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Abstract

Lassa fever is a disease that has been reported from sites across West Africa; it is caused by an arenavirus that is hosted by
the rodent M. natalensis. Although it is confined to West Africa, and has been documented in detail in some well-studied
areas, the details of the distribution of risk of Lassa virus infection remain poorly known at the level of the broader region. In
this paper, we explored the effects of certainty of diagnosis, oversampling in well-studied region, and error balance on
results of mapping exercises. Each of the three factors assessed in this study had clear and consistent influences on model
results, overestimating risk in southern, humid zones in West Africa, and underestimating risk in drier and more northern
areas. The final, adjusted risk map indicates broad risk areas across much of West Africa. Although risk maps are increasingly
easy to develop from disease occurrence data and raster data sets summarizing aspects of environments and landscapes,
this process is highly sensitive to issues of data quality, sampling design, and design of analysis, with macrogeographic
implications of each of these issues and the potential for misrepresenting real patterns of risk.
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Introduction

Lassa fever (LF) is a zoonotic disease caused by Lassa virus

(LASV), a member of the Arenaviridae family [1]. Clinical

manifestations range from mild febrile illness to severe vascular

leakage, hemorrhage, shock, and death. Introduction of LASV

into humans occurs through direct or indirect contact with excreta

of the natural reservoir, the rodent Mastomys natalensis, although

precise modes of transmission are not well characterized [2].

Human-to-human transmission of LASV through contact with

blood and other bodily fluids has been documented, particularly in

clinical settings [3].

Although decades of experience and numerous epidemiological

studies make it clear that LF is a phenomenon of the West African

sub-region [1,4], the details of the spatial distribution of LASV and

LF remain unclear. Understanding the incidence and distribution

of LF has been hampered by lack of easily-available diagnostics

and limited public health surveillance infrastructure in the region

[5]. LF is best characterized in areas with research programs

focusing on the disease, particularly central and southern Nigeria

and eastern Sierra Leone [5,6]. Beyond these focal areas of

surveillance activity, estimates of LASV distribution are coarse,

providing little basis for inference into intervening areas of West

Africa. As a result, the reported incidence of LF shows significant

spatial clustering owing to reporting bias, a common phenomenon

among neglected and emerging diseases.

In a recent publication, Fichet-Calvet and Rogers [7] provided

‘‘risk maps of Lassa fever in West Africa,’’ assembling a data set of

111 occurrences of LASV infection and LF from published

seroprevalence studies and clinical case reports (Figure 1). Rodent

occurrence data were also compiled in the study, but were

excluded from analyses. The resultant maps have been cited and

republished frequently as definitive distribution risk maps for LF

[8]. The maps, however, developed using ecological niche

modeling approaches, show several characteristics of concern

(Figure 2) [9]: high-risk areas are broadly disjunct at the western

and eastern extremes of West Africa, without apparent coinci-

dence with known biogeographic or environmental breaks, and

(most worrisome) high-risk areas coincide closely with areas of

most intense sampling (i.e., near research centers). This result

suggests either that LF occurrence has been sampled thoroughly in

the only areas where it is most prevalent (i.e., its distribution is

well-characterized by existing sampling), or that models were

overfit to input data, producing risk maps with little generality or

predictive power [10], offering a falsely clear geographic picture of

risk. Overfit models are those that replicate well the input data,

identifying areas that have already been sampled, but that have

little generality that might permit genuine prediction and

anticipation of risk in areas where sampling has not occurred.

Such models often perform poorly when challenged to predict

independent sets of data, as might be produced in the present case

via intensive on-ground studies in, for example, Benin or Togo.
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While the patterns presented by Fichet-Calvet and Rogers may

indeed be correct, the concerns that their results engender demand

more in-depth examination. Here, we present a series of further

analyses of their data, re-examining them in terms of possible

sources of bias in risk-map development (see parallel example in

[11]). In particular, we address three possible biases in the

occurrence data and analytical methods related to (1) quality

control regarding definition of occurrence (i.e., high versus low-

confidence documentation of LASV infection/LF cases), (2)

controlling for sampling bias (i.e., accounting for the fact that

some areas have been subject to intensive surveillance for LF while

others have not), and (3) balancing potential for Type 1 and Type

2 errors appropriately in resulting models (i.e., taking into account

the fact that sites of known occurrences versus sites with no known

occurrence have different levels of confidence associated with

them). Throughout, our focus is on macrogeographic implications

of biases—if potential sources of confusion are random, their

effects might simply diffuse any signal that does exist in the data; if,

however, these sources of confusion have consistent environmental

correlates, then resulting risk maps will incorporate these biases

and macrogeographic implications will manifest. It should be

noted that the goal and result of our analysis is not necessarily to

present more accurate risk maps for LF per se, but rather to

illustrate pitfalls inherent in risk mapping when data are not

carefully considered and controlled.

Methods

Input data and study area
The occurrence data presented in Table 1 of Fichet-Calvet and

Rogers [7] were captured in spreadsheet format and organized for

further analysis. This data set was carefully referenced, which

permitted us to reexamine the quality of diagnostics for each

occurrence record as part of our analyses (see below). A few

Figure 1. Summary of occurrence data input in the ecological niche models. The dashed outline shows the limits of the area of analysis,
with circles indicating the data used by Fichet-Calvet and Rogers [7]. Gray circles indicate data that met quality control criteria levels 1 and 2 (see
Table 1). Black crosses indicate data after random subsampling (see Methods for rationale and details).
doi:10.1371/journal.pone.0100711.g001
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records were excluded from our analyses for lack of access to

documents referenced, leaving an initial 107 of Fichet-Calvet and

Rogers’ 111 data records as inputs to our analyses. We refer

henceforth refer to this data set as the ‘raw’ data.

The occurrence data were analyzed in the context of

environmental variation across West Africa, focusing on the

region relatively close to sites of known LF cases as a study region.

We examined occurrence data to identify the largest spatial

disjunction (,800 km), and used a buffer of this radius around

known occurrences as our study region (Figure 1). By choosing this

region as the area within which models are to be calibrated, we

assume it to have been accessible to LASV and its rodent host for

Figure 2. Mean predicted LF risk map from the Model 2 series developed by Fichet-Calvet and Rogers [7], with posterior probability
color scale from 0.0 (no risk) to 1.0 (highest risk) shown at inset. Gray areas are areas either lacking suitable imagery (because of cloud
contamination—coastal Nigeria and Cameroon) or that are so distant in environmental space that predictions were not possible. Used with
permission.
doi:10.1371/journal.pone.0100711.g002

Table 1. Quality control schema for diagnosis confidence for Lassa fever occurrence data from Fichet-Calvet and Rogers [7].

Validity rating Description

1 Virus isolate, PCR-positive, or ELISA-positive Mastomys natalensis

2 Virus isolate, PCR-positive, ELISA-positive, or plaque neutralization assay-positive human case of LF

3 Human case of LF supported by IFA or other laboratory test result

4 Serosurvey positive based on ELISA or plaque neutralization assay

5 Serosurvey positive based on IFA or other laboratory test

6 Human case of LF without supporting laboratory test

7 No evaluable information, no original data, or simply no data

Note that when multiple ratings applied to single points in space, we assigned the higher of the ratings, assuming that the greatest confidence is the most appropriate.
Abbreviations: ELISA, enzyme-linked immunosorbent assay; IFA, immunofluorescent assay; PCR, polymerase chain reaction.
doi:10.1371/journal.pone.0100711.t001
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potential colonization, and that some possibility exists of LF cases

in the region being detected, diagnosed, and reported. These

assumptions are not inconsequential; in effect, we have assumed

that within this region LF cases should be detected and reported,

and that sites and environments represented within this area that

do not hold case reports have a higher probability of lacking such

records because the conditions are not appropriate for LASV

transmission and maintenance [12].

Effects of quality control of diagnoses
The degree of confidence of a diagnosis of LASV infection/LF

is impacted by various factors; many or even most patients with LF

present with non-specific manifestations extremely difficult to

distinguish from many other common febrile illnesses in West

Africa, such as malaria or typhoid fever, making clinical diagnosis

difficult and laboratory diagnosis imperative [1,13,14]. Unfortu-

nately, no FDA-approved or widely validated laboratory tests exist

for LF, leaving only a few laboratories in the world capable of

reliably providing the diagnosis using various ‘‘in-house’’ assays.

Over the past few decades, only Sierra Leone, Nigeria, and

Guinea have been able to conduct laboratory tests for LF in-

country, and these often only intermittently and at times with

significant questions regarding quality control [4,13,15]. Further-

more, the various assays employed for LF have varying degrees of

sensitivity and specificity [1,4]. Tests that directly indicate

presence of LASV, such as cell culture, PCR, ELISA antigen

assays, and plaque neutralization assays [16,17], provide the most

definitive proof of infection, whereas antibody tests such as

immunofluorescence assays are generally less specific and thus

yield lower confidence in the diagnosis [18].

Uncertainty may also exist in the attribution of the geographic

location of LASV infection; infected persons may travel during the

incubation period (which may be up to three weeks), potentially

resulting in incorrect attribution of occurrence to site of illness

rather than infection [19]. It should be noted that M. natalensis
are ubiquitous in rural areas of West Africa, and that specific

infecting events are rarely recognized by persons with LF.

Infection is thought most often to occur via unwitting exposure

to M. natalensis excreta. Even when human-to-human transmis-

sion is involved, the specific contact or infecting event is usually

not recognized, again creating uncertainty regarding the geo-

graphic origin of the case.

To add a measure of quality control and to quantify the

confidence that should be accorded to each LF occurrence record,

we subset the Fichet-Calvet and Rogers data according to

reliability of the diagnostic method for each LF case record; an

expert (DGB) with long experience with LF, rated each record

according to a 7-point scale of certainty of diagnosis (Table 1) that

ranged from laboratory confirmed LASV-positive rodents (level 1,

highest confidence) to reports on human cases providing no

information about the basis of the diagnosis of LF (level 7, lowest

confidence). We accorded the highest confidence to rodent-

derived records owing to the lower probability of long-distance

movements of rodents that could result in attribution of LASV

occurrence in nonrepresentative areas. We excluded serosurveys

(i.e., studies in which healthy populations were tested for LASV-

reactive antibodies), since the timing, and thus geographic location

of the exposures of positive cases, could not be known. Serosurveys

are also fraught with uncertainty based on non-specificity of the

antibody assays, cross-reactive antibodies, and issues regarding

setting cut-offs for a positive result [1]. This quality control schema

was used to compare models based on all records (levels 1-7) with

models based on only levels 1 and 2, where confidence of the

presence of LASV infection/LF was highest.

Effects of uneven sampling across space
A second contrast explored was between the raw data set and a

subset in which we attempted to remove effects of spatial

concentrations of LF cases created by intensive sampling.

Concentrations of case reports may result from intensive

transmission and genuinely high incidence in the region, but

may also simply reflect areas of intensive study and sampling. To

this end, we identified the area of southeastern Sierra Leone,

southern Guinea, and northwestern Liberia as representing areas

of artificial over-reporting based on the intensive studies of LF that

have focused on these regions [4,13,20,21]. We identified 44 LF

cases (41% of the raw data set) coming from these intensively

studied regions and randomly removed 75% of them to produce a

reduced data set that included only 11 occurrences from these

areas. We then compared models based on the full raw and

reduced data sets. Finally, owing to interesting results that came

from this procedure (see below), we created 10 such randomized

subsamplings and examined variation among models based on

each, in effect testing to assure that the particular subsample

chosen in our initial reduction did not present spurious charac-

teristics not representative of the broader data set.

Effects of balance of error types
Finally, we examined effects of relative balancing of two types of

error in model calibration on model results. Any spatial prediction

manifests two types of error: omission error, in which known

presences of species (in this case, LASV-infected rodents or

humans) are left out of the prediction, and commission error, in

which areas not known to hold the species are predicted as suitable

[22]. Occurrence data are peculiar in that presence data are

relatively strong in their confidence—i.e., although some may

represent misdiagnoses or mistaken geographic references, the

great bulk of presence records accurately link the occurrence of a

given species with a particular site on landscapes. In contrast,

confidence in absence of occurrences is much lower [9]. In the

case of LF, absence of occurrence data may represent a genuine

lack of LASV transmission in a region. However, occurrence data

may be absent even when LASV is present in an area because (1)

no humans are present to get infected, (2) no contact occurs

between humans and the rodent reservoir to result in LASV

transmission, (3) humans are infected but no laboratory facility is

available to make a diagnosis, or (4) humans are diagnosed but

cases are not reported or case data is not available to researchers.

In some of the aforementioned circumstances, risk of LF may be

high despite the absence of recognized occurrences. As a

consequence, presence data and its associated omission error

should be accorded much higher weighting in model calibration

than absence data and its associated commission error [9].

To this end, we compared two approaches to model calibration;

in our first approach, we weighted omission and commission

errors equally to replicate the error balance used by Fichet-Calvet

and Rogers [7]. We combined multiple independent model

optimizations of the niche modeling algorithm GARP, which

depend on separate random subsamplings of available occurrence

data and on distinct random-walk model optimizations. Because

GARP optimizes a parameter that balances the two error

components equally [23], these consensus models reflect the equal

error weighting situation. In our second approach, we prioritized

minimization of omission error over minimization of commission

error by using the ‘‘best subsets’’ procedure of Anderson et al. [24]

that applies and prioritizes a filter based on omission error rates

before a filter based on commission error rates. Comparisons of

models created with these two approaches provide an effective

Revised Transmission Risk Maps for Lassa Fever

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e100711



illustration of the effects of equal versus the more appropriate

omission-weighted error balance schemes in model calibration.

Model evaluation
Because data documenting LF occurrences across West Africa

are relatively few and are highly uneven in their distribution, our

evaluation of the effects of the three potential biases explored in

this paper was in large part qualitative and visual. We compared

views of model outputs before and after correcting for these

potential biases, as well as with the original figures presented by

Fichet-Calvet and Rogers (Figure 2). Niche models, such as those

that both we and Fichet-Calvet and Rogers used, are fitted in

environmental spaces [9] and thus manifest effects of biases only to

the degree that these factors create consistent, non-random

associations in environmental dimensions. If effects of a potential

bias are negligible or manifested on local scales only, then

differences before and after corrections for this bias would be

manifested as ‘salt and pepper’ or randomly dispersed and not as

consistent spatial differences.

For each of the three potential biases we considered, we created

difference maps contrasting both the magnitude and spatial

topology of the differences between the two treatments. Again, we

were seeking areas of consistent departure as opposed to salt-and-

pepper. Because initial model results showed intriguing patterns,

we sought to explore model results in the Sierra Leone-Liberia-

Guinea area in greater detail. We therefore carried out the 10

replicate subsamplings of available occurrence data described

above, which allowed us to assess whether our particular initial

subsampling yielded nonrepresentative results. Again, our assess-

ment was largely qualitative, as the results were quite clear in

showing consistent results from model to model.

As a local-scale evaluation of the import of our model

predictions, for this same region, we analyzed rodent-based

detections of LASV specifically. We used sources listed in Table 1

of Fichet-Calvet and Rogers [7] that were not included in their

analysis and additional data from rodent surveys in 13 Sierra

Leonean villages collected in 2009–2010, where 117 of 460

(25.4%) Mastomys were PCR-positive for an arenavirus (L. Moses

and D. Bausch, in prep.). We overlaid LASV prevalences in

rodents on the model predictions to assess whether explanatory

power existed at finer spatial scales. Because rodent sampling was

fairly restricted in its spatial extent, we related prevalence of LASV

in rodents to predicted suitability on the overall LF map (i.e., the

one in which all three biases described above had been corrected),

and evaluated the relationship between the two quantities using

linear regression.

Results

Effects of correcting for potential bias
Quality control. The original 107 case-occurrence points we

considered reduced to only 20 when only high-confidence points

(i.e., levels 1 and 2) were considered. Comparing models based on

these two data sets (Figure 3), models without occurrence data

quality control overemphasized humid areas of West and Central

Africa, at the expense of areas in the Sahel that may also be

suitable for LF occurrence. However, areas of contrast between

the two maps were spatially autocorrelated—that is, they were

highly contiguous, such that quality control of diagnoses of LF

cases had clear and consistent implications for the ecological niche

model that resulted and the potential distribution that was

reconstructed.

Reducing effects of oversampling. Of the original 111 LF

case-occurrence points considered by Fichet-Calvet and Rogers

[7], 44 came from southeastern Sierra Leone, southern Guinea,

and northwestern Liberia. To avoid over-representing of these

intensively sampled areas, we discarded 75% (33 occurrences)

based on occurrence point densities elsewhere (i.e., comparing

with Nigeria). As with the previous factor, this manipulation

caused clear, contiguous, and spatially autocorrelated macrogeo-

graphic effects that were more or less parallel to those in the

quality control manipulation (Figure 3). Again, humid areas of

West and Central Africa were overemphasized by models for

which sampling density was not controlled, while the Sahel was

underemphasized.

Balancing errors. Finally, we examined the effects of

balancing Type 1 and Type 2 error appropriately in niche model

development. This factor was examined based on the original set

of occurrence data, but with different consensus methods for

combining multiple replicate models in which all error was treated

equally versus when omission error rates were prioritized over

commission error rates. Overall, models with corrected (i.e., non-

equal) balance of error weightings identified a dramatically

broader area as suitable for LASV transmission, although the

original models did not emphasize any particular area overmuch

(Figure 3).

Three corrections to risk mapping procedures where individu-

ally assessed in the preceding paragraphs. The comparison

between the raw, unfixed, and corrected model outputs is quite

instructive. Raw model outputs resemble closely the maps

presented by Fichet-Calvet and Rogers [7] (see our Figures 2

and 4), emphasizing humid forest habitats across West Africa and

south and east into Central Africa. In contrast, the corrected

models extend considerably farther north into the more arid Sahel

region, but areas of Ghana and Côte d’Ivoire show more reduced

areas of suitability.

Sierra Leone: Effects of different random subsamplings
and model validation

Given that two of the three authors of this paper (LMM and

DGB) have considerable experience with LF in Sierra Leone, we

paid considerable attention to patterns of suitability that were

reconstructed in that region (Figure 5). The uneven pattern of

suitability in the region was intriguing, with areas of high and low

suitability reconstructed across the country. Hence, we took two

additional steps in exploring and understanding our models.

First, we repeated the random subsampling of 25% of the

occurrence data from that region 10 times, fitting new rangewide

models to see if our initial subsampling was in some way atypical

or nonrepresentative of a more general tendency. The replicate

analyses showed similar patterns of gaps among suitable areas

across the region, so we conclude that the fragmented suitable

areas shown in Figure 5 are a general pattern that is characteristic

of the broader data set and not a consequence of a particular

random subsampling.

Seeking an independent validation of predictions from our

models (see discussion in [25]), we were frustrated by the paucity

and uneven distribution of known occurrences of LF in Sierra

Leone. Although a rangewide independent data set for LF is not

available on which to base such a test, a smaller, more restricted

data set is available from testing rodents for LASV from work by

one of us (L. Moses, in prep.). Plotting LASV-infected rodent

prevalences against predicted suitability from the LF models (i.e.,

from the map in Figure 4) shows a positive relationship in which

high LASV prevalences are achieved at the highest modeled

suitability levels (Figure 5; R2 = 0.224, P,0.05). Hence, we see at

least a local-scale confirmation that patterns of variation in

modeled suitability have meaning for LASV prevalence in rodents.
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Discussion

This paper presents a series of insights into how disease

transmission can and should be reconstructed across space to

produce risk maps. Although we have focused on LF because of

the availability of the occurrence data and initial analyses from

Fichet-Calvet and Rogers [7], parallel analysis exist for the

distribution of other diseases, such as monkeypox [11]. We

emphasize that we in no way consider our results to be

comprehensive transmission risk maps; many details remain to

be addressed regarding the occurrence data (see below).

Caveats
It may be argued that our before-and-after comparisons are not

valid because we did not replicate the Fichet-Calvet and Rogers

analyses exactly. Indeed, we did not replicate their procedures in

two ways. First, Fichet-Calvet and Rogers took advantage of rich

environmental data sets developed by Scharlemann and colleagues

[26], in which multitemporal vegetation index data were processed

to produce a multidimensional picture of seasonality and

vegetation phenology. While we would very much have liked to

use this data set in our analyses, three separate requests to the

senior and corresponding authors were not answered.

Figure 3. Summary of effects of three factors assessed in this study as potentially influencing model outcomes: quality control of
input occurrence data (top panel), reduction of oversampling of occurrences in certain areas (middle), and weighting omission
versus commission errors appropriately (bottom). In each case, the map represents a difference between our corrected and our mimicking of
the original analysis such that a score of 100 (dark red) indicates a situation wherein the original analysis overemphasized the suitability of a site,
whereas a score of -100 (dark blue) indicates underemphasis. All three maps are shown on the same color scale.
doi:10.1371/journal.pone.0100711.g003
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Second, we did not use their same analytical approach, which

was a non-linear maximum likelihood discriminant analysis.

Instead, we purposefully used algorithms of known behavior

[27,28] that permitted us to assess more readily the error balance

question without major programming modifications [24]. With

regard to this latter point, our experience is that even very different

algorithms converge on similar solutions [9,10]. Because our

‘‘before’’ maps in our before-and-after comparisons (Figure 4)

closely resembled those of Fichet-Calvet and Rogers [7], we

believe that our manipulations were indeed effective and illustrate

the effects that are the point of this article.

The point
This set of analyses illustrates the importance of a rigorous

conceptual framework of ecology and biogeography that can take

into account the biases inherent in occurrence data for any

modeling and mapping exercises. Careful consideration of these

biases is essential in creating and interpreting distribution and risk

maps [9]. A firm conceptual framework that vets data thoroughly

and considers carefully how they should be incorporated into the

model guides one through a series of explicit assumptions that

place—to the greatest degree possible—analyses in the context of

an ecological niche on a biogeographic landscape [29].

This study illustrates the point that (1) lack of quality control of

occurrence data, (2) oversampling in clustered areas, and (3)

inappropriate equal weighting of error components in model

calibration all have macrogeographic implications for mapping

disease transmission risk. Each of these factors affects estimates of

risk and these effects are not randomly distributed spatially, but

rather have considerable spatial autocorrelation. This autocorre-

lation means that these factors actually make a macrogeographic

difference in the estimates that result, and that these factors must

be considered within a conceptual framework that takes them into

account integrally.

Indeed, if we combine the corrections to each of the three biases

into a final model and compare this to the uncorrected model, we

see serious geographic differences in reconstructed risk patterns

(Figure 4). The area predicted as suitable for LASV transmission

now appears considerably broader, and additional areas around

the Dahomey Gap and in the Sahel region that the original Fichet-

Calvet and Rogers maps did not include are appreciated as at risk.

The reasons behind these differences are clear from Figure 1; LF

occurrence points that we used to create our final models are more

evenly distributed across both humid and semiarid situations than

the original points used by Fichet-Calvet and Rogers, and the

extreme concentration in western-most Africa is largely removed.

As a result, the picture of environments suitable for LASV

Figure 4. Overall effect of the three corrections explored in this paper shown as the results of the ‘raw’ models designed to mimic
the original models [7] (top panel), models based on all three of the corrections together (middle), and the difference between the
two (bottom). In the bottom map, red areas are those overemphasized in the raw models, while blue areas indicate underemphasis of the raw
models.
doi:10.1371/journal.pone.0100711.g004
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transmission is broadened considerably. The error balance

manipulation serves to broaden this view still more. Indeed, in

2010, outbreaks of LF occurred in southern Mali and northwest-

ern Nigeria [30,31] (see also ProMed archive 20100519.1656),

areas depicted as low risk by Fichet-Calvet and Rogers, but as high

risk in our adjusted model outputs.

However, as mentioned above, even our corrected maps are far

from constituting final risk maps for LF. Many nuances and

additional elements would need to factored into a highly predictive

map, including: (1) Detailed maps of M. natalensis distribution.

LASV/LF occurrence data would ideally be derived from data on

LASV-infected rodents, rather than humans, for the aforemen-

tioned reasons related to the magnitude of movements of rodents

versus humans. However, understanding the distribution of M.
natalensis has been complicated by the existence of numerous

morphologically identical species and sub-species of Mastomys in

sub-Saharan Africa, often leading to misidentifications and

consequent errors in occurrence data. Fortunately, molecular

assays have recently been developed to allow reliable distinction

between Mastomys species [32]. (2) Consideration of additional

human behavioral and societal factors is crucial, as they may

modify risk by impacting probability of Mastomys occurrence and

LASV infection and/or transmission to humans (e.g., poverty and

socioeconomic status, levels of development, educational status,

land use, housing construction) and reporting (e.g., distance to

clinics and hospitals, medical personnel awareness of LF,

availability of diagnostic facilities, efficiency of reporting pipelines).

(3) Consideration of human genetic predisposition to LASV

infection and disease is important, as data now suggest that certain

genotypes in West African human populations may be protective

[33]. (4) Finally, and perhaps most importantly, maps would be

evaluated and tested rigorously via independent data sets, such

that confidence in ‘risk’ estimates can be taken into account

quantitatively. In this sense, the maps presented in this paper are

not risk maps, but rather explorations of factors that affect ability

to reconstruct disease transmission risk and to generate hypotheses

for further field testing, verification, and map refinement.
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