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Introduction
Renal cell carcinoma (RCC) is placed sixth in the 
diagnosed type of cancer in men and is at the 10th 
place in women.1,2 In recent decades, the growing 
availability of non-invasive advanced radiological 
techniques to investigate non-specific abdominal 
and musculoskeletal pain has led to a steady 
increase of incidental kidney lesions, which are 
more frequently small, asymptomatic, and clini-
cally localized; indeed, up to 50% of all diagnosed 
renal lesions are considered small renal masses 
(SRMs; i.e. ⩽4 cm in diameter).3–5 Moreover, up 
to 30% are benign at final histology (i.e. after rad-
ical or partial nephrectomy),6–8 while a non-negli-
gible proportion of these lesions have slow grow 

rate. In these cases, any treatment might result in 
an overtreatment.9

The current diagnostic work-up with standard 
imaging tools (ultrasound, computed tomogra-
phy (CT), and magnetic imaging resonance 
(MRI)10 is still hampered by a suboptimal ability 
to correctly distinguish RCC from all benign 
lesions in the pre-operative setting.11–13 Tissue 
sampling by renal lesion biopsy has shown high 
diagnostic accuracy for RCC; however, it is an 
invasive procedure and difficult to perform in 
some lesion localization.10,14 Renal lesion biopsy 
has a high non-diagnostic rate (approximately 
15% and erroneous diagnoses (approximately 
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10%). This is somehow related to tumor hetero-
geneity.15–17 Computer-aided diagnosis (CAD) 
using artificial intelligence (AI) and its subset 
machine learning (ML; and state-of-the-art ML 
approach deep learning (DL)) are a new area of 
interest in medical research.18 Radiomics aims to 
help clinicians to improve the work-up and treat-
ment of several oncological diseases, by mixing 
the qualitative features quantitative data obtained 
through imaging tools.19–23 Radiomics combines 
and analyses the mix of these features and data 
from radiographic digital images,23 develop 
descriptive and predictive models, combining 
image features and phenotypes with gene and 
protein signatures.23,24 Specifically for kidney 
lesions, radiomics, by capturing subtle features 
that might escape human identification, has 
shown to enhance the diagnostic, prognostic, and 
predictive power of conventional radiological 
techniques.6,10,14,25,26 Aim of this comprehensive 
literature review is to provide a holistic overview 
of the actual role of radiomics in kidney lesions 
assessment and to identify the future opportuni-
ties in preoperative diagnosis of renal lesions.

Materials and methods
PubMed–Medline database and clinicaltrials.gov 
were used to identify relevant, original studies 
from the last 7 years (until July 2022) on the 
topic. We had identified 93 research articles, of 
which 49 were published in the last 7 years. 
Earlier six studies has also been included in the 
analysis to reflect the data from leading studies. 
Data from seven ongoing clinical trials were also 
evaluated. In Figure 1, we have summarized the 
search methodology performed using the 
Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines.27

Terms used for search were: kidney neoplasms, 
renal cell carcinoma, AI, ML, DL, and radiomics, 
evaluation, differentiation, characterization, and 
assessment. Inclusion criteria were: (1) studies 
applying radiomics for the study of renal masses, 
(2) articles written in English language, and (3) 
studies with a well-documented methodology to 
allow replication. Articles not related to kidney 
tumors and non-original articles (review publica-
tions, editorials, and replies to comments) were 

Figure 1. PRISMA methodology for identification of radiomics and renal lesions studies.
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excluded from the analysis. Following the 
PRISMA guidelines, we have evaluated the iden-
tified studies. Published articles were analyzed if 
population of patients were with kidney tumors; 
intervention was the evaluation with CT, MRI, 
positron emission tomography (PET-CT) and 
contrast-enhanced ultrasound (CEUS)-based 
radiomics. The comparator was the radiologists’ 
subjective image assessment. The aim was to ana-
lyze the role of radiomics and to assess the clinical 
aspects of radiomics in kidney tumors. Data were 
extracted after careful evaluation of the full text of 
the articles for this analysis. The data used in our 
review have been identified from each research: 
author, clinical outcomes and gold standard, the 
radiological modality, the prospective or retro-
spective design, the patients involved, radiomics 
method and results.

Results
The search of online databases yielded results on 
the topic on radiomics and kidney cancer that 
could be classified in studies that searched the 
differentiation of benign and cancerous tissue, of 
angiomyolipomas (AMLs) from RCC, of oncocy-
toma from RCC, between different subtypes of 
RCC. Also the prediction of Fuhrman grade, 
response to therapy, and prediction of gene muta-
tions of molecular biomarkers have been identi-
fied. AI offers the unique opportunity to handle 
the huge volume of data being created by radiom-
ics features extraction from kidney imaging and 
to combine these with clinical and pathological 
variables to provide even more accurate predic-
tion of the outcome discussed in previous para-
graphs. Figure 2 briefly depicts the process of 
radiomics research.

Differentiation of benign from cancerous kidney 
tumors
Radiomics in renal malignancy aimed to improve 
the accuracy in distinguishing malignant versus 
benign histology and in case of renal malignancy, 
of different subtypes, to provide the best and tai-
lored management. The possibility to obtain an 
abundance of quantitative features such as histo-
grams, textures, and shapes extracted via high-
throughput data from CT and MRI has surely 
influenced the recent research toward this 
direction.6,28

One of the first studies to assess CT radiomic fea-
tures and texture analysis in renal tumors was 
performed by Yu et al.29 on a total of 119 patients. 
Utilizing histogram-based features of skewness 
and kurtosis, the authors reported an area under 
the curve (AUC) of 0.91 and 0.93, respectively, 
in differentiating renal cancer from oncocytoma 
(ONC) with AUC of 0.92 in differentiating ONC 
from other tumors.14,29 Analogously, Coy et al.30 
reported, for 200 patients with 200 unique 
masses, an AUC of 0.85 of CAD in discriminat-
ing malignant versus benign lesions. Despite the 
limitations of only comparing clear cell (cc) RCC 
and ONC and using two different contrast agents, 
the study uncovered the high potential of radiom-
ics and ML in analyzing several texture-analysis 
features to distinguish malignant from benign 
kidney lesions.31 A further study by Erdim et al.32 
aimed to investigate the possibility to identify 
benign from cancerous masses through CT and 
ML texture analysis on a total of 79 patients with 
84 renal masses (21 benign and 63 malignant). 
With a total number of 198 features for unen-
hanced CT and 244 for contrast-enhanced CT, 
ML based on random forest (RF) algorithm 

Figure 2. Radiomics flow analysis.
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radiomics, yielded an accuracy in distinguishing 
renal cancer from other benign renal masses 
90.5% with an AUC of 0.915, which, eliminating 
collinear features, increased to 91.7% and 0.916, 
respectively.32 Zhou et al.33 reported, in 192 
patients with renal cancer analyzed via the 
InceptionV3 model, a DL radiomics model, an 
AUC of 0.97 for region of interest (ROI) data set 
and 0.93 for rectangular box region (RBR) data 
set. In a larger cohort of 290 renal lesions, Sun 
et al. selected 57 features to provide a classifica-
tion model of RCCs versus other subtypes versus 
angiomyolipomas and ONCs. The resulting radi-
omic ML model yielded an AUC of 0.93–0.94 in 
differentiating RCCs from fat–poor benign renal 
lesions.34,35 Uhlig et al. proposed a radiomic 
approach using CT features to discriminate 
malignant and benign clinical T1 renal masses, 
involving 94 patients for a total of 76 malignant 
lesions and 18 benign lesions. The best ML algo-
rithm was the RF, which achieved the highest 
AUC, with 0.83 when compared with radiologists’ 
assessment (AUC = 0.68). Interestingly, this result 
was obtained with 18 different CT scanners, con-
firming the role of radiomics in limiting the inter-
observer and inter-machine variability and 
providing good results even in a pragmatic sce-
nario.36 In another study by Nassiri et al.,37 per-
formed on 684 patients with renal masses 
confirmed at CT imaging, two radiomics predic-
tive models, the REAL AdaBoost and the RF, 
reported the best predictive performance with an 
AUC of 0.84 and 0.77, respectively, to distin-
guish benign from cancerous lesions overall and 
for SRMs when coupled with clinical variables. 
Finally, a large retrospective study by Yap et al.38 
involving 735 patients, showed, for different radi-
omic features (shape-only models, texture-only 
models, and combined models) increasing AUC 
from 0.67 to 0.75 in distinguishing malignant 
from benign renal tumors.

Similar studies have reported the efficacy radiom-
ics using MRI in discriminating benign from 
malignant masses, utilizing the differences in con-
trast enhancement, heterogeneity, presence of 
cystic components, and signal intensity at T1, 
T2, and apparent diffusion coefficient (ADC) 
map signal. Xi et al. showed, analyzing 1162 renal 
lesions, a variable AUC for different clinical radi-
omics features that ranged from 0.52 to 0.76 of 
the ensemble DL model. Compared with expert 
radiologists, this predictive model reported higher 
accuracy, sensitivity, and specificity with, respec-
tively, 0.70 versus 0.60, 0.92 versus 0.80, and 0.41 

versus 0.35.39 A smaller study by Said et al. involv-
ing 125 patients, reported, among significant 
qualitative and quantitative radiomic features, an 
AUC that ranged between 0.62 and 0.90, taken 
singularly. The related ML model reported 
instead, on validation sets, an AUC of 0.73 to dif-
ferentiate RCC from benign lesions.40 More 
recently, in a 2022 study performed by Xu et al.41 
on 217 patients, retrospectively analyzed, three 
DL models, created with ResNet-18 model, were 
evaluated using RF based on T2 weighted-imag-
ing (T2WI) alone, diffusion-weighted imaging 
(DWI) alone, and an overlapping of the two 
image data sets to differentiate benign from 
malignant renal masses, yielding an AUC of 
0.906 for T2WI, 0.846 for DWI and 0.925 for 
the combined model. Analogously, Massa’a 
et al.42 investigated whether a high number of ML 
algorithms in 160 patients retrospectively ana-
lyzed, reporting the best results for the support 
vector machine (SVM) trained on T2WI (AUC 
= 0.79). Similar results were obtained for T1WI 
4-min delayed features. Interestingly, the combi-
nation of radiomics features in this study did not 
raise the performance of the ML models. A sum-
mary of current studies that aimed to differentiate 
normal tissue from cancerous tissue is incorpo-
rated in Table 1.

Differentiation of AML from RCC
AML accounts for 40–55% of resected benign 
renal tumors and is characterized by the identifi-
cation at the imaging of macroscopic fat sur-
rounding and ‘stuffing’ the lesion.43 Despite this 
peculiar characteristic, some AMLs could contain 
low intra-tumor fat that could not be detected by 
imaging.44 The accurate characterization of those 
masses is, therefore, crucial due to the benign 
course and favorable prognosis of AML.45 
Quantitative approaches have been developed 
with the aim of detecting minor alterations in 
AML compared with RCC. One of the first stud-
ies to utilize a radiomics approach for this differ-
entiation was performed by Feng et al., which 
evaluated the capabilities of 42 CT-extracted fea-
tures in a limited sample of 58 patients. In par-
ticular, 16 features were characterized by a 
significant intergroup difference in correctly diag-
nosing AML. The best features were selected via 
the SVM recursive feature elimination that 
reached an AUC of 0.939.46 A similar study 
involved 95 patients for a total of 171 histopatho-
logical results from a single institution.47 Features 
were obtained from three phases, which included 
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Table 1. Radiomics in studies differentiating benign from malignant kidney lesions.

Author Clinical outcomes and 
gold standard

Imaging 
modality

Study design
No. of patients

Imaging method Results

Coy 
et al.30

-  Discriminating 
benign lesions from 
cancerous lesions

- Histology (surgery)

CT Retrospective
n = 200

Semi-automated method using in-
house-developed software (U.S. FDA 
510 K)30

Characterization of ccRCC, chRCC, 
papRCC, oncocytoma and AML had 
AUC of 0.850, 0.959, 0.792, and 0.825

Yu 
et al.29

-  Discriminating 
benign lesions from 
cancerous lesions

- Histology (surgery)

CT Retrospective
n = 119

Semi-automated method with manual 
segmentation. MATLAB software to 
perform texture analysis. SVM for 
classifying different tumor types

Histogram features skewness and 
kurtosis had the best discriminatory 
results (AUC = 0.91 and 0.93, 
respectively). ML AUC = 0.91–0.92

Zhou 
et al.33

-  Discriminating 
benign lesions from 
cancerous lesions

- Histology (surgery)

CT Retrospective
n = 192

Semi-automated method with manual 
segmentation. Preprocessing with 
Inception V3 software, pretrained on 
ImageNet and CNN models

Model trained on slice data set 
reported the worst result, with an ACC 
of 0.69. ROI data set reported ACC of 
0.97, while RBR had an ACC of 0.93

Erdim 
et al.32

-  Discriminating 
benign lesions from 
cancerous lesions

- Histology (surgery)

CT Retrospective
n = 79

Semi-automated method with manual 
segmentation. Feature extraction via 
MaZda software

RF algorithm has been identified as 
having good prognostic potential with 
ACC of 0.905 and AUC of 0.905

Uhlig 
et al.36

-  Differentiation 
of chrRCC and 
oncocytoma

- Histology (surgery)

CT Retrospective
n = 94

Semi-automated method with manual 
segmentation. Feature selection with 
recursive feature elimination to build 
ML algorithms (RF) modeled to predict 
malignancy of specific renal mass

AUC of RF was 0.83, better than 
expert radiologists (AUC = 0.68)

Sun 
et al.34

-  Differentiation 
of chrRCC and 
oncocytoma

- Histology (surgery)

CT Retrospective
n = 290

Semi-automated method with semi-
automated segmentation via Python 
v3.6.1 software. Radiomics was 
performed on volume of interest (VOI)

SVM model achieved a SENS ranging 
from 73–90% and a specificity ranging 
from 89–91.7% in distinguishing 
malignant from benign lesions

Yap 
et al.38

-  Differentiation 
of chrRCC and 
oncocytoma

- Histology (surgery)

CT Retrospective
n = 735

Semi-automated method with manual 
segmentation. 3D models used 
decision tree analysis (RF and REAL 
AdaBoost)

Median AUCs 0.68–0.75 achieved by 
combined models

Nassiri 
et al.37

-  Differentiation 
of chrRCC and 
oncocytoma

- Histology (surgery)

CT Prospective
n = 684

Semi-automated method with manual 
segmentation. VOI and decision 
tree analysis model (RF and REAL 
AdaBoost) has been used

Prognostic model achieved an AUC 
of 0.84

Said 
et al.40

-  Differentiation 
of chrRCC and 
oncocytoma

- Histology (surgery)

MRI Retrospective
n = 125

Semi-automated method with manual 
segmentation. OsiriX software. 
Radiomics analysis was performed by 
MRI physicist utilizing MATLAB

ML models (RF) with best results 
obtained an AUC of 0.73 in 
differentiate benign versus malignant 
lesions

Xi et al.39 -  Differentiation 
of chrRCC and 
oncocytoma

- Histology (surgery)

MRI Retrospective
n = 1162

Semi-automated method with manual 
segmentation

Ensemble DL model reported the 
highest test ACC, SENS, and SPEC, 
also when compared with the 
radiomics model

Massa’a 
et al.42

-  Differentiation 
of chrRCC and 
oncocytoma

- Histology (surgery)

MRI Retrospective
n = 160

Semi-automated method with semi-
automated segmentation. HealthMyne 
software

Best algorithm (SVM) had ACC of 0.80 
and an AUC of 0.79

Xu 
et al.41

-  Differentiation 
of chrRCC and 
oncocytoma

- Histology (surgery)

MRI Retrospective
n = 217

Semi-automated method with manual 
segmentation. ROIs were manually 
outlined. DL used ResNet-18 architecture 
and radiomics models used RF

Best performance of DL model 
(combination of T2WI and DWI) AUC 
0.925

3D, three-dimensional; ACC, accuracy; AML, angiomyolipoma; AUC, area under the curve; ccRCC, clear cell RCC; chRCC, chromophobe RCC; 
CNN, convolutional neural network; CT, computed tomography; DL, deep learning; DWI, diffusion-weighted imaging; ML, machine learning; MRI, 
magnetic resonance imaging; papRCC, papillary RCC; RBR, rectangular box region; RCC, renal cell carcinoma; RF, random forest; ROI, region of 
interest; SENS, sensitivity; SPEC, specificity; SVM, support vector machine; T2WI, T2-weighted image; VOI, volume of interest.
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the pre-contrast, the corticomedullary, and the 
nephrographic exposures.47 Successively, an 
SVM algorithm has been developed to find the 
best classifiers for distinguishing AML and RCC. 
The best ML classifier reported an AUC of 0.96 
for this purpose, significantly higher than that for 
differentiating AML from non-RCC.47 With the 
increasing capabilities of radiomics in discrimi-
nating AML from RCC, other studies enriched 
the experience with this novel technology. Yang 
et al.,48 for example, extracted 774 radiomics fea-
tures from CT pictures to obtain the most dis-
criminative model, reporting an AUC of 0.917, 
with a sensitivity of 0.66 and a specificity of 0.1, 
while Ma et al.49 similarly constructed four single 
radiomics analysis logistic classifiers (which 
included five to seven features each one), to verify 
the proper diagnosis on 84 patients (22 with AML 
and 62 with RCC), reporting AUCs from 0.839 
to 0.950. Analogous results have been obtained 
by Nie et al. developing a radiomics nomogram 
for the preoperative discrimination of AML from 
RCC. The built radiomics signature obtained 
promising results in the training data set (reach-
ing an AUC of 0.879), which were confirmed in 
the validation set (AUC = 0.846) and four in the 
radiomics nomogram (AUC = 0.896–0.949). 
Also in this case, the number of features extracted 
were culled off from a massive number of 
CT-based features (over 2800).50 Interestingly, in 
a retrospective study on 163 patients (118 RCC 
and 45 AML), digital picture features extracted 
from the unenhanced phase and fed into an ML 
model were similarly able to accurately discrimi-
nate between AML and RCC, reaching an AUC 
of 0.90.51 Another radiomics approach consid-
ered the role of tumor and mini-peritumor fea-
tures to differentiate AML from RCC in a study 
performed by Ma et al. on 230 patients, for a total 
of 58 AML and 172 RCC. With 396 radiomics 
features extracted, the best results were obtained 
for the nephrographic phase with an AUC of 
0.726, followed by the corticomedullary phase 
(AUC = –0.694). This approach overcame the 
problem related to the accurate delineation of 
tumoral volume of interest (VOI).52 The same 
authors provided, in addition, a radiomics CT 
nomogram for discriminating AML from RCC,53 
built using selected features reaching an AUC, for 
this nomogram, of 0.968.54 More recently, Han 
et al. performed a retrospective research in 58 
patients with AML and 140 with RCC, patho-
logically confirmed, to evaluate the prognostic 
value of CT radiomics in distinguishing AML 
from RCC. Five classifiers were used, for a total 

of 1029 features. The corticomedullary phase and 
nephrographic phase achieved an adequate per-
formance (AUC = 0.767 and 0.783, respec-
tively).55 Similarly, Kim et al.56 assessed the 
predictive role of CT radiomics in 28 AML and 
56 RCC, reporting an AUC of 0.89, close to 
those of experienced radiologists (AUC = 0.78; 
Table 2).

For MRI, similar results were obtained. Razik 
et al.,57 performed an MRI analysis to distinguish 
AML, RCC, and ONC, reporting in an MRI-
based radiomics, an AUC > 0.8, with best per-
forming parameter based on the mean of positive 
pixels (MPP) on DWI (AUC of 0.891). Jian 
et al.53 instead, evaluated the combined use of 
MRI radiomics plus urinary creatinine for this 
purpose in a preliminary study, reporting the best 
AUC for the T2WI model (0.874), which 
increased up to 0.919 when combined with uri-
nary creatinine, proposing the addition of other 
variables to radiomics approach to improve the 
diagnostic capabilities. Matsumoto et al.58 dem-
onstrated instead that the ADC map was enough 
in differentiating AML from RCC via a radiomics 
MRI-based approach, reporting good AUC 
(0.87) in the validation group.

Differentiation between oncocytoma and RCC
Renal ONC is usually a benign solid kidney neo-
plasm, which accounts for about 3–7% of all 
renal tumors.59 Despite its benign natural his-
tory and excellent prognosis, ONC is usually 
treated with surgical resection due to the imag-
ing available tools to properly distinguish it 
from RCC.5 Indeed, due to the substantial 
overlap in imaging findings, differentiation of 
chromophobe RCC (chRCC) and clear cell 
RCC (ccRCC) subtypes through imaging 
modalities has traditionally been challenging.60,61 
Percutaneous biopsy represents a method to dif-
ferentiate ONC from RCC with the risks of 
false-negative results, as well as the difficulty to 
consistently discriminate between RCC and 
ONC on pathology.5,17 As a result, especially 
given the importance of distinguishing these two 
entities with such a difference in prognosis and 
tumor behavior, and to potentially avoid many 
unnecessary surgeries for benign lesions, a relia-
ble non-invasive method that could properly dif-
ferentiate ONC from RCC before surgery would 
be of particular clinical value. Several radiomic 
approaches have been proposed to this aim, 
showing promising results. Table 3 summarizes 
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studies evaluating radiomics approaches for the 
differentiation of ONC from RCC.

Baghdadi et al.62 aimed to design and evaluate a 
semi-automated method with the help of AI and 
image processing. To differentiate CD117-
positive ONCs from chRCC, the authors used 
convolutional neural networks (CNNs) on CT 
obtained images. Tumor-to-cortex peak early-
phase enhancement ratio (PEER) evaluation had 
an ACC of 95% in tumor type classification 
(100% SENS and 89% SPEC) compared with 
the histopathology results.

Chen et al.64 evaluated the clinical utility of voxel 
parameters of whole lesion (WL) from CECT 
scans to differentiate ccRCC from kidney ONC. 
When compared with single ROI-based enhance-
ment, WL enhancement did not perform well to 
distinguish ccRCC from ONC (AUC of 0.78 and 
0.72, respectively). A combination with histo-
gram parameters (AUC of 0.86) performed bet-
ter. According to these results, authors concluded 
that the use of this method is probably not justi-
fied to be further studied to be clinically 
implemented.

Coy et al.5 explored the performance of a DL 
lesion classifier, using a software library from 
Google (i.e. TensorFlow™ Inception), for the 
differentiation of ccRCC from ONC on CT 
images.25 In this pilot study, 13 classification 
methods were tested, and the best performance 
was obtained using the excretory phase obtaining 
an accuracy of 74.4%, sensitivity of 85.8%, and 
positive predictive value (PPV) of 80.1%. The 
software used showed the potential of ML to dis-
criminate the cancerous ccRCC from ONC. The 
experienced radiologists seemed to be able to 
properly classify an ONC better than the DL 
method.25

In their study on the distinction of RCC from 
benign tumors, Deng et al.65 used histogram fea-
tures to distinguish ONC from chRCC. Entropy 
seems to be a good prognosticator to differentiate 
ONC from chRCC.25

Li et al.66 investigated the role of ML and CT 
image features to distinguish chRCC from ONC. 
In this analysis of 61 cases, five classifiers were 
trained to build a model. All radiomics models 
showed good diagnostic results (all AUC values 
> 0.85), with SVM being the best (AUC 0.96, 
SENS 0.99, SPEC 0.80, and ACC 0.94), 

indicating that accurate preoperative distinction 
of ONC from chRCC might be eased by applying 
ML to CT imaging features.

Raman et al.67 evaluated the possibility of differ-
entiating common renal masses (i.e. ONC, 
ccRCC, cysts, and papillary RCC (papRCC)) 
using CT quantitative texture analysis and RF 
methods to construct a model. Analyzing CT 
scans from 99 patients, this approach demon-
strated that 90% of oncocytomas and ccRCC 
could be identified with a sensitivity of 89% and a 
specificity of 99%, suggesting that data acquired 
from CT images can be used to accurately cate-
gorize different renal lesions, including 
oncocytomas.

Sasaguri et al.68 searched to identify the role of 
biphasic CECT for the differentiation of SRM 
from RCC. The diagnostic performance of the 
proposed model achieved AUCs of 0.82, 0.95, 
and 0.84 for differentiating ONCs from ccRCCs.

Varghese et al.35 explored the accuracy of quanti-
tative features obtained from CT scans. The lipid 
content of lesions and the cancerous kidney tis-
sues were studied. According to their analysis–
which comprised 31 texture metrics derived with 
6 texture methods, the histogram analysis did not 
perform well (74% of differences could be identi-
fied). The addition of Fourier analysis improved 
the results of the combined model (AUC of 0.90). 
The combined model had AUC values of 0.87, 
1.00, 0.91, and 0.94 (p < 0.05) for differentiat-
ing ONC from cancerous kidney lesions.

Varghese et al.69 in a retrospective series of 156 
patients, fast Fourier transform (FFT) has been 
found to be in ONC versus ccRCCs, in the excre-
tory phase. The heterogeneity of gray zone tex-
ture seems to be high in ccRCC when compared 
with ONC.

Yu et al.29 assessed how texture analysis of images 
obtained from CECT can discriminate RCC sub-
types from ONC. In this case series of 119 
patients, histogram feature can differentiate ONC 
from other tumors (AUC of 0.92), and the ML 
combined model did not perform better (AUC of 
0.86).

Hoang et al.70 using quantitative texture parame-
ters extracted from MRI aimed to discriminate 
benign and cancerous SRM. In this cohort of 41 
patients, 45 imaging features were extracted, 
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comprising 5 global (intensity histogram) and 40 
texture features. Histogram of features could dif-
ferentiate ONC from papRCC and ccRCC (accu-
racy 77.9%, sensitivity 64.7%, and specificity 
85.9%). These suggest that analysis of features 
drawn from MRI can better characterize kidney 
tumors subtypes.

Paschall et al.71 tested objective volumetric WL 
on ADC map to improve the conventional 
measurements using ROI to discriminate type I 
papRCC from ccRCC and ONC. In this case 
series of 55 patients, WL ADC values between 
papRCC and ONC were significantly different 
(p < 0.001); ROC AUC of 67.6 for ONC versus 
ccRCC and 95.8 for ONC versus papRCC (sen-
sitivity of 100.0%, specificity of 10.3%, and 
sensitivity of 88.5%, specificity of 93.1%, for 
ONC versus ccRCC and versus papRCC, 
respectively), highlighting the utility of this 
objective methodology in providing informa-
tion on lesion heterogeneity and reducing 
observer bias.

Differentiation of different subtypes of RCC
RCC involves three major subtypes (i.e. ccRCC, 
papRCC, and chRCC), which differ in spatial 
distribution of cellularity and vascularity at histo-
pathology.72 The ccRCC is an aggressive and 
lethal carcinoma (75% of all RCCs), and has a 
potential to metastasize, while the papRCC and 
chRCC subtypes are less common – accounting 
for about 10–15% and 5% of all RCCs, respec-
tively – and show better survival rates.73 As a con-
sequence, RCC subtyping has clinically 
implications, and the use of molecular targeted 
drugs will improve the differentiation of RCC 
subtypes. The application of radiomics to RCC 
subtyping has been reported by several studies, 
and summarized in Table 4.

Kocak et al.74 aimed to extend the validity of their 
results to externally validate, to allow replication 
of models and the possible generalization of algo-
rithms. This used CT images and features in 
combination with ML algorithms. The best per-
formance was achieved by the ANN classifier 
with adaptive boosting, showing an accuracy of 
84.6% for differentiation of ccRCCs from other 
tumor types. The SVM classifier performed best 
(ACC = 69.2%) to differentiate ccRCC from 
papRCC and chRCC. The best performance was 
found to be related to the differentiation of 
papRCC from other RCCs, while they exhibited 

rather poor performance in differentiating ccRCC 
or chRCC from others.

Similarly, Han et al.75 aimed to exploit reproduc-
ible and generalizable models to differentiate the 
ccRCC, papRCC, and chRCC using CT images 
along with an ML algorithm. In their cohort of 
169 biopsy-proven RCC cases, the DL neural 
network achieved an AUC of 0.9 no matter the 
identified subtype (specifically, 0.93 for ccRCC, 
0.91 for papRCC, and 0.87 for chRCC), showing 
promising performance in classification of RCC 
– although with worse performance for chRCC 
subtyping.

Li et al.76 evaluated a CT radiomics model to dif-
ferentiating ccRCC from other tumor subtypes 
and to evaluate radiogenomics potential combin-
ing the imaging features and the von Hippel-
Lindau (VHL) mutation gene. Among 156 
texture features extracted for each tumor, the 
eight most relevant from the corticomedullary 
phase were used to build the model, which had a 
good AUC (0.95; ACC of 92.9%); moreover, five 
out of eight had a strong association with VHL 
mutation gene.

Raman et al.67 sought to assess the possibility of 
differentiating common renal masses (i.e. ONC, 
ccRCC, cysts, and papRCC) using CT texture 
analysis features embedded into a model. The 
model used was RF. This model correctly catego-
rized ccRCCs in 91% of patients (SENS 91% 
and SPEC 97%), and papRCCs in 100% of 
patients (SENS 100% and SPEC 98%), suggest-
ing CT texture analysis, in conjunction with RF 
modeling, might demonstrate a potential method 
to characterize renal masses.

Leng et al.77 in their study exploring the effect of 
denoising heterogeneity scores. The aim was to 
distinguish AML from different subtypes of RCC. 
The authors found that, with regards to ccRCC 
and papRCC differentiation, the heterogeneity 
scores could discriminate these two subtypes, and 
that further reduction in noise improved AUC.

Yan et al.78 investigated the diagnostic perfor-
mance of texture analysis for the discrimination of 
AML with minimal fat, ccRCC, and papRCC on 
images obtained from CT scans. According to 
their analysis, excellent classification results in 
terms of discrimination between ccRCC and 
papRCC were obtained with nonlinear discrimi-
nant analysis (error of 0.0–9.3%), no matter 
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which phase was used; on comparison with the 
three scanning phases, a trend toward better 
lesion classification was observed with corticome-
dullary and nephrographic phases images.

Hoang et al.70 assessed if quantitative texture 
parameters obtained from MRI could potentially 
differentiate between common subtypes of RCC 
(i.e. ccRCC versus papRCC) in SRMs (i.e. 
< 4 cm). Among the 45 imaging features 
extracted, textures helped to differentiate between 
subtypes of RCCs; papRCCs were differentiated 
from ccRCCs with an accuracy of 77.9% (sensi-
tivity 65.5% and specificity 88%).

Li et al.79 used volumetric histogram analysis 
from ADC maps to characterize SRMs. 
Combination of mean ADC and histogram values 
achieved the best AUC (0.851 with SENS of 
80.0% and SPEC of 86.1%) and these results 
show that the volumetric analysis could poten-
tially differentiate between certain types of kidney 
masses.

Paschall et al.71 explored the volumetric WL ADC 
parameters could identify RCC. The differentia-
tion was studied for type I papRCC from ccRCC 
and ONC. In their study, WL ADC could distin-
guish between papRCC and ccRCC (p < 0.001), 
with AUC of 95.2 (SENS of 84.5% and SPEC of 
93.1%).

Fuhrman grade prediction
Fuhrman grade is an important pathological risk 
factor impacting on patients’ oncological out-
comes, especially the risk of recurrence.80 Indeed, 
despite this information might be achieved 
through renal mass biopsy, this procedure is inva-
sive and not devoid of complications and suffers 
from several limitations.17,81 Therefore, being 
able to preoperatively predict a renal mass nuclear 
grade differentiation, directly by imaging, could 
be of outmost importance to address the patient 
to the best treatment.

With the introduction of ML, a branch of 
AI-developing algorithm able to both learn and 
improve by analyzing data sets, one of the main 
imaging parameters adopted is texture analy-
sis.82,83 This post-processing technique, which 
can be applied either to CT or MRI, allows quan-
tifying tumor heterogeneity assessing several 
parameters.

Shu et al. compared radiological features of dif-
ferent Fuhrman grade ccRCC and extracted 1029 
radiomics features from corticomedullary and 
nephrographic CT scans. The authors found that 
11 and 24 features correlated with Fuhrman 
grades. This investigational analysis confirmed 
that radiomics can assess preoperatively the 
Fuhrman grade of kidney lesions.84 Again, a ret-
rospective study on 290 patients with histologi-
cally confirmed 298 RCCs evaluated the levels of 
entropy and texture quantification within renal 
tumors at CT imaging. The authors found a sig-
nificant increase of entropy value both in clear 
cell carcinoma and higher Fuhrman grade.85

Recent evidence from studies that looked at the 
role of ML also analyzed texture in MRI imaging 
as well. T2 and DWI windows are usually used 
and a study on 34 RCC masses demonstrated 
entropy at spatial scaling factors (SSF) on DWI, 
on corticomedullary phase and on nephrographic 
phase to be best parameters to assess RCC grad-
ing.86 Accordingly, Stanzione et al.87 developed 
five algorithms including different MRI features 
to predict tumor grading achieving accuracy 
greater than 90%.

Yin et al. developed and tested an ML model and 
images from CECT to predict Fuhrman grade of 
ccRCC. In 25 patients, SVMRadial, RF and 
Bayesian models had the best prognostic ability to 
predict Fuhrman grade of ccRCC using radiom-
ics from CECT images.88

Finally, semantic segmentation is gaining popu-
larity89 and promising results have been achieved 
to differentiate different RCC subtypes.90 
Nevertheless, studies able to underline the role of 
semantic segmentation to differentiate nuclear 
grading are still based on the pathological 
sample.91

Prediction of gene mutation molecular 
biomarkers through radiomics
Radiogenomics integrates multi-scale genome 
data, with the help of refined CAD systems to 
develop imaging possibilities to assess the combi-
nation of imaging data with genome-related cel-
lular data.92–96

Lee et al.97 evaluated 58 kidney cancer patients 
(including 12 patients with metastatic disease) 
using a radiomics algorithm with images from CT 
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scans assessing progression of pT1 RCC. 
Combining radiomics parameters with gene 
expression data gathered from whole transcrip-
tome sequencing (WTS). Four radiomic features, 
which included histogram features, gray-level co-
occurrence matrix (GLCM), and the ratio of vox-
els from ROIs, were trained to prognose metastasis 
of patients. In addition, heterogeneous gene sig-
natures correlated with these radiomics features 
were identified. These findings barred out the use 
of radiogenomics to highlight patients who could 
have an additional benefit from adjuvant therapy 
or metastases in pT1 RCC.

Two retrospective studies assessed more granu-
larly specific mutations and CT-based texture 
radiomics, such as BAP1 mutations. The first, 
reported an AUC of 0.77 highlight BAP1 muta-
tion.98 The second study assessed radiomics fea-
tures extracted from CT scans of 65 ccRCC 
tumors, achieved a SENS, SPEC, and ACC of 
90.4%, 78.8%, and 81% to predict BAP1 muta-
tion (AUC = 0.89).99 The gene encoding the pro-
tein polybromo-1 (PBRM1) mutation has been 
investigated with radiomics analysis with a good 
AUC of 0.925.100 Previously, one trial studying 
ccRCC tumors found an AUC of 0.85 for VHL, 
PBRM1, and BAP1 genes.101 Gene mutations 
BAP1 has been investigated in 78 tumors from 
The Cancer Genome Atlas, (AUC = 0.71 for 
prediction of BAP1 within the CT nephrogenic 
scan images.102

Studies investigating treatment response of 
renal masses using radiomics
Assessing the prediction of response to target 
therapies is paramount for clinical decision-mak-
ing in metastatic RCC (mRCC) patients. 
Targeted therapies and immunotherapies have 
demonstrated a promising efficacy in mRCC, yet 
it remains challenging to delineate subgroups of 
responsive patient, despite the existence of several 
scores (e.g. International Metastatic RCC 
Database Consortium [IMDC] risk score) and 
biomarkers (e.g. PBRM1).26,103,104 A deeper 
knowledge and evaluation of response/resistance 
status would lead to personalized algorithms, 
which can potentially avoid adverse events of 
unnecessary treatments – with a subsequent posi-
tive effect on patients’ quality of life – optimize 
resources, save time (e.g. unresponsive patients to 
certain therapies could be switched earlier to 
other treatments) to improve survival outcomes.

Antunes et al.105 attempted to test how well radi-
omics analysis perform on integrated positron 
emission tomography/magnetic resonance imag-
ing (PET/MRI) in the assessment of metastatic 
RCC and response to Sunitinib. Their findings 
suggests that radiomics from PET/MRI have a 
potential to identify structural and functional 
modifications that can influence the response to 
tyrosine kinase inhibitor (TKI) therapy, thus 
identifying radiomics analysis as a modality for 
characterization and evaluation through PET/
MRI.

Bharwani et al.106 sought to explore whether TKI 
therapy (i.e. Sunitinib) can influence sequential 
gene changes in mRCC patients and its correla-
tion with overall survival (OS), by prospectively 
assessing DWI and multiphase contrast-enhanced 
MRI as biomarkers of outcomes. In this case 
series of 20 patients, 47% of patients had a modi-
fication mean ADC following treatment, despite 
no correlation with outcome was found. Patients 
with higher baseline AUC (low; i.e. proportion of 
the tumor with ADC values < 25th percentile of 
the ADC histogram) and greater-than median 
AUC-low increase, reported a reduced OS (haz-
ard ratio (HR) = 3.67, 95% confidence interval 
(CI) = 1.2310.9; p = 0.012 and HR = 3.72, 95%CI 
= 0.98–14.21; p = 0.038, respectively), indicating 
that DWI-MRI can be a possible biomarker for 
OS.106

Boos et al.107 evaluated median versus mean atten-
uation gathered from histograms of 19 RCC 
patients receiving Sunitinib or Sorafenib response 
assessed by CT scans. Authors found that distri-
bution curves correlated themselves with out-
comes (RECIST criteria were employed); lesions 
with –44 Hus, had a partial tumor response while 
those greater than –41 Hus, reported tumor 
progression.35

The study by Goh et al.108 aimed to evaluate 
tumor textures on CT images correlation with 
PFS in 39 patients with mRCC – different sub-
types – who received multiple TKIs (i.e. Sunitinib, 
Cedirinib, Pazopanib, or Regorafenib). By ana-
lyzing 87 metastatic lesions prior and after ther-
apy, authors have found a lower texture entropy 
and higher uniformity after immunotherapy. 
Texture uniformity has been shown to be an inde-
pendent predictor of progression (p = 0.005). 
According to these data, authors suggested that 
tumor heterogeneity could have the potential to 
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be assessed as predictive radiomics marker of 
response to therapy.

Haider et al.109 performed a retrospective assess-
ment of combined biomarkers and CT images to 
prediction survival in mccRCC patients receiving 
immunotherapy. Specifically, measurable lesions 
from different selection respected RECIST crite-
ria, prior and after therapy. The evaluation of 
IMDC score plus texture parameters was also 
performed. Size normalized standard deviation 
(nSD) before and after therapy is a predictor of 
OS (p = 0.01 and 0.01); entropy is also a signifi-
cant predictor of OS before and after therapy 
(p = 0.02 and p = 0.04). Same results were 
obtained for PFS at (p = 0.01 and p = 0.003) con-
cluding that nSD correlates with OS and PFS.

Mains et al.110 aimed to identify which DCE-CT 
functional parameters and models had the opti-
mal correlations with OS and PFS in mRCC 
patients. According to these analyses, the best 
associations were spotted for blood volume, blood 
flow, and standardized perfusion values, calcu-
lated using deconvolution at baseline and during 
early treatment period (p < 0.05).

The study by Khene et al.111 studied response to 
TKIs treatment on a model relying on k-nearest 
neighbor, RF, logistic regression, and SVM 
approaches with the worse ACC and AUC for RF 
and the best for logistic regression. Table 5 sum-
marizes studies investigating radiomics and treat-
ment response.

Table 5 summarizes studies investigating treat-
ment response in mRCC patients.

Ongoing studies evaluating the radiomic value 
in kidney lesions
Radiomics has been heavily studied lately to 
assess its potential to individualize treatment. 
The correlative radio-genomics and theranostics 
could hold the promise to provide useful informa-
tion for the detection, prediction, treatment, and 
how the kidney tumor reacts to oncological treat-
ment.23 The specific field of radiomics applied to 
kidney lesions for different purposes is currently 
moving at an unprecedented pace. Indeed, sev-
eral ongoing trials are assessing new imaging 
techniques for RCC management – mainly in 
terms of characterization and staging – using dif-
ferent modalities and tracers. Table 6 summarizes 
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main ongoing trials exploring radiomics and its 
ability to establish the stage and grade of RCC.

Comparison of AI algorithms used in 
radiomics studies
AI algorithms are defined as mathematical mod-
els of computers that allow the hardware to learn 
and work independently.118 The ML algorithms 
are classified into four major categories: super-
vised, unsupervised, semi-supervised, and rein-
forcement learning.119 Supervised learning uses 
labeled data and collection training data to 
accomplish a task.120 Decision tree, random for-
est, SVM, naïve Bayes, linear regression, and 
logistic regression are most frequently used in 
medical application area.119 Unsupervised learn-
ing performs clustering, which means they sort 
the unlabeled data points into pre-defined clus-
ters. The data point has to belong to one cluster 
with no overlap. There can be more than one data 

point in any given cluster, but a data point cannot 
belong to more than one cluster, without human 
intervention.119,121 K-means clustering and 
Gaussian mixture model are the most common 
employed learning methods that uses unlabeled 
data to develop models and to extract generative 
features, groupings in results, and exploratory 
purposes.119–121 Both supervised and unsuper-
vised algorithms, such as K-nearest neighbor, 
neural networks, and reinforcement learning 
algorithms are being used in the evaluation of 
medical images. In this study, the identified arti-
cles used supervised ML algorithms. Furthermore, 
we will summarize the results and comparison 
derived from these studies. Some studies did not 
use any ML algorithms to analyze the variables 
obtained.64,71,77–79,105–108 SVMs are identified as 
the most used algorithms used for classification in 
the analyzed studies.34,36,42,46,47,51,55,66,74 When 
trained, the learning process searches to differen-
tiate between two data sets (for example, benign 

Table 6. Radiomics in ongoing trials investigating kidney lesions.

NCT number and topic Status and no. 
of patients

Intervention Outcome

NCT04271254
PET/MR characterization of 
RCC112

-  Recruiting
- 17

PET/MRI Aims to establish the role of PET and MRI to define 
the molecular subtypes of ccRCC. The imaging 
features and the fraction of tumor cores will be 
analyzed112

NCT03996850
SPECT/CT for the 
characterization of renal 
masses113

- Recruiting
- 100

99mTc-sestamibi 
SPECT/CT

To evaluate the role of technetium 99m sestamibi 
SPECT/CT on patients management

NCT04295174
KIDSTAGE- Staging of kidney 
cancer using dual time PET/CT 
and other biomarkers114

-  Recruitment 
completed

- 70

Fluorodeoxyglucose 
PET/CT

To evaluate fluorodeoxyglucose PET/CT in staging 
of secondary determination from renal neoplasia 
and to investigate the role of cfDNA for follow-up 
of renal cancer patients

NCT03470285
Multiparametric MRI for 
diagnosing small renal tumors 
(IRMK01)115

- Recruiting
- 500

mpMRI To assess diagnostic accuracy of mpMRI

NCT02526511
Perfusion magnetic resonance 
imaging in diagnosing patients 
with kidney tumors116

- Recruiting
- 50

Perfusion MRI The diagnostic ability of perfusion MRI to predict 
cancerous versus benign kidney confined lesions

NCT03821376
Correlation of renal mass 
pathologic grade and CEUS117

- Recruiting
- 40

CEUS To correlate CEUS findings with the Fuhrman 
grade of RCC

ccRCC, clear cell RCC; CEUS, contrast-enhanced ultrasound; cfDNA, cell-free DNA; CT, computed tomography; FDG, 18F fluoro-D-glucose; mpMRI, 
multiparametric MRI; MRI, magnetic resonance imaging; PET, positron emission tomography; RCC, renal cell carcinoma; SPECT, single-photon 
emission CT.
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from malignant kidney tumors or to differentiate 
between certain tumor types and some of them to 
predict gene mutation or response to therapy). 
The data used to train and learn SVMs are not 
entirely used for this purpose. Just the closest data 
between two support vectors, which makes it a 
linear algorithm, that is useful when the two data 
sets are clearly separated. When data are per-
turbed, the performance is reduced.122,123 The 
latest developed AI algorithms are artificial neural 
networks (ANNs) that modulate the human brain 
functions.124 ANNs were developed and used in 
several renal radiomics studies for the differentia-
tion of chRCC and oncocytomas66 and with 
adaptive boosting for differentiating non-cc-
RCCs from cc-RCCs.74 ANNs have artificial 
nodes, in layers that can have different transfer 
functions. The performance is good when data 
are of great quantity, as in real life and have the 
ability to identify and model complex relationship 
among data. The drawbacks are represented by 
the training that results in relative minimum and 
not absolute minimum of the error function and 
the overfitting of data because it lacks the ability 
to generalize data (it is relatively easy to observe 
their effect when the performance of training and 
test data sets starts to split in opposite direc-
tions).125 Two studies used ANNs66,74 achieving 
best results in AUC along with SVMs, and two 
used CNNs62,75 having the advantage of not using 
hand-crafted features from experts. RFs algo-
rithms combine predictive data of decision trees 
(forests) in one model. Each decision tree learns 
from data that are chosen randomly and calcu-
lates the average of the predictions as the final 
result.126 RF has advantage of dealing with non-
linear data and can reduce the variables space to 
emphasize the value of each feature.127 It has 
been used in vast number of studies that ana-
lyzed radiomics and kidney tumors. RFs obtained 
the best AUC in the articles published on radi-
omics and kidney lesions.32,36,38 Lasso regression 
(least absolute shrinkage and selection operator 
regression) is one of the algorithm models that 
modify and push regression coefficients to the 
nil value and improves the interpretability and 
can select important predictors for the studied 
pathology.128,129 In the renal lesions, radiomics 
studies were used to reduce overfitting with 
good results.49–53,55,70,111

The advancements in the study of radiomics 
and ML algorithms are huge, but still approxi-
mately 30% of studies used traditional algo-
rithms for comparison.51,66,101,130–132 Therefore, 

direct comparisons have not been published in 
the literature so far. More data are required for 
a more precise evaluation and generalization of 
the best ML algorithms to be used in radiomics 
research.

Current limitations and the future of AI and 
radiomics
Generally, when researchers develop AI models 
that can be applied to the analysis of radiomic fea-
tures extracted from images,133 they must con-
sider the robustness and standardization of the 
proposed model.134 We have found that a rather 
high number of researches have been performed 
using non-robust features.135 Current imaging 
methods are not standardized, whether we talk 
about CT or MRI. All technical specifications of 
using different CT phasing, contrast enhanced or 
not, and also the classifiers used to discriminate 
between different radiomics features applied to 
analyze the gray zone levels of the studied renal 
lesions (SVM, histograms, and others) are not 
validated independently. Currently, the lack of 
internal and external validation of the proposed 
models cannot lead to the generalizability of these 
methods.

The reason of dimension reduction in radiomics 
is a method to increase the modeling perfor-
mance using the highly relevant, robust, or 
uncorrelated features. This can lead to data per-
turbations136 and contamination137 and add bias 
to validation purposes. ML classifiers can select 
features during model development67 and limit 
the biases of validation techniques. DL uses end-
to-end automatic pipelines and in radiomics, the 
robustness and selection of features is not prop-
erly understood. The currently used ML models 
did not make it clear as to which one of those are 
better to be used or what combination of imaging 
methods should be used (contrast enhanced or 
not). In depth, analysis of the most appropriate 
AI method to be applied (or combinations) 
should be studied further. MRI seems to have 
less ability to provide a good evidence for the use 
in radiomics. The DL methods provide good evi-
dence that support further research for clinical 
use especially with its combination with genom-
ics data (radiogenomics).33 Only a few studies 
assessed the comparison between traditional bio-
markers and radiomics in terms of clinical valid-
ity.47,51,99,101,130,131 Radiomics is able to evaluate 
large data sets, but the manual predefinition of 
metrics limits its performance.
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Discussion
The novelty that radiomics can provide more 
objective interpretation of images to limit the sub-
jective image interpretation of radiologists with 
the aim of improving renal tumor diagnostic 
accuracy14 is gathering more followers and this 
research is keen to provide deeper insights on the 
possible use and clinical practice translation. 
There is an important percentage of renal lesions 
(up to 30%)9 that are benign at histopathology 
result for patients that underwent partial or radi-
cal nephrectomy and this is one of the reasons 
that radiomics is seen with the potential to 
improve the preoperative detection of benign 
tumors. AI and its subset ML is increasingly used 
in radiomics analysis for assessing renal lesions. 
Being a new area of research and development, 
there are still a lot of challenges that limit the 
implementation in current practice. When we 
look at the studies that analyzed the role of radi-
omics in differentiating benign from cancerous 
tissues, we see that all identified articles have ret-
rospective design, and another limitation is due to 
the small number of images or patients included 
in studies, that also still need manual delineation 
and contouring of ROIs or VOIs, and having 
semi-automated method of analysis. Also using 
different scanners, protocols for obtaining images, 
AI software for texture, shapes, and volumetric or 
geometrical analysis of big data limits the possi-
bility of properly defining gray zone features. AI 
through ML and DL may even go few steps fur-
ther and may help to automize the acquisition 
and reporting of ultrasound, CT scans, and MR 
images. The first step in the process of reducing 
the workload and costs was kidneys volumetric 
analysis, which, for instance, can now be com-
pletely performed by DL algorithms both on 
ultrasound138,139 and CT scans.140,141 This can 
improve the accuracy of images pre-processing 
for subsequent radiomics features extraction.141 
Moreover, accurate volumetric segmentation of 
kidneys and tumor is pivotal when nephron spar-
ing surgery is planned in patients with kidney 
cancer.142

Models trained and validated indicate a roughly 
big difference in AUCs obtained from these stud-
ies (from 0.64 to 0.97). These can lead to the 
conclusion that by using different AI algorithms 
and mathematical models for statistical analysis 
(most used: RF, SVM, logistic regression, and 
linear discriminant analysis) show that radiomics 
still is an area of intense research and has limita-
tions in understanding the fundamentals of how 

AI and ML can improve the outcomes of studies. 
The comparison of the AI models with expert 
radiologist need to be further improved in pro-
spective studies and we believe that future result 
will show the ability, especially of DL algorithms, 
to ease the clinical embrace of radiomics and AI. 
AI may be the key to provide fast, reliable reports 
from all radiologists, reducing inter-reader varia-
bility, and to obtain improved reading accuracy. 
Conclusions are indeed subjective due to the 
radiologist’s interpretation and experience.143,144 
Toda et al.145 demonstrated that DL algorithms 
in contrast-enhanced CT have high accuracy for 
the diagnoses of SRMs with both internal and 
external validation. Manual or semi-automated 
segmentation have been used in most of the stud-
ies (either on CT or MRI platforms); Kart et al.,146 
using national databases of whole-body MR 
imaging from United Kingdom and Germany, 
developed and trained an automated segmenta-
tion DL model for abdominal organs; and Zhao 
et al.147 clinically assessed assisted compressed 
sensing technology in renal MRI imaging with an 
AI algorithm that can adjust scanner settings to 
improve image acquisition and automatically 
adjust images to patients’ movements, and can 
allow ultra-fast MR imaging acquisition.

Good accuracies have been reported5,33 and one 
author39 implemented a DL method to study a 
variety of kidney lesions to mimic the real world 
and clinical practice setting. ccRCC tumors have 
a poorer prognosis than other types of renal 
tumors, such as papillary RCC or chRCC. 
Therefore, the preoperative differentiation of 
related tumors using ML-based radiomics inter-
pretation could lead to differentiation of non-
ccRCCs from ccRCCs,74 and could achieve an 
accuracy of up to 89.9%.34 Grading of tumors 
assessed by radiomics and AI studies can be 
affected by sarcomatoid features, but nonetheless 
studies developed to differentiate this aspect with 
poor accuracy of only 55%.132 Due to recent 
advancements in genomics and radiomics, radiog-
enomics could improve the identification of 
aggressive tumors and hence establishing tailored 
treatment. The encountered genomic alterations 
in ccRCC could be heavily studied due to the rar-
ity of mutations and the stability of sample and 
radiomics and AI models.148 Studies showed good 
AUCs, specificity, sensitivity and accuracy, espe-
cially for RF algorithm but in the evaluation of 
biologic aggressiveness.99,100 Many of the studies 
were not externally validated, AI systems will 
need further training and independent validation 
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to limit the risk of low generalizability.149,150 DL 
provides good evidence that support further 
research for clinical use (ROI data set reported 
ACC of 0.97 while RBR had an accuracy of 
0.93).33 Despite the interesting results highlighted 
in this review, it is worth noting that due to some 
main issues – mostly related to the paucity of tri-
als, the lack of homogeneity of data, especially 
with regard to ROI and end-points of these stud-
ies – evidence on the ability of radiomics in the 
evaluation of response to TKIs is premature for 
its integration into routine clinical practice at the 
present time. Summarizing the evidence, we can 
state that the imaging methods are not standard-
ized, either CT or MRI, including all specifica-
tions of using different CT phasing, contrast 
enhanced or not, and also the classifiers used to 
discriminate between different radiomics features 
applied to analyze the gray zone levels of the stud-
ied renal lesions. The ML models will have to be 
better trained with vast amounts of data, and 
which is better to use will have to be determined 
by future studies. In depth analysis of the most 
appropriate AI method to be applied (or combi-
nations) should be studied further. MRI seems to 
not have the ability to provide reliable evidence 
for the use of radiomics.

Conclusion
AI evidence so far indicates a strong association 
with improved sensitivity, specificity, accuracy 
in detecting and differentiating between renal 
lesions, and its algorithms that can adjust scan-
ner settings to improve image acquisition (espe-
cially the gray zone levels) and standardization 
of scanner protocols between institutions will 
improve preoperative differentiation between 
benign, low-risk cancers and clinically signifi-
cant renal cancers. Radiomics holds the prem-
ises to enhance the diagnostic ability of imaging 
tools to characterize renal lesions, but integra-
tion in clinical practice will have to be preceded 
by standardized radiomics models and method-
ology, and future prospective external validation 
of obtained data and their comparison with 
existing traditional, well-validated tools, will 
have to be performed prior to further integration 
in current practice.
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