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Abstract
Gestational diabetes mellitus (GDM) has a high prevalence during pregnancy. This research aims to identify genes and their pathways
related to GDM by combining bioinformatics analysis.
The DNAmethylation and gene expression profiles data set was obtained fromGene Expression Omnibus. Differentially expressed

genes (DEG) and differentially methylated genes (DMG) were screened by R package limma. The methylation-regulated differentially
expressed genes (MeDEGs) were obtained by overlapping the DEGs and DMGs. A protein–protein interaction network was
constructed using the search tool for searching interacting genes. The results are visualized in Cytoscape. Disease-related miRNAs
and pathways were retrieved from Human MicroRNA Disease Database and Comparative Toxic Genome Database. Real-time
quantitative PCR further verified the expression changes of these genes in GDM tissues and normal tissues.
After overlapping DEGs and DMGs, 138MeDEGs were identified. These genes were mainly enriched in the biological processes of

the “immune response,” “defense response,” and “response to wounding.” Pathway enrichment shows that these genes are
involved in “Antigen processing and presentation,” “Graft-versus-host disease,” “Type I diabetes mellitus,” and “Allograft rejection.”
Six mRNAs (including superoxide dismutase 2 (SOD2), mitogen-activated protein kinase kinase kinase kinase 3 (MAP4K3), dual
specificity phosphatase 5 (DUSP5), p21-activated kinases 2 (PAK2), serine protease inhibitor clade E member 1 (SERPINE1), and
protein phosphatase 1 regulatory subunit 15B (PPP1R15B)) were identified as being related to GDM. The results obtained by real-
time quantitative PCR are consistent with the results of the microarray analysis.
This study identified new types of MeDEGs and discovered their related pathways and functions in GDM, which may be used as

molecular targets and diagnostic biomarkers for the precise diagnosis and treatment of GDM.

Abbreviations: CTD = comparative toxicogenomics database, DEGs = differentially expressed genes, DMGs = differentially
methylated genes, GDM= gestational diabetes mellitus, GO= gene ontology, KEGG= Kyoto Encyclopedia of Genes and Genomes,
MeDEGs = methylation-regulated differentially expressed genes, PPI = protein–protein interaction.
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of GDM is between 1% and 20%, and the prevalence of GDM in
1. Introduction

Gestational diabetes mellitus (GDM) refers to the impaired
glucose tolerance first discovered during pregnancy and is one of
the most common pregnancy complications.[1,2] The prevalence
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the high-risk study population exceeds 25%.[3–5] Perovic et al[4]

found that the mean fetal liver length in GDM was significantly
higher than that of healthy pregnant women. Moreover, GDM
can increase the morbidity and mortality of mothers and fetuses,
and is associated with macrosomia and various perinatal
complications.[6] However, the screening and diagnosis of
GDM lack uniform standards, and the missed diagnosis rate is
very high. It is reported that GDM is caused by increased insulin
resistance and pancreatic b cell dysfunction, involving genes
related to insulin signal transduction, insulin secretion, diabetes
onset in young adults, and lipid and glucose metabolism.[7,8]

DNAmethylation is an epigeneticmechanism, which is essential
for regulating gene transcription. So far, studies have reported that
DNA methylation plays a vital role in the occurrence and
development of many diseases.[9–11] Hajj et al found that the DNA
methylation level of the maternally imprinted mesoderm-specific
transcript (MEST) gene in the placenta and cord blood tissue of
women with gestational diabetes was significantly lower than that
of women with nongestational diabetes. In addition, obese adults
have a lower degree ofMESTmethylation comparedwith normal-
weight controls.[12,13] Nazari et al[14] found that GDM may
adversely affect the pancreatic b-cells of the offspring through the
hypomethylation of theCDKN2A/Bpromoter. Strakovsky et al[15]

studied thehigh-fat diet during pregnancy,whichhas nothing todo
with the occurrence of maternal obesity and diabetes. They found
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for the first time that the increase in mRNA expression of several
genes is related to the hepatic gluconeogenesis pathway in the liver
of the offspring of the fetus, which corresponds to the increase in
the level of glucose in the offspring during childbirth.
In this study, we performed a bioinformatics analysis based on

the microarray data of GDM. The methylation-regulated
differentially expressed genes (MeDEGs) were identified, and
enrichment analysis was performed on these MeDEGs. In
addition, a protein–protein interaction (PPI) network was
constructed to understand the molecular mechanism of GDM
and provide candidate biomarkers for diagnosis and treatment.
2. Materials and methods

2.1. Microarray data

Microarray dataset GSE70494 (including gene expression data-
set (GSE70493) and methylation dataset [GSE70453]) deposited
by Binder et al were downloaded from the Gene Expression
Omnibus database[16] (https://www.ncbi.nlm.nih.gov/). The
GSE70453 methylation dataset was obtained from the Affyme-
trix Human Transcriptome Array 2.0 platform and includes 32
GDM placenta tissue samples and 31 healthy control placenta
tissue samples. The GSE70493 gene expression profile dataset
was obtained from the Illumina HumanMethylation450 Bead-
Chip platform and contains 41 GDMplacenta tissue samples and
41 healthy control placenta tissue samples. A total of 55 samples
with both methylation and expression levels were selected,
including 25 healthy control placenta tissue samples and 30
GDM placenta tissue samples.
2.2. Data preprocessing and analyzing

The limma package Version 3.34.0 in R3.4.1[17] (https://
bioconductor.org/packages/release/bioc/html/limma.html) was
used to analyze gene methylation profile data and gene
expression profile data to identify differentially methylated genes
(DMGs) and differentially expressed genes (DEGs). The FDR <
0.05 and jlog2FCj > 0.263 was used as the threshold for
screening DMGs and DEGs. Then, through the pheatmap
package Version1.0.8 in R3.4.1[18] (https://cran.r-project.org/
package=pheatmap), two-direction hierarchical clustering based
on Euclidean Distance was performed on the expression level of
DERs and the methylation level of DMRs. Finally, Venn
diagrams were used to identify MeDEGs.
2.3. Functional and pathway enrichment analysis

DAVID 6.8[19,20] (https://david.ncifcrf.gov/) was used to perform
Gene ontology (GO) analysis enrichment and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway analysis on selected
MeDEGs. The P< .05 were defined as significant terms.

2.4. Protein–protein interaction (PPI) network

STRING is an online database used to predict PPI, which is
essential for explaining the molecular mechanism of key cellular
activities in GDM.[21] The STRING database was used to
construct a PPI network of MeDEGs. PPI network was visually
displayed through Cytoscape Version 3.7.2 software[22] (http://
www.cytoscape.org/). Subsequently, the GO biological process
and KEGG signal pathway analysis were performed based on
DAVID.
2

2.5. Construction of miRNA–mRNA network

The miRNAs related to GDM were obtained from the Human
MicroRNA Disease Database database[23] (Human MicroRNA
Disease Database, http://www.cuilab.cn/hmdd), which contains a
number of miRNA–disease association entries from literature.
Then, GDM directly related miRNA target genes are predicted
using the starBase database[24] (http://starbase.sysu.edu.cn/),
hereby obtaining miRNA–mRNA interaction pairs. Subsequent-
ly, the miRNA–mRNA network was constructed and visualized
using Cytoscape v 3.6.0 software. The target genes in the network
were analyzed based on DAVID for GO biological process and
KEGG pathway.
2.6. Construction of miRNA–mRNA and GDM-related
pathway regulatory network

The “asthmatic” as the keyword was used to search for KEGG
pathways and genes related to GDM in the Comparative
Toxicogenomics Database (CTD) 2019 update database[25]

(http://ctd.mdibl.org/). The GDM-related genes and pathways
were regarded as the overlapping genes and pathways between
those identified from the CTD and the genes and pathways in the
miRNA–mRNA network. Then the overlapping genes and
overlapping pathways were used to construct an interaction
network of GDM-related pathways and genes.
2.7. Real-time quantitative PCR (RT-qPCR)

The expression of MeDEGs was further detected by RT-qPCR.
Placenta tissues of 5 GDM samples and 5 normal samples were
collected from the department of Obstetrics and Gynecology,
Shanxi Bethune Hospital. The inclusion criteria for patients were:
the GDM group included the patients who have been diagnosed
with GDM and have no previous history of hypertension or
diabetes. The normal group included pregnant patients with non-
GDM, no gestational hypertension, no gestational heart disease,
andnoprevioushistoryofhypertensionordiabetes.This studywas
approved by the ethic committee of Shanxi Bethune Hospital.
Total RNAwas extracted using RNAiso Plus (TaKaRa, Tokyo,

Japan). According to the manufacturer’s instructions, mRNAs
were reverse transcribed using a PrimeScript II 1st Strand cDNA
SynthesisKit (TAKARA, catalog number 6210A, Japan). The PCR
reactions were performed in a total volume of 20mL, which
includes 10mL SYBR Premix EX Taq, 1mL forward primer (10m
M), 1mL reverse primer (10mM), 2mL cDNA, and ddH2O (up to
20mL). The reaction was performed in a ViiA 7 (Applied
Biosystems by Life Technologies, Austin, TX) real-time PCR
machines. The PCR conditions were at 50°C for 2minutes, 95°C
for 2minutes, 40 cycles of 95°C for 15seconds, and 60°C for 60
seconds. Dissociation curve was analyzed from 60°C to 95°C. The
relative gene expression was analyzed by the 2-DDCT method.
GAPDH was used as endogenous controls for gene expression in
the analysis. P< .05 and P< .01 were used as the screening criteria
for significant differences and extremely significant differences.
3. Results

3.1. Identification of DEGs and DMGs

For the DEGs of the gene expressionmicroarray, 234 upregulated
genes and 319 downregulated genes were identified. For the
DMGs of the gene methylation microarray, 232 hypomethylated
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Figure 1. A volcano plot of differentially expressed genes (A) and differentially methylated genes (B). The red plus signs represent upregulated genes, the blue
triangles represent downregulated genes, and the black circles represent nondifferentially expressed genes. FC = fold-change.
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genes and 513 hypermethylated genes were identified. The
volcano map shows the distribution of DEGs and DMGs (Fig. 1).
It is found from the heat map that DEGs and DMGs were
different between GDM and control samples (Fig. 2).
Figure 2. A, Heat map of DEGs. B, Heat map of DMGs. Black represents GDM sa
genes, DMGs = differentially methylated genes, GDM = gestational diabetes me

3

By overlapping DEGs and DMGs, a total of 245
overlapping genes were obtained (Fig. 3A). Subsequently,
138 MeDEGs were identified from the overlapping genes
(Fig. 3B).
mples, and white represents control samples. DEGs = differentially expressed
llitus.
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Figure 3. A, Venn diagram for aberrantly methylated-differentially expressed genes by overlapping DEGs and DEMs. B, Scattered distribution diagram of the
degree of difference between DEGs and DMGs. DEGs = differentially expressed genes, DMGs = differentially methylated genes.
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3.2. Enriched GO terms and KEGG pathways

The GO and KEGG pathway enrichment analysis of MeDEGs
was performed. A total of 20 significantly related biological
processes and 12 KEGG signaling pathways were obtained
(Fig. 4). GO analysis results show that these MeDEGs were rich
in 20 biological processes, which are mainly related to “immune
response,” “defense response,” and “response to wounding.” In
addition, the results of the KEGG pathway enrichment analysis
indicated that these MeDEGs were mainly involved in “Allograft
rejection,” “Graft-versus-host disease,” “Type I diabetes melli-
tus,” and “Autoimmune thyroid disease pathways.”

3.3. PPI network analysis

STRING was used to build a PPI network. The PPI network
contains 91 nodes and 182 edges, among which 73 nodes were
established from hypermethylated-downregulated and 18 nodes
were established from hypomethylated-upregulated (Fig. 5).
Then the GO biological process and KEGG pathway enrichment
analysis were carried out on the MeDEGs that constitute the PPI
network (Table 1). The results showed that MeDEGs in the PPI
network were significantly related to biological processes such as
“immune response,” “defense response,” and “response to
wounding.” The MeDEGs in the PPI network were mainly
enriched in KEGG pathways such as “Allograft rejection,”
“Graft-versus-host disease,” “Type I diabetes mellitus,” and
“Autoimmune thyroid disease.”

3.4. MiRNA–mRNA regulatory network related to GDM

A total of 25 miRNAs related to GDM were identified from the
Human MicroRNA Disease Database database. Subsequently,
after overlapping the target mRNA and MeDEGs of the GDM-
related miRNAs determined by the starBase database, 301
miRNA–mRNA regulatory pairs were obtained (Fig. 6). Togeth-
4

er, a miRNA–mRNA network was generated, comprising 95
nodes and 301 connecting edges.
Then, the MeDEGs in the miRNA-mRNA network were

analyzed for enrichment of biological processes and KEGG
pathways, and 7 biological processes and 7 KEGG signaling
pathways were obtained (Table 2). The results showed that those
MeDEGswere significantly related to biological processes such as
“posttranscriptional regulation of gene expression,” “oxidation
reduction,” and “regulation of translation.” Those MeDEGs
were mainly enriched in KEGG pathways such as “Antigen
processing and presentation,” “Graft-versus-host disease,”
“Type I diabetes mellitus,” and “Allograft rejection.”
3.5. GDM-related miRNA–mRNA–pathway network

In theCTDdatabase, 33 relatedKEGG signaling pathways and 10
related geneswere obtainedwith “gestational diabetesmellitus” as
the key word. An overlapping pathway “hsa04010: MAPK
signaling pathway” and an overlapping GDM-related gene
“SOD2” were identified between the CTD database and the
miRNA–mRNAnetwork. ThemiRNA–mRNA-pathwaynetwork
consisted of 13 genes and 16 miRNAs (Fig. 7). Three genes
MAP4K3, DUSP5, and PAK2 were involved in the overlapping
pathways (MAPK signaling pathway). Moreover, SOD2 partic-
ipates in 3 biological processes: “0055114_oxidation reduction,”
“0006732_coenzyme metabolic process,” and “0000302_re-
sponse to reactive oxygen species.” In addition, it was also found
that SERPINE1, PPP1R15B, and SOD2 are all involved in the
“0055114_oxidation reduction” and “0000302_response to
reactive oxygen species” biological process.

3.6. RT-qPCR validation

The expression of SOD2,MAP4K3,DUSP5, PAK2, SERPINE1,
and PPP1R15B was evaluated by RT-qPCR in GDM tissues



Figure 4. Functional enrichment analysis of methylated-differentially expressed genes. A, Enriched GO terms in the “biological process” category. B, Enriched
KEGG biological pathways. The x-axis represents the proportion of genes, and the y-axis represents different categories. The different colors indicate different
properties, and the different sizes represent the number of genes. GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes.
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compared with normal tissues. The characteristics of these
patients are displayed in Table 3. There was no difference in
prepregnancy BMI, maternal age, gestational age and birth
5

weight between the GDM group and the normal group (P> .05).
As depicted in Figure 8, the expression level of DUSP5 in the
GDM group was not significantly different from that in the

http://www.md-journal.com


Figure 5. PPI network of methylation-regulated differentially expressed genes. Blue represents the Hypermethylated-downregulated gene, and red represents the
Hypomethylated-upregulated gene. PPI = protein–protein interaction.

Table 1

The biological processes and pathways of methylation-regulated differentially expressed genes in the PPI network.

Category Term Count P value

Biology process GO:0006955∼immune response 23 4.38E-11
GO:0006952–defense response 17 4.90E-07
GO:0009611–response to wounding 15 2.36E-06
GO:0006954∼inflammatory response 10 1.24E-04
GO:0019882∼antigen processing and presentation 6 1.29E-04
GO:0006334∼nucleosome assembly 5 1.53E-03
GO:0031497∼chromatin assembly 5 1.74E-03
GO:0065004∼protein-DNA complex assembly 5 2.05E-03
GO:0034728∼nucleosome organization 5 2.22E-03
GO:0006323∼DNA packaging 5 5.07E-03
GO:0042127∼regulation of cell proliferation 12 6.40E-03
GO:0006333∼chromatin assembly or disassembly 5 6.76E-03
GO:0010035∼response to inorganic substance 6 7.30E-03
GO:0070482∼response to oxygen levels 5 9.71E-03
GO:0006935∼chemotaxis 5 1.49E-02
GO:0042330∼taxis 5 1.49E-02
GO:0055072∼iron ion homeostasis 3 1.91E-02
GO:0007626∼locomotory behavior 6 2.31E-02
GO:0030198∼extracellular matrix organization 4 2.37E-02
GO:0008284∼positive regulation of cell proliferation 7 3.57E-02
GO:0001666∼response to hypoxia 4 4.50E-02

KEGG pathway hsa05330:Allograft rejection 7 9.14E-07
hsa05332:Graft-versus-host disease 7 1.50E-06
hsa04940:Type I diabetes mellitus 7 2.36E-06
hsa05320:Autoimmune thyroid disease 7 7.58E-06
hsa04612:Antigen processing and presentation 7 1.26E-04
hsa05310:Asthma 5 1.51E-04
hsa05416:Viral myocarditis 6 5.45E-04
hsa04672:Intestinal immune network for IgA production 5 1.17E-03
hsa04514:Cell adhesion molecules (CAMs) 7 1.53E-03
hsa04060:Cytokine-cytokine receptor interaction 7 3.85E-02

GO = gene ontology, PPI = protein–protein interaction.

He et al. Medicine (2021) 100:26 Medicine
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Figure 6. The miRNA-mRNA regulatory network. The blue triangle represents the Hypermethylated-downregulated gene, the red triangle represents the
Hypomethylated-upregulated gene, and the yellow circle represents the miRNAs directly related to GDM. GDM = gestational diabetes mellitus.
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normal group. The expression levels of MAP4K3, PAK2, and
PPP1R15B were significantly higher in GDM group than in
control group (P< .01). The expression levels of SOD2 and
SERPINE1 in the GDM group were significantly lower than
those in the control group (P< .01).
Table 2

Biological processes and pathways that involve targets of GDM-rela

Category Term

Biology process GO:0010608∼posttranscriptional regulation of g
GO:0055114∼oxidation reduction
GO:0006417∼regulation of translation
GO:0006732∼coenzyme metabolic process
GO:0006955∼immune response
GO:0009108∼coenzyme biosynthetic process
GO:0000302∼response to reactive oxygen spe

KEGG pathway hsa04612:Antigen processing and presentation
hsa05330:Allograft rejection
hsa05332:Graft-versus-host disease
hsa04940:Type I diabetes mellitus
hsa05320:Autoimmune thyroid disease
hsa04514:Cell adhesion molecules (CAMs)
hsa04010:MAPK signaling pathway

GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes.

7

4. Discussion
In this study, 2 types of GDM microarray chips (DNA
methylation and gene expression profile data sets) were
comprehensively analyzed using bioinformatics analysis to
identify GDM-related genes and disease mechanisms. A total
ted miRNAs.

Count P value

ene expression 5 1.42E-02
8 2.24E-02
4 2.29E-02
4 3.04E-02
8 3.23E-02
3 3.75E-02

cies 3 4.37E-02
4 1.24E-02
3 1.87E-02
3 2.18E-02
3 2.50E-02
3 3.59E-02
4 4.17E-02
3 4.73E-02

http://www.md-journal.com


Table 3

Patient characteristics.

Characteristics GDM group Normal group P value

Prepregnancy BMI (kg/m2) 24.784±2.62 22.096±0.92 .062
Maternal age (y) 35.2±2.77 32.2±2.28 .099
gravidity 1
1 0 (0%) 2 (40%)
2 3 (60%) 2 (40%)
≥3 2 (40%) 1 (20%)
Smoke during pregnancy 1
Yes 0 (0%) 0 (0%)
No 5 (100%) 5 (100%)
Infant sex 1
Males 3 (60%) 3 (60%)
Females 2 (40%) 2 (40%)
Gestational age (wks) 38.858±0.706 39.114±0.327 .482
Birth weight (g) 3497±515.40 3616±410.46 .697

BMI = body mass index, GDM = gestational diabetes mellitus.

Figure 7. The miRNA–mRNA-KEGG pathway network. The blue triangle represents the Hypermethylated-downregulated gene, the red triangle represents the
Hypomethylated-upregulated gene, the yellow circle represents themiRNAs directly related toGDM, and the yellow square represents the KEGG signaling pathway
directly related to GDM. GDM = gestational diabetes mellitus, KEGG = Kyoto Encyclopedia of Genes and Genomes.

He et al. Medicine (2021) 100:26 Medicine
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Figure 8. The expression levels of SOD2, MAP4K3, DUSP5, PAK2,
SERPINE1, and PPP1R15B in GDM tissues and normal tissues quantified
by qPCR. GDM = gestational diabetes mellitus.

He et al. Medicine (2021) 100:26 www.md-journal.com
of 553 DEGs (234 upregulated and 319 downregulated) and 745
DMGs (232 hypomethylated and 513 hypermethylated) were
identified. By overlapping DEG and DMG, 138 MeDEGs were
identified. The discovery of the interaction network revealed that
related MeDEGs might be involved in the molecular transforma-
tion of important pathways related to the occurrence and
development of GDM. Gene function and enrichment analysis
confirmed the identified pathways and central genes related to
methylation, which may provide new insights into the pathogen-
esis of GDM.
GO analysis shows that the main biological processes of

MeDEGs involve “immune response,” “defense response,” and
“response to wounding.” These findings are reasonable. It is
reported that GDM is associated with impairedmaternal immune
response.[26] Moreover, the differentially regulated proteins
related to GDM identified by Zhao et al[27] also implicated in
immune response and defense response. In addition, the
enrichment analysis of the KEGG pathway showed that these
MeDEGs were mainly enriched in “Allograft rejection,” “Graft-
versus-host disease,” “Type I diabetes mellitus,” and “Autoim-
mune thyroid disease pathways.”This indicates that GDM is also
involved in the pathway of type I diabetes. This phenomenon was
also confirmed by Radaelli et al[28] They found that genes at key
steps of fatty acid uptake, transport, and activation pathways
were similarly up-regulated in pregnancy with GDM and type I
diabetes.
One overlapping gene, SOD2, was identified between genes in

themiRNA–mRNAnetwork and genes associated to GDM in the
CTD. SOD2 is a mitochondrial enzyme encoded by genomic
9

DNA, which is involved in the detoxification of free radicals
produced by mitochondrial respiration. The SOD2 gene is up-
regulated under oxidative stress and protects cells from the
harmful effects of reactive oxygen species.[29] It has been reported
that SOD2 is associated with an increased risk of reducing
gestational age and birth weight.[30] In addition, SOD2
overexpression inhibits mitochondrial translocation of pro-
apoptotic Bcl-2 family members, reduces the number of
mitochondrial defects in neuroepithelial cells and reduces
mitochondrial membrane potential, thereby eliminating mito-
chondrial dysfunction caused by maternal diabetes. An in vivo
experiment showed that maternal diabetes can cause the
inhibition of SOD2 in the amygdala, leading to autism-like
behavior in offspring.[31] Overexpression of SOD2 was restored,
and knockdown of SOD2 mimics this effect, indicating that
oxidative stress and SOD2 expression play an important role in
the behavior of the offspring of autism caused by maternal
diabetes. Currently, the regulatory mechanism of SOD2 in GDM
was not clear. In this study, it was found that the expression level
of SOD2 in patients with GDM was significantly reduced, while
the level of methylation was increased. Moreover, the miRNA–
mRNA-pathway network suggests that hsa-miR-130b, hsa-miR-
20a, hsa-miR-508, and hsa-miR-222 jointly regulate SOD2.
Therefore, we speculate that the expression of SOD2 was
reduced by regulating these miRNAs to participate in the
biological process of the response to reactive oxygen species,
which may plays an important role in the pathophysiology of
GDM.
In this study, we found that SERPINE1 and PPP1R15B are

also involved in the biological process of response to reactive
oxygen species. SERPINE1 is a member of the serine protease
inhibitor superfamily. Kohler and Grant[32] found that the
SERPINE1 gene is involved in the pathogenesis of cardiovascular
disease. Moreover, some studies have shown that elevated
SERPINE1 levels are associated with an increased risk of type 2
diabetes and its complications (such as diabetic retinopathy and
diabetic coronary artery disease).[33–35] This study found that
SERPINE1 is hypermethylated and downregulated, and SER-
PINE1 is simultaneously regulated by hsa-miR-30d, hsa-miR-
30c, hsa-miR-130b, and hsa-miR-148a in the miRNA-mRNA-
pathway network. PPP1R15B is a constitutive repressor of
protein phosphatase and eIF2a phosphorylation and is a crucial
regulator of translation during cellular stress.[36]PPP1R15B-
deficient b-cells showed enhanced phosphorylation of eIF2a and
were prone to apoptosis.[37] In addition, PPP1R15B-deficient
mice have low body weight, low survival rate, impaired
erythropoiesis, and increased phosphorylation of eIF2a in
fibroblasts.[38]PPP1R15B is hypomethylated and upregulated
in GDM, and it is also affected by hsa-miR-222, hsa-let-7g, hsa-
let-7a, hsa-miR-130b, hsa-miR-20a, and hsa-miR-137 regula-
tion. Therefore, we speculate that it may be the combined effect of
methylation and miRNA to increase the expression of
PPP1R15B and decrease the expression of SERPINE1, thereby
playing a role in the treatment of GDM. These conjectures need
further experiments to verify.
One overlapping KEGG pathway, MAPK signaling pathway,

was identified between genes in the miRNA–mRNA network and
genes associated with GDM in the CTD. The MAPK signal
pathway is involved in a variety of cellular activities, including
cell proliferation, differentiation, migration, senescence, and
apoptosis.[39] There are 3 genes enriched in this pathway, namely
MAP4K3,DUSP5, and PAK2.MAP4K3, also known asGLK, is

http://www.md-journal.com
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a serine/threonine kinase that belongs to the Ste20-like kinase
family of mammals.[40,41] Studies have shown that MAP4K3 is a
positive regulator of T cell signaling and T-cell-mediated immune
response.[42] Overexpression of MAP4K3 is associated with
human autoimmune diseases such as psoriatic arthritis,[43]

rheumatoid arthritis,[44] adult still’s disease[45] and systemic
lupus erythematosus.[46]MAP4K3 was significantly Hypomethy-
lated, upregulated in GDM, and it is also affected by hsa-miR-
33a, hsa-miR-27a, hsa-miR-130b, hsa-let-7a, hsa-let-7g, hsa-
miR-222, hsa-miR-92a, and hsa-miR-508 regulation.DUSP5 is a
member of the dual-specificity protein phosphatase subfamily,
which inactivates its target kinases by dephosphorylating
phosphoserine/threonine residues and phosphotyrosine residue-
s.[47]DUSP5 can phosphorylate mitogen-activated protein kinase
extracellular signal-regulated kinase (ERK1/2) and play an
important role in embryonic vasculature development.[48,49]

Moon et al[50] found that during the induction of collagen-
induced arthritis, DUSP5-overexpressing mice showed reduced
pro-inflammatory cytokines in joint tissues. DUSP5 was
significantly Hypomethylated, upregulated in GDM, and the
miRNA–mRNA–pathway network indicates that DUSP5 is also
regulated by hsa-miR-137, hsa-miR-27a, hsa-miR-92a, hsa-miR-
101, and hsa-miR-195. PAK2 is a serine/threonine kinase that
acts as a negative regulator of neuronal glucose uptake and
insulin sensitivity.[51] Under basal and insulin-stimulated con-
ditions, GTPase Rac1 activates PAK2 to inhibit neuronal glucose
uptake.[51] In this study, PAK2 was Hypomethylated and
upregulated in GDM, and the miRNA–mRNA–pathway net-
work found that PAK2 is also regulated by hsa-miR-195, hsa-
miR-452, hsa-miR-137, hsa-miR-222, hsa-miR-92a, and hsa-
miR-20a. Based on these results, we speculate that MAP4K3,
DUSP5, and PAK2 may play a role in the occurrence and
development of GDM through the coregulation of methylation
and miRNAs, but this speculation still needs to be verified by
subsequent experiments.
Moreover, qRT-PCR further validated that MAP4K3, PAK2,

and PPP1R15B were highly expressed in GDM samples
compared with the control samples, while SOD2 and SERPINE1
were lowly expressed in GDM samples compared with the
control samples.
There are some limitations in our study. First, the methylation

status of cytosine-phosphate-guanine islands of 6 genes related to
GDMwas not detected. Second, the experiment did not verify the
effect of abnormal methylation and miRNA expression on gene
expression. Therefore, further evaluations in clinical trials are
needed to verify these genes.
In summary, a comprehensive analysis of DNA methylation

and gene expression profiles was conducted to identify genes
related to GDM. Six genes (SOD2, MAP4K3, DUSP5, PAK2,
SERPINE1, and PPP1R15B) that may be related to the
pathogenesis of GDM have been identified, which may provide
new methods for the treatment of GDM. In addition, these genes
were verified by RT-PCR.
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