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Abstract

The power law provides an efficient description of amplitude spectra of natural scenes. Psychophysical studies have shown
that the forms of the amplitude spectra are clearly related to human visual performance, indicating that the statistical
parameters in natural scenes are represented in the nervous system. However, the underlying neuronal computation that
accounts for the perception of the natural image statistics has not been thoroughly studied. We propose a theoretical
framework for neuronal encoding and decoding of the image statistics, hypothesizing the elicited population activities of
spatial-frequency selective neurons observed in the early visual cortex. The model predicts that frequency-tuned neurons
have asymmetric tuning curves as functions of the amplitude spectra falloffs. To investigate the ability of this neural
population to encode the statistical parameters of the input images, we analyze the Fisher information of the stochastic
population code, relating it to the psychophysically measured human ability to discriminate natural image statistics. The
nature of discrimination thresholds suggested by the computational model is consistent with experimental data from
previous studies. Of particular interest, a reported qualitative disparity between performance in fovea and parafovea can be
explained based on the distributional difference over preferred frequencies of neurons in the current model. The threshold
shows a peak at a small falloff parameter when the neuronal preferred spatial frequencies are narrowly distributed, whereas
the threshold peak vanishes for a neural population with a more broadly distributed frequency preference. These results
demonstrate that the distributional property of neuronal stimulus preference can play a crucial role in linking microscopic
neurophysiological phenomena and macroscopic human behaviors.
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Introduction

Understanding how the human visual system recognizes

complex natural images is a most important but challenging

problem in vision science. In the field of image engineering, a

promising first step toward solving this problem is analyzing

statistical properties of natural images and making reduced models

of them based on their statistical redundancies [1]. For example,

the distribution of amplitude across spatial frequency in natural

scene imagery is not like white noise but rather follows a well-

known ‘power law’ [2–7]; that is, the amplitude at spatial

frequency f falls by approximately a factor of f {a with a

particular constant a (we call this constant the ‘falloff parameter’).

The value of the falloff parameter a varies among individual

images, but typically falls within a range of 0:9vav1:2 for

natural scenes [2]. The formulation based on the ‘power law’ gives

reduced descriptions of natural image amplitude spectra, using (for

the simplest case) two parameters a and the image contrast.

Relatively recent studies suggest that the shape of the amplitude

spectra falloff can characterize not only a whole class of natural

image but also its subclasses, which can be determined by image

properties such as texture [8] or blurriness [9]. Those careful

observations with the modeling and the analysis of natural images

suggest that determining the exact a values is not a trivial issue; we

can find functional meanings in the values of a in natural image

recognition. In parallel with the modeling work mentioned above,

many psychophysical studies have been conducted to ask whether

and how natural image statistics are related to human visual

performance. Experiments using grayscale natural images or

artificial noise have shown that humans can discriminate between

images with slightly different a values, and the ability to

discriminate varies depending on the values of a itself

[4,8,10–15]. Roughly, the human sensitivity to the change in the

slope of the spectrum falloff is the highest for the images with a&1,

which is typically observed in natural scenes [8,10]. It can be

speculated that that human performance is determined by the

resolution of encoding within the visual nervous system. However,

a detailed model of the neural processing underlying the

discrimination of the image statistics has been poorly studied so

far. This study is motivated by the desire to fill this gap between

the stimulus features and resulting human performance.

We propose a computational model of neuronal encoding and

decoding of natural image statistics. We presume that the

spatial-frequency selective neurons, which are observed in the
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early visual cortex, are the main neural substrate for

representing the image statistics. Unlike laboratory stimuli such

as sinusoidal grating or the Gabor patch, natural images

generally contain signals broadly distributed over different

spatial frequencies. Such a broad-band stimulus would activate

a relatively large number of neurons that are tuned to different

spatial frequencies. Particularly, in this paper we consider a set

of neurons within the spatial-frequency hypercolumn, which is

found in the primary visual cortex of primates [16]. In

perceptual discrimination tasks, the observer is required to infer

the statistical parameters from the neuronal population

activities. The activation patterns elicited over the neural

population take different shapes depending on the underlying

statistical parameters (such as a) of input visual stimuli, and this

gives clues for discriminating the stimulus parameters. Discrim-

ination by the real nervous system, however, suffers from noise

in neuronal firing. As is widely accepted, the firing rate of a

neuron fluctuates from trial to trial, typically showing a Poisson-

like variability [17,18]. Because of the uncertainty in the

neuronal encoding process, the inference from it is expected to

contain errors at some rate even if we assume that the stimulus

information is optimally read out by an ideal observer in the

subsequent decoding stage. Human performance, which is a

consequence of neuronal population activity, is expected to be

related to the resolution of the neuronal information represen-

tation; however, it is not clear what part of the neuronal

encoding process critically affects the human behavioral data.

To elucidate this point, we quantify the modeled neural

encoding accuracy in terms of Fisher information. Specifically,

here we suggest that the distributional property of neurons

should be taken into account for explaining real data.

The remaining part of this paper is laid out as follows. In the

Model section, we formulate the encoding processes of the

amplitude spectrum slope by the nervous system. The model

predicts that the frequency-tuned neurons have asymmetric

tuning curves for a. We also introduce Fisher information as a

measure of decoding accuracy based on stochastic neuronal

population activities and suggest how that measure relates to

experimentally observed human performance. In the Results

section, we compare the theoretical discrimination performance

given by the present model to recently reported psychophysical

data. The model explains the reported qualitative and quantita-

tive differences in human performance between the fovea and the

parafovea. We show that the neuronal distribution profile plays

an important role in the emergence of the fovea-parafovea

difference. Finally, we discuss the relation to other computational

models, the extension of the current computational framework,

the biological plausibility, and possible experimental tests for the

current model.

Methods

Encoding the slope of the amplitude spectrum falloff and
neuronal ‘a-tuning’

Natural images are broad-band stimuli. Their amplitude spectra

represented in the Fourier domain are known to follow the power

law.

j f ; að Þ~ c

z að Þ f
{a, ð1Þ

where c is the parameter determining the contrast of the image

and z að Þ is the normalization constant,

z að Þ~ 1

fmax{fmin

ðfmax

fmin

df f {að Þ2
 !1

2

, ð2Þ

which can be written in an explicit form as

z að Þ~

1

fmax{fminð Þ 1{2að Þ f 1{2a
max {f 1{2a

min

� �� �1
2

a=0:5ð Þ

1

fmax{fmin

ln fmax=fminð Þ
� �1

2
a~0:5ð Þ

8>>>><
>>>>:

: ð3Þ

The parameters used here and other important parameters used in

this section is summarized in Table 1. The images represented as

Eq. (1) have the same root mean square (RMS) values as the

contrast measure. Figure 1a shows the models of input images with

different spectra falloff parameters a. The thick curve in the figure

represents the spectrum where a~1, which is typical for natural

scene imagery. In the present study, we only consider spatially

isotropic visual images for the simplicity.

Neurons in the early visual cortex selectively respond to stimuli

with different spatial frequencies. Much of the knowledge about

neuronal tuning for spatial frequency has been gathered based on

experiments employing single-wavelength stimuli (i.e., sine wave

gratings). Those stimuli are represented with the delta function in the

spatial frequency domain, and the frequency tuning functions of

neurons are interpreted as the impulse responses. Following the

conventional notion of log-scaled spatial-frequency selectivities and a

bank of log Gabor filters [3,19–21], we model the spatial frequency

tuning profile of unit i with a log Gaussian function, defined as

wi fð Þ~exp {
1

2

ln f =wið Þ
s

� �2
 !

: ð4Þ

In Eq. (4), we ignored the dependence of tuning bandwidth s on the

neuron’s peak preferred frequency wi to simplify the model. Although

physiological study suggests negative correlation between the

bandwidth (in octave scale) and preferred frequency of neurons in

the Macaque primary visual cortex [22], here we consider a limited

range of neuronal preferred frequency (0:01vwiv10, at most) in

which the relation between those two parameters can be roughly

approximated by a constant function. Figure 1b shows the frequency

Table 1. Summary of the variables and the functions used in
the text.

Symbols Descriptions

f spatial frequency [cycles/deg]

a amplitude spectrum falloff parameter

j f ; að Þ amplitude spectrum of the input image

wi preferred spatial frequency of the ith cortical unit [cycles/deg]

wi fð Þ frequency tuning curve of the ith cortical unit (i~1, � � � ,N) [spikes/s]

li að Þ expected activity of the ith cortical unit [spikes/s]

ri trial-to-trial firing rate of the ith cortical unit [spikes/s]

n wið Þ density of units with the preferred spatial frequency wi [cells:deg/cycles]

doi:10.1371/journal.pone.0009704.t001
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tuning functions of seven example model neurons within a spatial

frequency hypercolumn.

We assume that the expected response of each neuron is roughly

approximated by the dot product of its frequency tuning function

and the image

li að Þ~
ðfmax

fmin

df wi fð Þ j f ; að Þ: ð5Þ

Equation 5 represents the tuning over the spatial frequencies,

regardless of the wave phases; it is considered as a model of

complex cell responses, which are approximated by the sum of

rectified activities of linearly responding cells (e.g., simple cells in

the primary visual cortex, or alternatively the pooled summation of

rectified outputs of simple cells preferring the unique spatial

frequency and different spatial phases (although we should note

that the variability in the pooled spike counts of a simple cell

population is generally not equal to that of the sole response by a

complex cell). We also note that the set of model unit outputs li

does not provide a complete representation of the input image

itself; that is, we cannot discriminate two images with the same

amplitude spectrum based only on lis. To discriminate them,

another set of neurons that are sensitive to the phases of Fourier

components (e.g., simple cells) are needed. In the present study,

the purpose of which is to computationally investigate the

relationship between a values and the neural responses, we do

not focus on those additional set of neurons. Another note

concerns the two-dimensional nature of neuronal receptive fields:

strictly, Eq. (5) needs to contain integration not only over the

spatial frequency but also over the orientation, considering the

neuron’s orientation tuning. In the present study, however, we

omit the integration over the orientation since we consider

spatially isotropic visual images. Regarding this issue, note that the

precise form of the function inside the integral of Eq. (5) depends

on how we model the neuron’s two-dimensional tuning over the

orientation and the spatial frequency. To the best of our

knowledge, however, there is not physiological consensus about

what a neuronal orientation tuning is like for f that deviates from

the preferred spatial frequency, and we adopt the most simple

formulation as in Eq. (5), which is comparable to the previously

proposed models [3,21,23–25].

From Eqs. (1), (4) and (5), we have (see Appendix S1 for the

derivation)

li að Þ~cs
ffiffiffiffiffiffi
2p
p w1{a

i

z að Þ exp
1{að Þ2s2

2

 !
: ð6Þ

Figure 1c shows the population activity evoked by images

satisfying the power law with different a values. Of particular

note, Eq. (6) suggests that the responses li are constant across the

whole units when a~1, as illustrated by the thick flat line in

Fig. 1c. Equation (6) represents the cell’s tuning profile concerning

the steepness of the amplitude spectra falloff (sometimes called ‘a-

tuning’). This property has been pointed out previously by other

Figure 1. Modeling of visual stimuli and neuronal responses. (a) Models of amplitude spectra of images, where the amplitude spectrum of
each image satisfies cf {a=z að Þ. Each curve represents a spectrum with a particular falloff parameter a from 21 to 2. Contrast-determining parameter
c was set to 0.05 for each image. The thick curve represents the spectrum of an image with a~1. (b) Spatial frequency tuning of model neurons
within a hypercolumn. Seven example neurons with most-preferred frequencies are spaced evenly from 0.01 to 10 cycles/deg (colored from red to
indigo). The tuning curves are modeled with log Gaussian functions. (c) Demonstration of population activity evoked by the images satisfying the
power law with different a values. Dot colors are matched to those in panel b. Each curve links the unit activities evoked by a common stimulus. The
thick flat line represents the responses to the image with a~1. (d) Hypothetical response curves as functions of a, derived from activity profiles
shown in panel c.
doi:10.1371/journal.pone.0009704.g001
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authors [3,21,23–25]. Figure 1d shows the hypothetical response

curves as functions of a. Whether neurons actually have tunings

for a is testable by conducting electrophysiological recoding with

appropriate set of visual stimuli.

Equation 5 assumes a linear relationship between the neural

response and the amplitude in the visual stimulus. It might be an

oversimplified model, considering nonlinearities in the actual

cortical neurons. Nevertheless, it is useful to check what is

reproduced (or failed to be reproduced) by the model for

understanding its characteristics. We will see later that such a

simple model can replicate, at least in a qualitative aspect, the

experimentally observed complexities of human psychophysical

ability to discriminate changes in amplitude spectrum slope. We

also consider a model that takes into account the neural response

nonlinearities as introduced in the next subsection.

Neuronal interaction within a hypercolumn
Equation (5) ignores interaction among the units. In an actual

cortex, however, there seems to be a gain control process within

the hypercolumn that reduces the difference between the unit

responses to high and low contrast natural images [26]. To

account for the neuronal interaction, contrast normalization

models [27–29] often suppose divisive modulation of cell responses

with the gain determined by the pooled activity of a large neural

population in the cortical neighborhood (within the hypercolumn).

Here we divide each unit response li að Þ (in Eq. (6)) by a power of

the pooled neuronal activity within the hypercolumn so that the

model represents the response gain control in the neuronal

population:

li að Þ~ lb

Z að Þp cs
ffiffiffiffiffiffi
2p
p w1{a

i

z að Þ exp
1{að Þ2s2

2

 !
, ð7Þ

where Z að Þ is a divisive normalization term that is defined by

Z að Þ~ 1

N

ð
dw n wð Þ cs

ffiffiffiffiffiffi
2p
p w1{a

i

z að Þ exp
1{að Þ2s2

2

 !
: ð8Þ

Here we introduced a density function n wð Þ, which describes the

distribution of units over the preferred spatial frequency w. The

constants lb and p in Eq. (7) are the model parameters that control

the order of mean neural activity and the strength of the gain

control, respectively. Note that Eq. (7) is reduced to Eq. (6) by

setting lb~1 and p~0.

Decoding
We assume the Poisson spiking of each unit, where the log

likelihood of the falloff parameter a can be written in terms of the

hypothetical mean firing rates lif g as

ln P ri Dað Þ~T ri ln li að Þ{li að Þzri ln T{
ln riTð Þ!ð Þ

T

� �
, ð9Þ

where T is the time interval during which the spikes are sampled

(see Appendix S2 for the derivation of Eq. 9). If we assume the

independent spiking of the units, the likelihood based on the

responses of the whole unit is given as

ln P rDað Þ~T
XN

i~1

li að Þ, ð10Þ

where li að Þ represents the term in parentheses on the right-hand

side of Eq. (9). We consider the maximum likelihood estimator for

the falloff parameter, given as

âa:arg max
(a)

ln P rDað Þ: ð11Þ

As a measure of the variability in the estimate âa, we can use the

Fisher information of the neural population code [30–34]. Fisher

information enables us to quantify how accurately the subject can

distinguish two stimuli having slightly different values of amplitude

spectrum slopes a and azda. Moreover, Fisher information is

mathematically related to experimentally observable values such

as subject’s discrimination threshold [31,33] (see, for example, [34]

for an introduction to the use of Fisher information in a framework

of neural population coding). For the assumption of unbiased

estimation, the inverse of the Fisher information gives a lower

bound for the variability on a through the Cramér-Rao inequality:

Var âa½ �§J{1, ð12Þ

where J denotes the Fisher information concerning a. For the

assumption of independence of each neuronal firing, the Fisher

information can be written in a factorized form as

J að Þ~T
XN

i~1

J Local a; wið Þ, ð13Þ

where

J Local a; wið Þ:E {
L2li

La2
D
D
DD
a

" #
: ð14Þ

The value J Local a; wið Þ in the above equation represents the local

Fisher information per unit and per second. Performing the

necessary calculations (see Appendix S3) yields

J Local a; wið Þ~ l’i að Þð Þ2

li að Þ : ð15Þ

The value on the left-hand side of the above equation can be

interpreted as (the square of) the signal to noise ratio. At a

sufficiently large population size N, the summation in Eq. (13) can

be substituted by the integral over the neural distribution:

J að Þ~NT

ð
dw n wð Þ J Local a; wð Þ: ð16Þ

Discrimination threshold
Here we summarize the relationships between the Fisher

information and the experimentally obtained measures of human

performance, assuming a particular psychophysical setting. We

consider discrimination with two-alternative forced choice, in

which each trial presents two stimuli in random order; the two

stimuli have falloff parameters that are slightly different from each

other (say, a and azDa). The subject’s task is to determine which

of the two had the larger (or smaller) parameter (a series of

psychophysical studies proved that human subjects can perform

Discriminate Image Statistics
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this kind of task, [10–12,35]). For a large population of neurons,

the subject correct rate (CR) for the discrimination task around a

particular falloff parameter a is given by

CR að Þ~W d ’
. ffiffiffi

2
p� �

, ð17Þ

where W denotes the cumulative distribution function of the

standard normal distribution:

W xð Þ:
ðx

{?
dx’

1ffiffiffiffiffiffi
2p
p exp {

x’2

2

� �
: ð18Þ

The psychophysical measure of the discriminability d ’ between

two values a and azDa is represented in terms of Fisher

information as

d ’ að Þ~DDaD
ffiffiffiffiffiffiffiffiffiffiffi
J að Þ

p
ð19Þ

when the number of neurons is sufficiently large (e.g., [31,33]).

From Eqs. (19) and (19), we compute the discrimination threshold

at a with a given threshold value setting for the correct rate,

CRThresh, as

DaThresh að Þ~
ffiffiffi
2
p

W{1 CRThreshð Þ 1ffiffiffiffiffiffiffiffiffiffiffi
J að Þ

p : ð20Þ

Note that the discrimination threshold is inversely proportional to

the square root of the Fisher information J að Þ, regardless of the

setting of CRThresh.

Results

In this section, we check the plausibility of our model by

comparing its performance to experimentally obtained data.

Human performance at discriminating the amplitude spectrum

falloff parameter a has been a topic of debate in visual

psychophysics [8,10–12] since the first investigation conducted

by Knill et al. [10]. Hansen and Hess [8] established that human

performance at discriminating a differs quantitatively and

qualitatively depending on the retinal position (i.e., the fovea or

the parafovea) at which stimulus patches are presented. The

difference between the fovea and the parafovea is most apparent

for stimuli with relatively small a values (av1:0). For the

parafovea, the discrimination threshold peaks at a small a whereas

no peak is observed for foveal presentation, as the data show in

Fig. 2a. It has not been explained by previously proposed

computational frameworks why there is such a qualitative disparity

between the fovea and the parafovea, and why the sensitivity in the

parafovea forms an N-shaped curve [8]. We show that this aspect

of the fovea-parafovea difference can be explained with the

current model, assuming different cell distributions n wið Þ in Eq.

(16) for the fovea and for the parafovea.

Distribution of neurons explains fovea-parafovea
difference

For simplicity, we first ignore the neuronal interaction within

the hypercolumn (i.e., p~0 in Eq. (7)). Here, we show that this

simple model is enough to reproduce the complexity of human

performance at a discrimination. The effect of neuronal

interaction is considered in the next subsection by comparing

the model performance for two cases, p~0 and 0:9. To get an

intuitive understanding of how the qualitative difference between

the fovea and the parafovea arises in the model, it is illustrative to

follow the process by which the Fisher information is derived from

the a-tuning profile of the neural population. Figure 3 depicts the

procedure for computing the Fisher information from the

neuronal tuning curves. The panels a–c and d–f in the figure

show the cases for the fovea and the parafovea, respectively. The

model parameters were set to be the same for both conditions

except that the fovea had a broader distribution of the unit’s

preferred spatial frequency, covering a relatively higher frequency

domain than the parafovea; this assumption is in qualitative

agreement with an electrophysiological study that intensively

investigated the spatial frequency selectivity of Macaque striate

cells with various loci of receptive fields [22]. The peak preferred

spatial frequencies of the model units varied from 0.01 to 10

cycles/deg for the fovea and from 0.01 to 1 cycles/deg for the

parafovea, with the total number of units N kept the same between

those two conditions. Here we simply assumed uniform distribu-

tions for both cases; more detailed estimations of the neuronal

distributions are considered in the next subsection. Figures 3a and

d, respectively, show the a-tuning curves, l að Þ, of seven example

Figure 2. Empirically and theoretically obtained thresholds for discriminating falloff parameters a. (Left panel) Data extracted from
Hansen and Hess [8]. (Right panel) The discrimination thresholds predicted by the current models of multiresolutional population codes. Brown and
red curves show the thresholds for fovea and parafovea, respectively.
doi:10.1371/journal.pone.0009704.g002
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model neurons in the fovea and the parafovea (the neurons in

panel a are identical to those shown in Fig. 1d). Note that their

vertical scales are different. The inset figures show the spatial

frequency tuning curves of each of seven neurons, illustrating the

difference in the distributions of the peak preferred frequencies

between the fovea and the parafovea. Figures 3b and e show the

derivatives of the tuning functions differentiated by a (i.e.,

dli=da). The absolute values of those derivative functions

represent the sensitivities of the units to a slight fluctuation around

particular a values. The Fisher information measures are given by

computing the ratio of the derivative and the mean firing rate, as

we have seen in Eq. (15). Figures 3c and f show the Fisher

information carried by each individual unit and the whole

population. Each of the thin colored curves in the figures

represents the contribution of each unit J Local að Þ to the total

Fisher information J að Þ. The thick black curves represent the

information averaged over the population (i.e., J að Þ=N). Notably,

in the parafoveal condition the average Fisher information shows

clear double peaks (the primary peak around a~0:8 and the

secondary peak around a~0:1), whereas the secondary peak is

almost ignorable in the foveal condition.

Figure 2 compares the empirically and theoretically obtained

thresholds for discriminating the falloff parameter a. The left panel

of Fig. 2 shows the data cited in Hansen and Hess [8]. The brown

and the red curves in the figure represent the discrimination

thresholds for the fovea and the parafovea, respectively. The right

panel of Fig. 2 shows the discrimination thresholds computed with

the current models. Clearly, the model captures the qualitative

characteristics of the real data. Most importantly, the threshold

peak in the parafoveal condition at a small a is replicated with the

model. Because the discrimination threshold DaThresh að Þ is given

by a decreasing function of the Fisher information as Eq. (20), the

existence of double peaks of the information in the parafovea

(Fig. 3f) indicates the presence of two threshold minima with the

maximum between them. On the other hand, in the foveal

condition, only a faint threshold peak is observed, reflecting that

the secondary peak of Fisher information is much more moderate

than the primary peak (Fig. 3c). Although the model replicates the

qualitative structure of the experimental data, there are some

quantitative differences. The model is inefficient for the foveal

threshold at a*0, and for the foveal and parafoveal threshold at

aw1:2. Also, the early peak in parafoveal threshold appears at an

alpha that is smaller than the data, and the peak height from the

flat region preceding it is much higher in the model than in the

data. In the next subsection, we show that these quantitative

departures from the data is diminished when we use the model

Figure 3. Derivations of Fisher information carried by neural populations. (a–c) Fovea. Preferred spatial frequencies of the units varied from
0.01 to 10 cycles/deg. (a) Hypothetical a-tuning curves (identical to Fig. 1d). Inset illustrates the spatial frequency tuning curves and the distribution of
the preferred frequencies of the model neurons (same as shown in Fig. 1b). The figure shows seven example units with preferred frequencies spaced
evenly from 0.01 to 10 cycles/deg (colored from red to indigo). (b) The derivative functions of the a-tuning differentiated by the falloff parameter (i.e.,
dl=da). (c) The local Fisher information of the individual units (thin colored curves) and their average (i.e., information per unit; thick black curve).
Colors of curves in panels b and c are matched to those in panel a. (d–f) Same as (a–c), but computed for the parafovea, where the units’ preferred
spatial frequencies varied from 0.01 to 1 cycles/deg. Seven example units, whose preferred frequencies are spaced evenly from 0.01 to 1 cycle/deg
(colored from red to indigo).
doi:10.1371/journal.pone.0009704.g003
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taking into account the response gain control within the

hypercolumn.

Model fitting and estimation of cell distribution
The observation in the previous subsection shows that the

simplified model, which ignores the effect of neuronal interaction,

succeeds in qualitative reproduction of the experimental data. This

indicates that the neuronal interaction need not be primarily

considered for explaining the human sensitivity to the changes in a
value, especially when we focus on the origin of its qualitative

structures such as the fovea-parafovea difference and N-shaped

sensitivity curve seen in the parafovea. On the other hand, the

interactions among neurons should be taken into account when we

aim at simulating more realistic reactions in the cortex. In this

subsection, we consider how neuronal interaction within a

hypercolumn affects the performance of the model. The neuronal

responses to stimuli presented at suprathreshold contrasts are

attenuated by inhibitory connections in the contrast gain control

process [36–38]. It is widely accepted that the perceptual ability to

discriminate grating contrast is enhanced or degraded by a

surrounding or superimposed spatial context, depending on the

stimulus contrast, orientation and spatial frequency [39–56].

We tried two parametrically different models for fitting the

experimental data: one with response gain control within a

hypercolumn (implemented by setting p~0:9) and the other

without (p~0). Here, we again used the experimental data of

Hansen and Hess shown in Fig. 2 and varied the neuronal

distribution n wð Þ as the model parameters to replicate the human

subject performance. To make the problem numerically solvable,

we discretized the neuronal distribution; in both models, we

divided the preferred spatial frequencies into 50 bins that are

evenly arrayed in log scale and varied the number of neurons that

prefer spatial frequencies within each bin as a parameter. Note

that both of the models have the same number (i.e., 50) of free

parameters. Figures 4a and b compare the fitting performance of

the two models. We found that, for the present problem settings,

the model with response gain control provides better fitting

performance than the one without. This is because the model with

gain control more precisely locates the peaks and dips of the plot,

although both models can reproduce the qualitative structures

(fovea-parafovea difference and N-shaped threshold curve in the

parafovea) of the subject’s sensitivity. In Fig. 5c, the experimental

data and the fitted curves using the model with gain control are

shown. Figure 5d depicts the neuronal distributions in fovea and

parafovea estimated by fitting the data to the model with gain

control. The estimated neuronal distributions in the fovea and

parafovea are different. Consistent with the observation in the

previous subsection and an electrophysiological study [22], the

foveal neurons are estimated to have a tendency to prefer higher

spatial frequency than the parafoveal neurons.

Taking into account the neuronal interaction within the

hypercolumn causes a subtle change in the neuronal a-tuning

and information distribution over the cell population. In the model

without neuronal interaction, as shown in Figs. 1c and d, the

Figure 4. Estimating neuronal distributions so that they fit the model prediction with the data. Data are the same as in Fig. 2. (a,b) Model
predictability (a) without and (b) with gain control within hypercolumn. In both models, we fitted the data by varying the numbers of neurons as the
fitting parameters. (c) Data fitting by model that takes into account gain control within hypercolumn. (d) Estimated neuronal distributions using the
model with gain control. The arrows above the histograms indicate the mean preferred spatial frequency of neurons within foveal (brown) or
parafoveal (red) hypercolumns. We set the model parameters lb and p in Eq. (7) as lb~20 and p~0:9.
doi:10.1371/journal.pone.0009704.g004
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dynamic ranges of neurons largely differed between those with

high (red) and low (indigo) preferred spatial frequencies. This

originates from the difference in their tuning widths; that is, high-

frequency-selective neurons have broader tuning widths than low-

frequency-selective ones as in Fig. 1b), and are more dramatically

affected by changes in the shape of the amplitude spectrum. From

Fig. 1d, it seems that most of the neuronal firing finish by the time

alpha gets to one; although there are neurons having response

peaks around a = 1 (such as the neuron shown by the red tuning

curve in Fig. 1d), their responses are not conspicuous because of

the large difference in their response dynamic ranges. In addition,

the difference in the dynamic ranges resulted in non-uniformity in

the quantities of information carried by individual neurons in the

current model, as shown in Figs. 3c and f; the figures indicate that

the high-frequency-selective neurons, generally, carry much more

information than low-frequency-selective ones. Figure 5 shows the

a-tuning curves of units with the same preferred spatial frequencies

as in Fig. 1d but derived with response gain control within the

hypercolumn. The gain control among the units reduces the

difference in the neuronal dynamic ranges. We can see the units

having larger responses around a~1, compared to the case in

which the gain control was not taken into account. Also, it works

to uniformize the unit contributions to the total information

transmission. Figure 6 demonstrates how the information

distribution is changed by incorporating the response gain control

among neurons. The abscissa shows the ranks of units ordered

according to amount of contribution to the total value of Fisher

information; the ordinate indicates the unit-wise share of the

contribution (percentage of total information conveyed by the

whole population), which is given here as the average of local

Fisher information J Local within {1vav2 (the change in the

averaging range does not affect the quality of result). We sampled

the 50 model neurons with different preferred spatial frequencies

that are considered in the above, and used the distributions of cell

numbers estimated from the experimental data (Fig. 4d). Without

gain control, the great extent of information is carried by the first

20 units (dashed curve). In contrast, model neurons with gain

control show longer-tailed distributions (brown and red curves),

indicating that the stimulus information is shared by neurons with

a wide variety of preferred spatial frequencies. An evident

advantage of such a distributed representation of information is

its robustness to cell death. The neurons preferring similar spatial

frequency are located near each other as they make the columnar

structures in the cortex [16], and they can be simultaneously

damaged by injury or obstruction of blood vessels. Information

sharing by neurons in various spatial frequency columns is

expected to reduce the risks of information loss caused by such

biological damage.

Discussion

We have proposed a computational model of neuronal

encoding and decoding of natural image statistics. We hy-

pothesized the elicited population activities of spatial-frequency

selective neurons, which are observed in the early visual cortex.

This work provides the first clear modeling of neurophysiolog-

ical substrates concerning human perceptual resolution for

discriminating the amplitude spectrum slopes in natural scenes.

We have also shown that human sensitivity for the discrimina-

tion of the spectrum falloff parameter a suggested by the current

model is consistent with experimental data. The model

suggested that the differences between performance in fovea

and parafovea could be explained by taking into account the

distributional difference of cortical neurons over preferred

frequencies. Further, the model predicted that the neurons

selective to spatial frequencies have asymmetric and fat-tailed

tuning curves for the amplitude spectra slopes. This prediction

on the ‘a-tuning’ of the frequency-selective neuron can be

directly tested by physiological experiments.

In the current model, the distributional properties of neuronal

stimulus preferences play a critical role in reproducing the

qualitative features seen in human psychophysical performance.

Furthermore, fitting result of the experimental data shows that the

model taking into account the intra-hypercolumn gain control

explains well the human performances from the quantitative view

points. The cell distributions estimated from the data suggested

that the neurons in the fovea tends to prefer higher spatial

frequency than in the parafovea, which is consistent to the

physiological insight in animal cortex. The effects of a change in

Figure 5. Hypothetical response curves as functions of a with
model that takes into account gain control within hypercol-
umn. The seven representative neurons in the foveal condition, in
which the neuronal distribution is estimated as shown in Fig. 4d (brown
histogram). The most-preferred frequencies of sampled neurons are
spaced evenly from 0.01 to 10 cycles/deg (colored from red to indigo).
doi:10.1371/journal.pone.0009704.g005

Figure 6. The unit contribution to the total Fisher information
carried by the whole population, ranked according to the
proportions of contribution. For each unit, we calculated the
average of unit-wise Fisher information J Local within {1vav2, and
then analyzed the averaged contributions for 50 neurons having
different preferred spatial frequencies between 0:1vwv100, which are
the same as those used in the model fitting in Fig. 5. When compared to
the case for no neuronal interaction (gray line), the models with
response gain control within the hypercolumn suggest more broad
distributions of information both in fovea (brown) and parafovea (red).
Note the slightly different result between fovea and parafovea when
considering gain control among neurons, because the distribution of
cell number n wð Þ affects the a-tuning curves of the individual units.
doi:10.1371/journal.pone.0009704.g006
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neuronal distribution have not been a central topic in conventional

modeling studies. However, the present results clearly demonstrate

that precise estimation of the neuronal distribution is important for

linking microscopic neurophysiological phenomena and macro-

scopic human behaviors.

Relation to other computational models
In this paper, we modeled neuronal representations of image

statistical values (amplitude spectrum slopes) assuming a

population of cells with various preferred spatial frequencies.

The similar idea of multi-resolution representation of natural

image was previously proposed by Párraga et al. [57] in a

different context. They reported a success of the multi-resolution

model in explaining human psychophysical ability to discrimi-

nate small changes in morph sequences of natural objects with

various amplitude spectrum slopes. Their and our models differ

in several points: first, it was not revealed in the previous work

whether and how the value of amplitude spectrum slopes

themselves are distinguished based on the multi-resolution

representation. Second, they did not provide explicit model of

the neuronal firing stochasticity, and thus it was difficult to

interpret the human perceptual performance in terms of the

variability in neuronal coding. In the present study, assuming the

Poisson spike generation, we have related the stochastic neural

activity to the human perceptual ability through the Fisher

information as a measure of the neural encoding accuracy.

Third, in previous study it was also not clarified how the cell

distribution characterizes of the encoding performance by a

whole cell population in the amplitude spectrum discrimination.

We have found that the expected fovea-parafovea difference in

the cell distribution over the preferred spatial frequency would

cause a qualitative disparity among the psychophysical skills in

the fovea and the parafovea, which was not demonstrated

previously.

Another topic concerns the population coding that represents

shapes of functions. Because a natural image has a broad

spectrum over the spatial frequency, the neuronal response to it

can be seen as representing not a single value but a function,

such as j f ; að Þ. The population coding that represents a

function is known as distributional population code [58,59]. While

the original distributional population code aims to reconstruct

the entire form of the function, our current focus is to infer its

control parameter a. In the present study, we simply assumed

that the amplitude spectrum of natural images exactly followed

the power law. This is equivalent to assuming an infinitely thin

prior probability distribution over the spectrum function j fð Þ,
that is,

P j fð ÞDað Þ~d j fð Þ{cf {a=z að Þð Þ, ð21Þ

where d is the delta function. Under this assumption, the

neuronal responses to a natural image are represented by a

standard population code that encodes a but not f . An actual

natural stimulus, of course, has some fluctuation in the value of

j fð Þ around its mean cf {aÞ=z að Þ, so we can consider its

distribution P j fð ÞDað Þ with nonzero variability. In this case,

the inference of the falloff parameter a corresponds to

hyperparameter estimation in the framework of a hierarchical

Bayesian estimation.

Extension of the current work
One possible direction for extension of the current model would

be introducing a prior distribution over a. Under such a Bayesian

decoding scheme, the estimated a values are biased by the prior

distribution, which represents the knowledge about image statistics

observed in a natural environment (e.g., a&1). An interesting issue

is to consider the subject’s perception of the image in those

situations. Visual image reconstruction based on knowledge about

typical natural image statistics can provide powerful explanations

for a wide range of brightness illusions [21].

Another direction is modeling more complex structures of

natural scene statistics. This would be important especially when

we consider image categorization. For example, Torralba and

Oliva [60,61] proposed more elaborate computational algorithms

for image categorization using image statistics of natural scenes. In

those models, the stimulus statistics are characterized by a greater

level of detail, including asymmetries among the shapes of spectra

falloff in different directions (i.e., vertical or horizontal, etc.). At the

present stage, little is known about whether actual nervous system

computes such an advanced type of image statistics. Taking into

account the stochasticity of neuronal firing, more complex model

of image processing, rather than the calculation based on the

simple power law, would be related to human performance within

the same framework.

Experimental predictions
Our model provides two predictions that are both testable.

First, the model predicts changes in the discrimination threshold

following neuronal sensitivity modulation caused by adaptation

or spatial context. For example, adapting to high frequency

stimulus is considered to decrease neuronal response gains of

high-frequency selective neurons. The decrease in gain caused by

adaptation mimics a decrease in the number of neurons that

prefer high frequency stimuli. Second, the model also predicts

that we will have different experimental results when we use

visual stimuli that do not follow the power law (e.g., images

blurred by Gaussian filters). Subject sensitivities for discriminat-

ing such unnatural stimuli can show qualitative differences from

those for natural stimuli. For example, spatial blurring (or low-

pass filter) removes the high-frequency signals from images; under

the assumption of linearity, this manipulation emulates a decrease

in the number of high-frequency selective neurons in the cortex,

like what is expected to occur in visual adaptation (note that this

blurring procedure is not equal to just varying the a value

because the amplitude spectrum shape deviates from the

exponential function after this manipulation). Therefore, espe-

cially in the fovea, we might see the emergence of a parafovea-

like peak in the discrimination threshold when we use blurred

natural images.
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