2 mM EDTA, 0.5% Nonidet P-40, Complete protease

inhibitors cocktail; Roche) was added. For co-immunoprecipita-

tion assay, whole cell lysates were first pre-cleared with protein G–

Sepharose (Amersham) and followed by incubation with anti-

PDGFR antibody (Santa Cruz) for 3 h at 4uC. The immune

complex was isolated and separated by SDS–PAGE and analyzed

by Western bot analysis. Protein was detected using polyclonal

rabbit anti-Src antibody (Cell Signaling Technology).

Histology and Immunohistochemistry
Tissues were fixed in Methyl Carnoy’s solution and were

paraffin-embedded. Multiple sections were prepared and stained

with periodic acid silver methenamine (PASM) and periodic acid-

Schiff’s reagent (PAS). Immunohistochemical staining was per-

formed with antibodies specific to Col4 (Progen) or SMA (Abcam),

using an established avidin-biotin detection method (Vector

Laboratories). Frozen sections were used for the detection of pSrc

and pSmad1 (Cell Signaling Technology). Glomerular morphom-

etry was evaluated in PASM-stained tissues. The glomerular

surface area and the PASM-positive area/glomerular area (%)

were measured using an image analyzer with a microscope (IPAP,

Sumitomo Chemical, Osaka, Japan) as previously described [21–

24]. To quantitatively measure the expression of pSrc and

pSmad1, pSrc-positive or pSmad1-positive cells/DAPI-positive

nuclei were counted, and the mean percentages of pSrc-positive or

pSmad1-positive cells were calculated. An investigator scored

sections in a blinded fashion, according to an established scoring

system (range 0–4; 0, no ECM deposition; 4, ECM deposition in

all sections of the glomeruli) to semiquantify the localization of

Col4 and SMA.

Small-interfering RNA
MCs (0.56105) were seeded into 12-well plates (Nunc) and were

grown until they were 60% to 80% confluent. The small-

interfering RNAs (siRNAs) for c-Src, Smad1, and LRP1

(Dharmacon) or control scrambled siRNA (Dharmacon) were

combined with DharmaFECT transfection reagent (Dharmacon),

and the cells were transfected according to the recommended

protocol with siRNA (100 nM final concentration). After 48 h of

transfection, cells were starved in DMEM containing 0.5% BSA

before treatment. After 48 h of incubation, the cells were

stimulated with or without PDGF (Calbiochem).

TGFb-neutralizing antibody assay
MCs were resuspended at a concentration of 16106 cells/ml

and plated onto 100-mm dish either in the presence of 10 mg/ml

TGFb-neutralizing antibody (R&D Systems) or a control normal

chicken IgY. After 24 h of incubation, the cells were treated with

PDGF for additional 12 h and were harvested and underwent

protein extraction on Western blotting.

Western blotting
Isolated glomerular MCs were suspended in RIPA buffer

(50 mM Tris, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 0.25%

SDS, 1 mM Na3VO4, 2 mM EDTA, 1 mM phenylmethylsulfonyl

fluoride, 10 mg/ml of aprotinin) and incubated for 1 h at 4uC.

After centrifugation, the supernatants were used as total cell

lysates. Twenty micrograms of each sample was applied to SDS-

PAGE. After electrophoresis, the proteins were transferred to

nitrocellulose filters (Schleicher & Schuell). The blots were

subsequently incubated with anti-phospho-Smad1, anti-phspho-

Src (Cell Signaling Technology), anti-SMA, anti-LRP1 (Abcam) or

anti-Col4 antibody (Progen), followed by incubation with

horseradish peroxidase-conjugated goat anti-rabbit IgG and sheep

anti-mouse IgG (Amersham). The immunoreactive bands were

visualized using horseradish peroxidase-conjugated secondary

antibody and the enhanced chemiluminescent system (Amersham).

These bands were quantified using an imaging densitometer

(Science Lab 99 Image Gauge, Fujifilm, Tokyo, Japan).

Data analysis
The data are expressed as the mean 6 S.D. Comparison among

more than two groups was performed by one-way analysis of

variance (ANOVA), followed by post hoc analysis (Bonferroni/

Dunn test) to evaluate the statistical significance between the two

groups. All analyses were performed using StatView (SAS

Institute, Cary, NC). Statistical significance was defined as

P,0.05.

Src in PDGF-Smad1 Signal in Glomerulonephritis
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Results

Glomerular phosphorylation of c-Src and Smad1 parallels
the progress of glomerulosclerosis in rat Thy1 GN

We utilized a model of mesangial proliferative glomerulonephri-

tis, known as anti-Thy1-induced glomerulonephritis (Thy1 GN),

which exhibits sclerosis in the glomeruli. The renal function of Thy1

GN on day 6 was significantly decreased (Figure S1A). MC

proliferation began on day 3 and glomerulosclerosis began on day 6.

Renal damage clearly regressed until day 15. Sclerosis in the kidney

peaked on day 6 and sclerotic changes subsided until day 15

(Figure 1A and B). Localization of phospho-Src (pSrc) and phospho-

Figure 1. Induction and activation of c-Src and Smad1 in proliferative glomerulonephritis. (A) Representative light-microscopic
appearance and immunohistochemistry of glomeruli in Thy1 GN. Scale bars = 100 mm. (B) Quantitative assessment of PASM staining in Thy1 GN.
*P = 0.002, **P = 0.002).
doi:10.1371/journal.pone.0017929.g001
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Smad1 (pSmad1) in the nuclei was scant on day 0. On day 3,

phosphorylation began in c-Src and Smad1 proteins. The level of

phosphorylation gradually increased and positively stained nuclei in

parallel with the activity of mesangial proliferation during the

development of glomerulosclerosis. Phosphorylation peaked on day

6 and then decreased towards day 15 (Figure 2, C, D and E).

Phosphorylation of c-Src and Smad1 was almost undetectable on

day 0 but became prominent during the proliferative stages in Thy1

GN, peaked on day 6, and then decreased towards day 15

(Figure 2C, D and E). In addition, the expression of Col4 and SMA

changed in parallel with the activation of c-Src and Smad1

(Figure 2A, B and E). These data suggest that both Smad1 and c-Src

are activated in the course of proliferative injuries in rat kidneys.

PP2 preserves renal function and attenuates
glomerulosclerosis in rat glomerulonephritis

To investigate whether the c-Src/Smad1 pathway plays a

pivotal role in developing glomerulosclerosis, we administered a

Src specific inhibitor, PP2, to Thy1 GN rats from days 0 to 6 and

assessed glomerulosclerosis on day 6. Untreated Thy1 GN rats

showed an increased degree of glomerulosclerosis, whereas

glomerulosclerosis was significantly decreased in the PP2-treated

group (Figure 3A, B), along with renal function (Figure 3, C–E).

PP2 represses the activation of Smad1 and the
expression of both Col4 and SMA in rat
glomerulonephritis

Next, to examine the effect of PP2 on the morphological

changes seen in Thy1 GN glomerulosclerosis, we examined Col4

and SMA expression in the two groups. PP2 treatment

significantly inhibited Col4 and SMA expression, whereas

expression was increased in the non-treatment group (Figure 3F).

Moreover, we examined whether PP2 affected the phosphoryla-

tion and translocation of c-Src and Smad1 in Thy1 GN rats. PP2

treatment inhibited the phosphorylation of c-Src and Smad1, and

their expression was localized in the nucleus in untreated Thy1

GN (Figure 3F). These data from immunohistochemistry were

confirmed by Western blot analysis (Figure 3G).

Effect of PP2 on PDGF-mediated signaling in MCs
Because PDGF is well known to play a key role in the

development of glomerulosclerosis, we investigated whether PDGF

can activate c-Src/Smad1 signal transduction and increase the

synthesis of Col4. Expression of Col4, pSrc, and pSmad1 was

induced by PDGF stimulation in MCs cultured for 12 hours

(Figure 4A–D). These inductions were inhibited by PP2 treatment

Figure 2. Time course of glomerular expression of Col4, SMA, pSrc and pSmad1 in Thy1 GN. (A, B) Staining scores per glomerular cross-
section for Col4 (*P,0.001, **P,0.001) and SMA (*P,0.001 and **P = 0.009) were calculated. Data represent mean values 6 S.D. of at least three
independent experiments; n = 6 for each experimental group. (C, D) Quantification of glomerular pSrc and pSmad1 by optical densitometry. The pSrc-
positive nuclei and pSmad1-positive nuclei were counted in 10 consecutive fields in each specimen and normalized by the number of DAPI-positive
nuclei. *P,0.001, **P,0.001. (E) Western blot for the glomerular lysates from each group. Data represent mean values 6 S.D. of at least three
independent experiments; n = 6 for each experimental group.
doi:10.1371/journal.pone.0017929.g002
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Figure 3. Src-specific inhibitor PP2 inhibits glomerulosclerosis and glomerular expression of pSrc and pSmad1 in Thy1 GN. (A–C)
Serum blood urine nitrogen (BUN), serum creatinine (Cre), and UAE in the nontreatment and PP2 groups. P values were 0.001, 0.001 and 0.017,
respectively. (D, E) Representative light-microscopic appearance of glomeruli (PAS and PASM staining) and quantitative assessment of PASM staining
in Thy1 GN with or without PP2 on day 6. Scale bars = 100 mm. *P,0.001. (F) Immunohistochemistry of glomeruli (Col4, SMA, pSrc and pSmad1) in
Thy1 GN with or without PP2 on day 6. Scale bars = 100 mm; n = 6 for each experimental group. (G) Western blot for the glomerular lysates from each
group. Data represent mean values 6 S.D. of at least three independent experiments; n = 6 for each experimental group on day 6.
doi:10.1371/journal.pone.0017929.g003
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(Figure 4A–D). These results indicate that PDGF induced the

expression of Col4 through the activation of Src/Smad1 signal

transduction.

Silencing of c-Src in MCs inhibits PDGF-mediated
phosphorylation of Smad1 and synthesis of Col4

To further confirm the role of c-Src in PDGF-induced

upregulation of Smad1 and Col4 expression, c-Src gene

silencing by siRNA was performed. c-Src silencing suppressed

the PDGF-induced phosphorylation of Smad1 and the

synthesis of Col4. In contrast, GAPDH protein levels, used as

a loading control, were not affected across the samples

(Figure 4E–H). We confirmed the result of knockdown

experiments with PDGF stimulation by using three c-Src

siRNAs (Src siRNA-1, -2, and -3) (Figure S2). We showed the

representative data from using Src siRNA-3 in Figure 4E–H.

From these results, c-Src may be significantly involved in

PDGF-mediated Col4 expression.

Figure 4. Activation of c-Src and Smad1 is regulated by PDGF in MCs. (A) Effect of PP2 on pSrc, pSmad1 and Col4. MCs were preincubated
with PP2 (10 mM) or DMSO for 48 h before exposure to PDGF (5 ng/ml, 12 h). (B) Optical densitometry of Col4 in western blot. *P,0.001 and
**P,0.001. (C, D) Optical densitometry of pSrc (*P,0.001 and **P = 0.003) and pSmad1 (*P = 0.002, **P = 0.002) in western blot analyses. (E) Effects of
RNAi-mediated silencing of c-Src on pSrc, pSmad1 and Col4 under stimulation of PDGF (5 ng/ml, 12 h). (F–H) Optical densitometry of Col4 (*P,0.001,
**P,0.001), pSrc (*P,0.001, **P,0.001), and pSmad1 (*P = 0.02, **P = 0.002) in western blot. Data represent mean values 6 S.D. of at least three
independent experiments.
doi:10.1371/journal.pone.0017929.g004
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Activated c-Src is associated with PDGFR in MCs
To clarify the intracellular interaction between PDGF signaling

pathway and c-Src/Smad1 axis, the effects of constitutively active

form of c-Src (caSrc) transfected in MCs was examined. Transient

transfection of MCs with caSrc could induce phosphorylation of

Smad1 wihtout stimulation of PDGF, and subsequently upregu-

lated Col4 expression (Figure 5A). In contrast, transfection of the

dominant negative Src (dnSrc) did not show these regulations.

Moreover, we performed knockdown analysis using Smad1

siRNAs to confirm the role of Smad1 in the regulatory effect of

PDGF-induced Col4 expression. Knockdown study revealed that

Smad1 acts downstream of PDGF-c-Src signaling pathway in the

induction of Col4 (Figure 5B). Furthermore we have explored the

possibility that c-Src, while interacting directly with PDGF

receptor, could transduce the PDGF signals in MCs. For this

purpose, PDGF receptor was immunoprecipitated from whole cell

lysates after PDGF stimulation. Anti-c-Src immunoblot revealed

that c-Src really associates with PDGFR only when stimulated by

PDGF (Figure 5C).

TGFb signaling pathway partially mediated PDGF-
induced Smad1/Col4 expression in MCs

Transforming growth factor beta (TGFb) is an important

growth factor in the modulation of cell proliferation as well as

PDGF in a variety of cells. In addition, several studies reported

that PDGF may increase the production of TGFb and the

expression of TGFb type I receptor [25,26]. To elucidate the the

molecular basis of the influence of PDGF on TGFb signaling

pathway, we performed TGFb-neutralizing antibody assay for

PDGF-stimulated MCs. PDGF increased the expressions of TGFb
and activin receptor-like kinase 5 (ALK5) and activated Smad1.

However, these changes by PDGF could not be inhibited by

neutralizing anti-TGFb antibody (Figure 6A), indicating that

PDGF, but not TGFb, upregulates expression of ALK5, pSmad1,

pSrc, and Col4. In particular, pSmad1 is phosphorylated by

ALK1, but not by ALK5, therefore, we investigated the effects of

high concentration of PDGF on MCs. At concentration of 50 ng/

ml, PDGF increased the expressions of ALK1 as well as other

proteins (Figure 6B). Interestingly, an addition of neutralizing anti-

TGFb antibody suppressed not only ALK1 expression, but also

expressions of pSmad1 and Col4 (Figure 6B). These results suggest

that PDGF has the potential to enhance TGFb signal transduction

through ALK1 as well as ALK5.

TGFb signaling pathway partially mediated PDGF-
induced Smad1/Col4 expression in MCs

To further elucidate the regulatory mechanisms controlling the

cross-talk between PDGF and TGFb in the activation of Smad1

Figure 5. Activated c-Src is associated with PDGF Receptor (PDGFR) in MCs. (A) Western blot analyses of MCs transfected with constitutively
active c-Src (caSrc), dominant negative c-Src (dnSrc), and empty vector (Mock). One of three independent experiments is shown. (B) Effects of RNAi-
mediated silencing of Smad1 on pSmad1 and Col4 after 5 h stimulation of PDGF (5 ng/ml). Scrambled siRNA (Scramble) was used as a control. One of
three independent experiments is shown. (C) MCs were serum-starved for 10 h and then incubated with 5 ng/ml of PDGF for 5 min. Whole cell
lysates (WCL) were immunoprecipitated with polyclonal anti-PDGFR antibody and subjected to anti-Src immunoblot.
doi:10.1371/journal.pone.0017929.g005
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and induction of Col4 in MCs, we examined whether LDL

receptor related protein-1 (LRP1) is involved in the signal

pathways. Because Boucher et al. reported that LRP1 is tightly

involved in the pathogenesis of atherosclerosis by regulating

signaling of TGFb and PDGF, and their receptors [27,28],

knockdown analysis using LRP1 siRNAs was perfomed to examine

the role of LRP1 in the regulatory effect of PDGF-induced Col4

expression and PDGF-activated TGFb signaling pathway in MCs.

Knockdown of LRP1 enhanced the downstream pathway of

PDGF (Figure 7A) with the exception of ALK1 (Figure 7B). These

results suggest that LRP1 has a significant inhibitory effect on

PDGF signaling pathway leading to production of Col4 in MCs.

PDGF signaling pathway is partially involved in the AngII-
induced c-Src/Smad1 signal activation in MCs

We previously reported that AngII activates the c-Src/Smad1

signaling pathway in the development of diabetic nephropathy and

cultured MCs [23]. To investigate whether AngII signals influence

the regulatory mechanisms of PDGF-induced c-Src/Smad1 signal

transduction, we examined the inhibitory effects of APB5 and

AngII receptor blocker (ARB) on the activation of c-Src, Smad1,

and Col4 by AngII and PDGF, respectively. APB5 clearly

attenuated the AngII-induced c-Src/Smad1/Col4 signal

(Figure 8A). In contrast, ARB treatment slightly reduced PDGF-

induced activation of the signal (Figure 8B). These data suggest

that PDGF signaling pathway is activated by AngII in MCs.

Discussion

Cellular proliferation and extracellular matrix accumulation are

characteristic features of progressive glomerular diseases, a major

cause of end-stage renal failure in humans throughout much of the

world. Glomerulosclerosis followed by mesangial proliferative

glomerulonephritis is characterized by mesangial matrix expansion

Figure 6. PDGF modulated TGFb-Activin Receptor-like Kinases (ALKs) signaling pathways in MCs. (A, B) MCs were treated with
neutralizing antibody for TGFb (10 mg/ml) (NA) or control normal IgY (CTL) for 24 h prior to treatment with PDGF at indicated concentrations for 24 h.
Equal amounts of cell lysates were subjected to Western blot. One of three independent experiments is shown.
doi:10.1371/journal.pone.0017929.g006

Figure 7. LRP1 modulated both PDGF and TGFb signaling pathways in MCs. (A, B) Effects of PDGF stimulation and RNAi-mediated silencing
of LRP1 after 5 h stimulation of PDGF at indicated concentrations on MCs. Scrambled siRNA (Scramble) was used as a control (CTL). Equal amounts of
cell lysates were subjected to Western blot. One of three independent experiments is shown.
doi:10.1371/journal.pone.0017929.g007
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and phenotypic change of MCs [3]. In the expanded mesangial

matrix, Col4 is a major component of ECM and is overproduced

in glomerulosclerosis [6]. In addition, phenotypic modulation is a

commonly observed feature in the progression of many renal

diseases leading to CKD and ESRD. Expression of SMA is a well-

known marker for the activation of MCs in most glomerular

diseases. We previously reported that Smad1 upregulated the

expression of Col4 and SMA [5,6] and thereby participates in the

development of glomerulosclerosis in experimental glomerulone-

phritis [4]. However, the molecule that activates Smad1 in

glomerulonephritis has not been fully elucidated. Since PDGF has

been consistently implicated in cell proliferation and extracellular

matrix accumulation, which characterize progressive glomerular

disease [29], and since c-Src is an important component of the

PDGF signaling pathway [30], we first investigated whether c-Src

is induced in glomeruli of proliferative glomerulonephritis. In

Thy1 GN, Col4 is strongly expressed in the sclerotic lesions of

glomeruli, as previously described [4,21]. We show here that c-Src

and Smad1 are heavily phosphorylated in the nuclei of glomerular

cells in Thy1 GN. This phosphorylation parallels the progress of

glomerulosclerosis and peaks on day 6, when Col4 and SMA

expression levels have peaked. These results suggest that c-Src has

a potential to be involved in the development of glomerulosclerosis

in mesangial proliferative glomerulonephritis.

c-Src was identified as the first proto-oncogene, and a great

deal of work has been carried out to elucidate its role in biological

systems [31–33]. The two main areas in which Src inhibitors

have been applied are regulating bone resorption [34,35] and

both tumor growth and metastasis [36,37]. Most previous studies

have shown that the role of Src family members is related to

inflammatory responses. Additionally, the small chemical inhib-

itors that effectively and specifically block Src kinases could have

great clinical implications for diseases with acute inflammatory

responses [38,39]. In a rat renal ischemia-reperfusion injury

model, increased active Src expression was found in the injured

rat kidney after reperfusion [40]. To our knowledge, however, no

report has demonstrated that c-Src is involved in the develop-

ment of glomerulosclerosis in glomerular diseases. In the rat

proliferative glomerulonephritis model, administration of PP2

completely abolished the phosphorylation of c-Src and Smad1

and resulted in the amelioration of glomerulosclerosis. Therefore,

the activation of c-Src signal transduction plays a pivotal role in

glomerulosclerosis, implicating it as a novel target of the

therapeutic strategies for glomerulonephritis. Moreover, our

findings show a new side of PP2 as an anti-glomerular disease

agent.

In addition, PDGF is known to contribute to the development of

both experimental and human glomerulonephritis [12,13]. Src

kinase activation has been reported to contribute to PDGF-

dependent cell-cycle proliferation, mitogenesis, and chemotaxis

[24,29,30]. Thus, to investigate the molecular mechanisms

underlying the progression of proliferative glomerulonephritis,

we used cultured MCs under PDGF stimulation. PDGF induced

phosphorylation of c-Src and Smad1 as well as Col4 expression,

and these changes were blocked by PP2. The interaction between

PDGFR and c-Src may be important for the phosphorylation of c-

Src. In addition, the siRNA silencing experiments confirmed that

c-Src regulated Smad1 activation. These findings suggest that c-

Src activation is a key event in the PDGF-induced phosphoryla-

tion of Smad1, followed by the subsequent overproduction of Col4

in proliferative glomerulonephritis. In addition, PDGF activated

TGFb signaling pathways by induction of TGFb and its type I

receptors, ALK1 and ALK5. In particular, the induction of ALK1

may be an important event, because ALK1 transduce TGFb
signals to Smad1. Furthermore, several recent reports demon-

strated that LRP1 has an inhibitory effect on TGFb signaling

pathway as well as PDGF signaling pathway [27,28]. As expected,

LRP1 silencing exhibited additional effect on the activation of

TGFb signals by PDGF. Hence, LRP1 represents a promising new

therapeutic target for the control of proliferative glomerular

diseases. Moreover, our previous study demonstrated that AngII

stimulated this Src-Smad1 axis independent of p44/42 MAP

kinase activation and that the AngII receptor blocker ARB

blocked this pathway. Because it is generally accepted that the

AngII blockade significantly delays the progression of proliferative

glomerulonephritis [41,42], our previous findings implied that the

inhibition of the Src-Smad1 axis may partially explain the AngII-

induced progression of proliferative glomerunonephritis. PDGF-

induced activation of c-Src/Smad1 signaling pathway leading to

Col4 production also plays an important role downstream of

AngII stimulation, whereas ARB treatment did not fully

suppressed the effect of PDGF. Chemical inhibitors directly or

indirectly targeting Src kinases have been developed as potential

drugs for the treatment of cancer [43]. It was recently reported

that the inhibition of c-Src by these chemical inhibitors helps to

prevent ischemia-reperfusion-induced injury in organs [38,39].

The present study raises the possibility that using these chemical

inhibitors to block Src signal transduction could be a promising

option for ameliorating proliferative glomerulonephritis as well as

for the already reported effects of these inhibitors on excessive

inflammatory cells, monocytes and macrophages [44,45]. Another

report by Severgnini et al. demonstrated that c-Src controls

Figure 8. Molecular cross-talk between PDGF and AngII signaling pathways in MCs. (A) Effects of APB5 on pSrc, pSmad1 and Col4. MCs
were preincubated with APB5 (100 ng/ml) or control rat IgG for 24 h before exposure to AngII (0.1 mM, 30 min). (B) Effects of olmesartan (ARB) on
pSrc, pSmad1 and Col4. MCs were preincubated with olmesartan (10 mM) or methanol for 48 h before exposure to PDGF (5 ng/ml, 12 h). Equal
amounts of cell lysates were subjected to Western blot. One of three independent experiments is shown.
doi:10.1371/journal.pone.0017929.g008
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STAT3 activation in acute lung injury [46]. In addition, we

previously reported that STAT3 is involved in the development of

glomerulosclerosis in experimental proliferative glomerulonephri-

tis [4]. In light of these previous findings, our results highlight the

importance of c-Src in the development of glomerulosclerosis in

glomerulonephritis. Combining with our overall findings summa-

rized in Figure 9, we can speculate that Smad1-mediated

production of Col4 leading to mesangial expansion is a critical

event in the development of glomerulosclerosis.

In conclusion, our present study indicates that c-Src activates

Smad1-induced ECM production and phenotypic alteration, and

is involving in the progression of proliferative glomerulonephritis

leading to glomerulosclerosis. Further understanding of the Src/

Smad1 pathway and the molecules involve in this pathway is

critical for the clarification of glomerulosclerosis and to pave the

way for a strategy to treat progressive glomerulonephritis.

Supporting Information

Figure S1 Time course of renal function in Thy1 GN.
Urine volume (*P = 0.042) (A), serum BUN (*P = 0.014) (B), and

UAE (*P = 0.017) (C) in Thy1 GN. Data represent mean values 6

S.D. of at least three independent experiments; n = 6 for each

experimental group.

(TIF)

Figure S2 Knockdown of c-Src expression. MCs were

transfected with three different siRNAs specific for c-Src and with

scrambled siRNA with or without PDGF stimulation. Effects of

RNAi-mediated silencing of c-Src on pSrc, pSmad1 and Col4

under stimulation of PDGF (5 ng/ml, 12 h) were analyzed by

Western blot. GAPDH served as a loading control.

(TIF)
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