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The tumor necrosis factor (TNF) superfamily (TNFSF) is a protein superfamily of type

II transmembrane proteins commonly containing the TNF homology domain. The

superfamily contains more than 20 protein members, which can be released from the

cell membrane by proteolytic cleavage. Members of the TNFSF function as cytokines

and regulate diverse biological processes, including immune responses, proliferation,

differentiation, apoptosis, and embryogenesis, by binding to TNFSF receptors. Many

TNFSF proteins are also known to be responsible for the regulation of innate immunity and

inflammation. Both receptor-mediated forward signaling and ligand-mediated reverse

signaling play important roles in these processes. In this review, we discuss the

functional expression and roles of various reverse signaling molecules and pathways of

TNFSF members in macrophages and microglia in the central nervous system (CNS). A

thorough understanding of the roles of TNFSF ligands and receptors in the activation of

macrophages and microglia may improve the treatment of inflammatory diseases in the

brain and periphery. In particular, TNFSF reverse signaling in microglia can be exploited

to gain further insights into the functions of the neuroimmune interface in physiological

and pathological processes in the CNS.

Keywords: tumor necrosis factor superfamily, immunity, inflammation, macrophage, microglia,

neuroinflammation, neuroimmune interface

INTRODUCTION

Cell-to-cell communication, particularly for immune cells, occurs through either soluble
mediators or direct contact. In cases of communication through soluble mediators,
molecules, such as cytokines, chemokines, and hormones act in an autocrine, paracrine,
or endocrine manner to stimulate cell surface receptors. In contrast, direct contact
requires the interaction between cell surface molecules, such as cell adhesion molecules.
Members of the tumor necrosis factor (TNF) superfamily (TNFSF) constitute a
special class of molecules that are involved in both types of cell communication.
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TNFSF members are type II membrane proteins that are present
on the cell surface or in intracellular compartments. In their
membrane-bound form, TNFSF members can interact with
their cognate TNF receptor superfamily (TNFRSF) members
present on the cell surface or on adjacent cells. Cellular
activation increases cell surface expression and secretion of
homotrimeric forms of TNFSF members released from the cell
surface. For TNF-α, this proteolytic cleavage is carried out by
TNF-α-converting enzyme, a member of the ADAM family of
metalloproteases. Released trimeric forms of these ligands then
act as cytokines by interacting with their cognate receptors.

Increasing evidence has demonstrated that during direct
contact within or among cells expressing TNFSF and TNFRSF
members, signals are generated from the receptor part (forward
signaling) as well as the ligand part (reverse signaling). Another
interesting feature of the interactions between TNFSF/TNFRSF
members is that there is substantial crosstalk among cognate
ligand-receptor pairs, and some receptors can also be solubilized
and released into the surrounding tissues, thereby serving as
competitive inhibitors of ligand action on receptor-bearing
cells (1, 2).

Macrophages are immune cells that express most members
of the TNFSF and TNFRSF before and/or after activation.
Macrophages perform immunoregulatory functions at sites
of acute and chronic inflammation, pathogenesis, and
tumorigenesis. Many of the functions of macrophages are
mediated by TNFSF and TNFRSF members. Moreover, TNFSF
and TNFRSF members are expressed in brain glial cells and
mediate diverse biological effects, including neuroinflammation
and cell death. Neuroinflammation is closely associated
with diverse neuropathologies, such as CNS injury and
neurodegenerative diseases (3). Recent evidence indicates
that neuroinflammation is one of the major components
of the disease mechanisms. Under pathological conditions,
neuroinflammation and brain injury constitute a positive
feedback loop that perpetuates damages in the nervous system.
Brain glial cells, particularly microglia, play a pivotal role
in these processes. Inflammatory and neurotoxic mediators
produced from excessively activated microglia contribute to
neurodegeneration. Intracellular and intercellular signaling
of microglia has been proposed as a therapeutic target to
dampen deleterious microglial activation and to protect
neurons from microglial neurotoxicity (4–6). In that vein,
TNFSF and TNFRSF members expressed in brain microglia
may provide insights into the intercellular signaling of
microglia, and shed light on the regulatory mechanisms of
microglia-mediated neuroinflammation.

To date, many reviews have summarized the roles of
forward signaling in various processes associated with normal
immunity and the pathogenesis of cancer and other conditions.
Therefore, in this review, we will focus on reverse signaling
initiated from membrane-bound form of TNFSF with an
emphasis on recent developments. Especially, members
of TNFSF that are expressed in macrophage/microglial
lineage cells, such as BAFF/APRIL, LIGHT, GITRL, FasL,
TWEAK, and CD137L (4-1BBL), will be the main topic of
this review.

B-CALL ACTIVATION FACTOR OF THE TNF
FAMILY (BAFF)/A
PROLIFERATION-INDUCING LIGAND
(APRIL)

BAFF (also known as TALL-1, THANK, and TNFSF13B), a B-
cell survival factor, and its close relative APRIL (also known
as TNFSF13) are expressed in both membrane-bound and
soluble forms in various cells lineages, including myeloid cells
(monocytes, macrophages/microglia, neutrophils, and dendritic
cells [DCs]), stromal cells within lymphoid organs, and
osteoclasts (7–10). APRIL shares ∼30% sequence identity with
BAFF in the TNF domain (11). BAFF interacts with three types
of receptors: transmembrane activator and a calcium-modulating
cyclophilin ligand interactor (TACI), B-cell maturation antigen
(BCMA), and BAFF receptor (BAFFR and BR3; Figure 1). These
receptors can be found in lymphoid cells (i.e., B cells and plasma
cells, but also in some subsets of T cells) and myeloid cells
(8, 10). Although BAFF-R interacts with only BAFF, TACI, and
BCMA interact with both BAFF and APRIL. Studies of APRIL
and BAFF transgenic/knockout mice have revealed that these
molecules are essential for B-cell survival, T-cell costimulation,
autoimmune diseases, and cancer (8–11). Moreover, ligation of
BAFFR activates B-cell survival through activation of the nuclear
factor (NF)-κB pathway and downstream anti-apoptotic genes
(12, 13). Although both BAFF and APRIL are required for B-
cell maturation and survival, BAFF has major effects on pre-
immune B cells, whereas APRIL acts on antigen-experienced B
cells (14).

Both BAFF and APRIL contain a short cytoplasmic region

of ∼30 amino acids, a transmembrane domain (TMD), and
a 200-residue extracellular domain consisting of a stalk and a

TNF domain (11, 15–17). In macrophages, both are capable of

inducing reverse signaling, which triggers inflammatory changes
for the induction of various inflammatory mediators, including

matrix-degrading enzymes and pro-inflammatory cytokines

(18, 19). Treatment of either primary mouse macrophages or
human macrophage-like cell lines with the TACI:Fc fusion

protein or anti-BAFF/APRIL-specific monoclonal antibodies
(mAbs) stimulates the cells to express various pro-inflammatory

markers while suppressing cytoskeletal rearrangement associated

with phagocytosis and transmigration (18–21). Furthermore,

co-incubation with Ramos cells, which express both TACI
and BCMA, results in pro-inflammatory activation of THP-
1 cells in a BAFF- or APRIL-dependent manner, indicating
that cell-to-cell interactions can stimulate BAFF- or APRIL-
mediated reverse signaling (18, 21). These pro-inflammatory
responses initiated by BAFF are mediated by the mitogen-
activated protein kinase (MAPK) extracellular signal-regulated
kinase (ERK) and NF-κB, and suppression of cytoskeletal
rearrangement is mediated by phosphatidylinositol 3-kinase
(PI3K)/AKT and Rac-1, a Rho-family GTPase. Interestingly,
BAFF-mediated signaling shows significant crosstalk with Toll-
like receptor (TLR) 4-mediated signaling such that simultaneous
treatment with anti-BAFF mAbs and lipopolysaccharide (LPS)
results in a synergistic response with respect to pro-inflammatory
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FIGURE 1 | Interactions among members of the TNFSF and TNFRSF. Filled circles represent the expression of each member of the TNFSF in macrophages and

microglial cells. Functions of reverse signaling in the activities of macrophages and microglial cells are listed on the right.

activation. The cellular response is mediated by PI3K/AKT and
MAPK/Mitogen- and stress-activated protein kinase 1 (MSK1)
pathways, which culminate at the formation of a trimeric
complex containing NF-κB, cyclic AMP-response element
binding protein (CREB), and CREB binding protein. This
trimeric complex is responsible for the synergistic activation of
NF-κB and, consequently, pro-inflammatory responses of the cell
(22). The involvement of ERK in pro-inflammatory activation
has been further confirmed in studies showing the existence of
crosstalk between BAFF-mediated signaling and signals initiated
from immune receptor expressed on myeloid cells 1 (IREM-
1, CD300F) (23–25). IREM-1 is an immunoreceptor tyrosine-
based inhibition motif (ITIM)-containing cell surface molecule

that exerts its inhibitory effects through interaction of its ITIMs
with SH2-containing tyrosine phosphatase (SHP)-1. Via its
phosphatase activity, SHP-1 suppresses cellular signals associated
with PI3K, Janus kinase 2, MAPKs, signal transducers and
activators of transcription, and NF-κB (26, 27). Simultaneous
stimulation of BAFF and IREM-1 results in suppression of BAFF-
mediated ERK activation owing to IREM-1-mediated activation
of SHP-1 (22). These findings indicate that it is necessity to
re-evaluate the role of BAFF in diseases in which BAFF is
overexpressed in macrophages.

Despite the similarities in their extracellular domains and
receptors, BAFF and APRIL have quite different intracellular
domains (ICDs; Figure 2). On the other hand, the ICD in
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FIGURE 2 | Multiple sequence alignments of TNFSF ligands. Protein sequences were aligned using NCBI homoloGene website (https://www.ncbi.nlm.nih.gov/

homologene). Alignments of N-terminal sequences were constructed with T-coffee (The European Bioinformatics Institute [EMBL-EBI], https://www.ebi.ac.uk/). The

transmembrane domain of APRIL was computationally predicted with Phobius (EMBL-EBI, https://www.ebi.ac.uk/). The pink area indicates amino acid conservation.

ICD, intracellular domain; TMD, transmembrane domain.
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each member is highly conserved in among different species,
supporting the importance of their intracellular domains for the
generation of reverse signaling.

BAFF/APRIL and their receptor systems are believed to
be involved in the pathogenesis of various autoimmune
diseases. Accordingly, serum BAFF levels have been shown
to be abnormally upregulated in patients with systemic lupus
erythematosus (SLE), rheumatoid arthritis (RA), and Sjögren’s
syndrome (28–31). The mAb-based therapeutic belimumab
(LymphoStat-B) was approved by the US Food and Drug
Administration for the treatment of SLE in 2011 (32). Belimumab
was developed by screening of a phage-display library and
consists of two heavy chains and two light chains with
specificity against BAFF; this antibody blocks BAFF-mediated
activation of its receptors and subsequent cellular activation
(33). Although belimumab interacts with soluble BAFF and not
with the membrane-bound form of BAFF (34), the antibody
may crosslink with and thus activate the membrane bound-
form of BAFF on cells of monocyte lineage. Another mAb-
based therapeutic currently being evaluated in clinical trials
is tabalumab (35), an anti-BAFF human mAb that has been
reported to neutralize both membrane-bound and soluble
forms of BAFF (36). Because tabalumab binds the membrane-
bound form of BAFF, exploring whether this antibody induces
reverse signaling from BAFF in various cell types could
be beneficial for the future development of agents targeting
BAFF or APRIL.

BAFF and its receptors are widely expressed in brain glial cells
(Figure 3). Microglia express BAFF, BAFFR, and TACI (37). In
contrast, astrocytes and neurons only express BAFF and BAFFR,
respectively (38, 39). Microglial expression and release of BAFF is
increased by ganglioside mixture treatment (37) and brain injury
(38). In particular, cerebral ischemia and reperfusion injury
enhance microglial BAFF and neuronal BAFFR expression,
suggesting important roles of the BAFF/BAFFR interaction in
brain injury conditions (38). Neuronal survival was promoted
by BAFF/BAFFR ligation under ischemic stress conditions in
vitro as well as middle cerebral artery occlusion in vivo.
Interactions betweenmicroglial BAFF and neuronal BAFFR seem
to exert neuroprotective effects in brain ischemia injury and
may represent a promising therapeutic target for patients with
stroke. BAFF released from microglia has been proposed to act
on microglia themselves or B cells infiltrated into the brain to
regulate central nervous system (CNS) inflammation (37). A
previous study by Krumbholz et al. identified astrocytes as a main
cellular source of BAFF in multiple sclerosis plaques, suggesting
that BAFF produced by brain astrocytes may be involved in B-
cell survival under inflammatory conditions (39). BAFF has also
been reported to have a different functional role in experimental
autoimmune encephalomyelitis (EAE); specifically, BAFFR gene-
deficient mice show increased peripheral inflammatory cytokines
and higher disease severity compared with wild-type animals,
suggesting alteration of macrophage activation and immune
responses in the absence of BAFFR (40).

Reverse signaling of BAFF has not been specifically
investigated in microglia or other glial cell types. Nevertheless,
the wide distribution of BAFF and its receptors in various

neural cell types indicates that BAFF/BAFFR signaling may be
important for interglial crosstalk or neuron/glia interactions.

APRIL has been shown to be expressed by astrocytes in areas
of gliosis and by several glioblastoma cell lines (Figure 3) (41).
Under inflammatory conditions, astrocytes act like microglia,
producing pro-inflammatory cytokines, chemokines, and nitric
oxide. Astrocytic expression of APRIL has been shown to be
increased in the brains of patients with multiple sclerosis (41).
Thus, APRIL expressed in reactive astrocytes may participate
in the regulation of neuro-inflammatory responses and gliotic
scar formation in multiple sclerosis and other pathological
conditions. Notably, in this previous study, microglia were
negative for APRIL expression. However, the role of APRIL in
glioblastoma cells is still not clear.

Further evidence of the role of BAFF and APRIL in CNS
inflammation was obtained from a marmoset monkey model
of multiple sclerosis (42). Indeed, administration of antibodies
against either human BAFF or APRIL delayed EAE development
via different mechanisms.

LIGHT

The expression of LIGHT (also known as TNFSF14 or
CD258) has been observed in activated T and B lymphocytes,
monocyte/macrophages, granulocytes, natural killer (NK) cells,
and DCs (43–46). LIGHT can interact with three types
of receptors, i.e., herpes virus entry mediator (HVEM),
lymphotoxin β receptor (LTβR), and decoy receptor (DcR3)
(43, 47). HVEM or LTβR mediates LIGHT-induced T-cell
costimulation and/or subsequent cytokine production (48–52),
whereas DcR3, which is a soluble receptor without a TMD, works
as a competitive inhibitor of LIGHT-induced cellular responses
(43, 47, 53). HVEM (also known as TNFRSF14, LIGHTR, or
TR2), which was initially identified as a cellular coreceptor
for herpes simplex virus (HSV) entry (54), has a wide tissue
distribution, including lymphoid tissues, and is expressed on
peripheral blood leukocytes, such as T and B lymphocytes and
monocytes (55, 56). Similar to other members of this receptor
superfamily, HVEM stimulation leads to the activation of
transcription factors, including NF-κB and activator protein (AP-
1) (56). The expression of LTβR has been detected on endothelial,
epithelial, andmyeloid cells (57). LTβR functions as a mediator of
cancer-associated inflammation (58, 59), regulator of lymphoid
organ development (60, 61) and homeostatic stimulator of
DC expansion (62, 63). LTβR-mediated signaling induces the
classical NF-κB pathway via TNF receptor-associated factor 2/5
(TRAF2/5) (64, 65) or the non-canonical NF-κB pathway via
TRAF3 (66, 67). LTβR can also interact with and be stimulated
by LTα1β2, which is expressed on the surface of the cell. Because
HVEM also interacts with the homotrimer of LTα (LTα3) (57,
64), there seems to be extensive crosstalk between LIGHT/HVEM
and LT/LT receptor systems (Figure 1).

The possibility of LIGHT-mediated reverse signaling has
been reported in T cells, in which stimulation of LIGHT has
costimulatory effects; indeed, treatment with anti-LIGHT mAbs
enhances responses induced by T-cell receptor ligation. These
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FIGURE 3 | Expression of TNFSF and TNFSRSF members in brain glial cells and neurons. Different members of the TNFSF and TNFSRSF are expressed on

microglia, astrocytes, oligodendrocytes, and neurons as indicated. In particular, motor neurons have been shown to express LIGHT and LTβR.

responses include cell proliferation, cytokine production, and
cytotoxic activity via MAPK activation. Although treatment of
mice with DcR3-Fc downregulates graft-vs.-host responses and
ameliorates the rejection of mouse heart allografts, it is not
clear whether these effects are mediated by direct stimulation
of membrane-bound LIGHT or perturbation of LIGHT-induced
activation events (68, 69). Reverse signaling in macrophage
lineage cells was demonstrated when the human macrophage-
like cell line THP-1 was treated with a LIGHT-specific
agonistic mAb. Cells responded by inducing the expression
of pro-inflammatory mediators, such as interleukin (IL)-8 and
matrix metalloproteinase (MMP)-9 while suppressing phagocytic
activity. The signaling pathway initiated by LIGHT is mediated
by theMAPKERK and by PI3K, leading to activation of themajor
inflammatory transcription factor NF-κB (70).

Sequence analysis of the LIGHT ICD indicated a high level
of conservation among different species. However, there were no
similarities with currently known protein motifs (Figure 2).

LIGHT/HVEM/LTβR expression has not been thoroughly
investigated in brain microglia or astrocytes. Instead,
oligodendrocytes have been shown to express HVEM (71),
and motoneurons express LIGHT and LTβR (Figure 3) (72). In
an amyotrophic lateral sclerosis animal model, interferon (IFN)-
γ secreted from astrocytes was found to induce LIGHT/LTβR
signaling in motoneurons, thereby stimulating non-cell
autonomous neurotoxic pathways (72). Moreover, researchers
found that astrocyte/neuron crosstalk contributed to the
elimination of motoneurons expressing both LIGHT and LTβR
under pathological conditions. Microglia may also participate in

the non-cell autonomous motoneuron selective death pathways
by communicating with astrocytes or motoneurons. The study
further suggested that IFN-γ/LIGHT/LTβR pathways may be
useful therapeutic targets in motoneuron disease.

Although less is known about the glial expression of
LIGHT/HVEM/LTβR, a previous study by Mana et al.
investigated the role of LIGHT in CNS inflammation (73).
In the EAE model, LIGHT was found to be involved in
restraining macrophages and microglia, thereby limiting disease
progression and nerve damage. However, further studies are
required to elucidate the cell type-specific roles of LIGHT in
autoimmune CNS inflammation because only conventional
LIGHT-deficient mice have been evaluated.

HVEM expression has been found in oligodendrocytes (71).
This study, however, focused on the role of HVEM as a
receptor for viral entry during HSV-1 infection in a human
oligodendrocytes. They observed the colocalization of HVEM
and nectin-1 with HSV-1 particles, implying that HVEM may be
a major viral receptor functioning in these cells.

GLUCOCORTICOID-INDUCED
TNFR-RELATED PROTEIN (GITR) LIGAND
(GITRL)

GITR (also known as AITR or TNFRSF18) was originally
identified in activated T-lymphocytes, functioning as a regulator
of T-cell receptor-mediated cell death (74). Later, its expression
was detected in regulatory T cells (Tregs), effector T cells,
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macrophages, and microglia (75–79). The ligand of GITR
(GITRL) is mainly expressed in immature and mature DCs,
B cells, endothelial cells, macrophages, and microglia (75, 80,
81). Forward signaling initiated from GITR acts to costimulate
CD25-effector T cells, which respond through proliferation and
cytokine production. This GITRL-induced forward signaling is
mediated TRAFs and NF-κB (82–85). In human macrophage-
like THP-1 cells, ligation of GITR results in the expression
of pro-inflammatory mediators via activation of MAPK and
PI3K (77). The GITRL/GITR system has also been implicated in
various processes, including suppression of CD4+CD25+ Tregs,
antiviral and antitumoral responses, leukocyte extravasation, RA
development, and chronic lung inflammation (79, 86–88).

Reverse signaling through GITRL has been the subject of
intense investigations. GITR−/− mice show decreased numbers
of leukocytes in inflamed areas (89, 90), and treatment of
experimental animals with GITR-Fc fusion protein ameliorates
the symptoms of autoimmune or chronic inflammatory diseases
(91). These effects may be due to induction of GITRL-mediated
reverse signaling or blockage of GITR signaling (neutralizing
GITRL). Additional studies have indicated that both of these
mechanisms are possible. Some reports have favored the reverse
signaling mechanism. For example, adherence of GITR−/−

murine splenocytes or HL60 human monocytic cells to
endothelial cells was found to be enhanced when the cells were
treated with the GITR-Fc fusion protein. Moreover, stimulation
with GITRL triggers the upregulation of intracellular adhesion
molecule (ICAM)-1 and vascular cell adhesion molecule-1 (80).
In contrast, other reports have favored the neutralizing effect of
the fusion protein. Indeed, analysis of a spinal cord injury model
in GITR−/− mice indicated that the GITR-Fc fusion protein
failed to alter the disease severity in the knockout mice but
decreased disease severity in wild-type mice (92).

Stimulation of murine primary macrophages or human
macrophage-like THP-1 cells with GITR-Fc fusion protein or
anti-GITRL mAbs induces pro-inflammatory mediators (e.g.,
MMP-9, IL-8, monocyte chemotactic protein-1, TNFα, and
IL-β) and upregulates ICAM-1 expression. GITRL-mediated
activation signals were found to be mediated by ERK and NF-
κB (93). Treatment of murine monocytic cells with recombinant
soluble GITR (rsGITR) in combination with IFN-γ results in
synergistic induction of inducible nitric oxide (NO) synthase
(iNOS), cyclooxygenase (COX)-2, and MMP-9. Analysis of the
signaling mechanisms indicated the involvement of tyrosine
phosphorylation and NF-κB (94–96).

Both GITR and GITRL are expressed at the same time in some
cell types, particularly macrophages and microglial cells (75–
77). Clusters of macrophages/microglia can be easily observed in
lesion areas in atherosclerotic plaques, synovium of patients with
RA, and amyloid plaques in Alzheimer’s brain. Activation signals
initiated from both the receptor and ligand, which can occur
within one cell or among adjacent cells, may cause synergistic
pro-inflammatory activation.

GITRL-mediated reverse signaling is also involved in
osteoclastogenesis. When osteoclast precursors are treated with
receptor activator of NF-κB ligand (RANKL) and macrophage
colony-stimulating factor (M-CSF), the expression of both GITR

FIGURE 4 | Reverse signaling through GITRL in brain microglia. Although both

GITR and GITRL are expressed on microglia, only GITRL participates in the

inflammatory activation of microglia. Upon ligation of GITRL, MAPKs (such as

JNK and p38) and NF-κB are activated, and consequently, the expression of

iNOS, COX-2, CD40, and MMP-9 genes is induced with concurrent NO

production.

and GITRL is induced. Additional treatment with rsGITR
enhances osteoclastogenesis, which is blocked by neutralizing
anti-GITRL antibodies. This effect is related to rsGITR-induced
production of prostaglandin E2 via COX-2. Prostaglandin E2
then downregulates the steady-state level of osteoprotegerin
(OPG), which has anti-osteoclastogenic effects (97).

Reverse signaling through GITRL has been well-characterized
in microglia (Figures 3, 4). Hwang et al. first reported the
expression of both GITR and GITRL in brain microglia and
showed that reverse signaling through GITRL in microglia
induces inflammatory activation, as determined by NO
production and pro-inflammatory gene expression, such as
iNOS, MMP-9, COX-2, and CD40 (Figure 4) (75). Furthermore,
they demonstrated that GITRL-mediated microglial activation
is executed by canonical inflammatory signaling, such as
NF-κB and MAPK pathways. These results indicate that the
GITR/GITRL system, particularly GITRL reverse signaling, may
play a regulatory role in microglia-mediated neuroinflammation.

FAS LIGAND (FasL)

Fas (CD95), a type I transmembrane protein with characteristic
cysteine-rich domains, works as a receptor for FasL
(CD95L/CD178) (98, 99). Ligation of Fas induces caspase-
dependent apoptotic cell death through its death domain, which
is found in the ICD (100–103). Constitutive expression of Fas
has been detected in many cell types, although FasL expression
is restricted to CD4+ T helper cells, activated CD8+ cells, NK
cells, and macrophages (104). Developmental stage-dependent
expression of Fas during hematopoiesis has also been reported
(105). Alternative splicing of Fas mRNA generates seven
isoforms, which include soluble forms that can serve as DcRs
(106). Activation of T cells leads to upregulation of cell surface
expression of FasL, which then interacts with Fas on the same
or adjacent cells. This interaction triggers apoptotic cell death,
called activation-induced cell death (107). NK cells and CD8+
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cytotoxic T lymphocytes use Fas/FasL interaction as one of
the two main pathways that are responsible for their cytotoxic
effector functions (108). Cells in immune-privileged sites and
some tumor cells constitutively express FasL for the suppression
of immune responses against them (109, 110).

In addition to its apoptosis-inducing properties during
tissue injury and organ dysfunction (111–113), Fas also works
as an enhancer of pro-inflammatory responses (114, 115)
though caspase-independent and myeloid differentiation factor
88 (MyD88)-dependent signaling pathways (116–118). MyD88
serves as cross point for the crosstalk between the Fas-mediated
signaling pathway and IL-1R1 and/or TLR4-mediated signaling
pathways (119). Fas also enhances the proliferation of fibroblasts
and T cells (120–122), which are involved in caspase activation
without cell death (123–126). In THP-1 cells, treatment with
anti-Fas mAbs or incubation with FasL-expressing cells results in
pro-inflammatory activation of these cells through activation of
ERK and NF-κB (127). These reports indicate that Fas-mediated
signaling pathways are under complex regulation and provoke
various responses in different cell types.

Unlike other members of the TNFSF, FasL has a long
ICD containing around 80 amino acids with a high level of
conservation across different mammalian species. The ICD of Fas
contains two casein kinase I (CKI) binding sites and a proline-
rich region that contains multiple binding sites for the SH3
domain (2). The CKI phosphorylation motif can be found in
five other members of the TNFSF and is required for the FasL-
mediated activation of nuclear factor of activated T cells (NFAT)
and costimulation of T cells (104) (128). Possible interactions of
this ICD with SH3-containing signaling adapters, such as Grb2,
Fyn, and PI3K, have been reported (129, 130). The proline-rich
sequence is also required for the storage of FasL in specialized
secretory vesicles and the translocation of FasL to the plasma
membrane upon activation (131). This intracellular localization
appears to be regulated by the interaction of the proline-rich
region with the SH3-containing adapter protein PSTPIP, which
further interacts with the tyrosine phosphatase PTP-PEST (132).

Reverse signaling initiated from FasL, particularly via its
proline-rich sequence, is involved in costimulation of CD8+

T cells, optimal thymocyte maturation, and antigen-driven
proliferation of mature T cells (133–138). Upon activation,
increasing fractions of FasL have been reported to be localized
in lipid rafts, sphingolipid- and cholesterol-enriched dynamic
membrane microdomains required for some of signaling
and trafficking processes (133, 139). Along with increased
localization in lipid rafts, activated FasL associates with SH3-
containing proteins. The proline-rich domain is required for
phosphorylation of FasL itself and other signaling molecules,
including AKT, ERK, and c-Jun N-terminal kinase (JNK). These
signaling events then activate transcription factors (NFAT and
AP-1) and enhance IFN-γ production (1, 128, 133). Interestingly,
FasL with an alteration in the proline-rich region (deletion of
amino acids 45–54) abolishes its costimulation activity without
affecting its death-inducing activity, indicating the separation of
functional domains for different functions (128).

Although various functions of FasL have been well-
documented in T cells, its roles in other cell types have not

been extensively investigated. In breast cancer cell lines,
IFN-γ treatment induces the translocation of pre-existing
FasL to the cell membrane, and treatment with Fas-Fc fusion
protein induces apoptotic cell death (140). In the human
macrophage-like cell line THP-1, treatment with either anti-
FasL mAbs or Fas-Fc fusion protein induces the production
of pro-inflammatory mediators (e.g., MMP-9, TNF-α, and
IL-8) and promotes phagocytic activity. This pro-inflammatory
activation is mediated by MAPKs and NF-κB. In addition,
FasL-mediated inflammatory activation is blocked by triggering
of IREM-1 (141).

Fas and FasL are expressed in both microglia and astrocytes
(Figure 3). As recently reviewed by Jha et al., microglia/astrocyte
crosstalk constitutes an important component of neural cell
communication, orchestrating a range of physiological and
pathological processes in the CNS, such as brain development
and neurological dysfunction (142). The bi-directional
communication between microglia and astrocytes is mediated
by either secreted or cell surface proteins. Fas/FasL expressed in
microglia and astrocytes may mediate such crosstalk. Moreover,
a previous study by Badie et al. suggested a role of the Fas/FasL
interaction in microglia/glioma crosstalk (143). The authors
reported that expression of the membrane-bound form of FasL
is increased in the glioma environment and that FasL-expressing
microglia may contribute to the local immunosuppressive
environment of malignant glioma. However, the precise role of
microglia in glioma biology remains unclear.

Fas is expressed at low levels and is upregulated upon TNF-
α or IFN-γ treatment in primary mouse microglia cultures (144,
145). Moreover, Fas is expressed constitutively on astrocytes and
is upregulated by treatment with IL-1, IL-6, or TNF-α. FasL is
expressed on fetal and adult astrocytes and on microglia (144,
145). Thus, glial Fas/FasL may have a role in the induction of
apoptosis in the CNS (144). Interestingly, however, the Fas/FasL
interaction results in different signals in microglia vs. astrocytes.
For example, Fas mediates cell death signaling in microglia, but
transmits an inflammatory signal in astrocytes (145). Wang et al.
have reported that astrocytic FasL mediates the elimination of
autoimmune T cells in the CNS, contributing to recovery from
EAE (146). This regulatory role of FasL expressed in astrocytes
was demonstrated using glial fibrillary acidic protein/Cre FasL
(fl/fl) mice in which the FasL gene was selectively deleted in
astrocytes. In contrast, a study by Okuda et al. showed a tissue
destructive role of FasL in the acute phase of EAE (147). When
neutralizing antibodies against FasL were injected intrathecally,
the disease severity was attenuated, and neuroinflammation and
myelin damage were reduced in the CNS.

TNF-LIKE WEAK INDUCER OF APOPTOSIS
(TWEAK)

As a member of TNFRSF, fibroblast growth factor-inducible 14
(FN14) is expressed in various cell types, including lymphocytes,
macrophages, endothelial cells, fibroblasts, and keratinocytes,
particularly under conditions, such as inflammation and
malignancy. Its ligand, TWEAK, is expressed in lymphocytes,
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macrophages, NK cells, renal tubular epithelial cells, and
glomerular mesangial cells (148–150). Interestingly, both
TWEAK and FN14 are widely distributed among many tissue
types after exposure to inflammation (151). As a result, the
TWEAK/FN14 system has been shown to be involved in
inflammation, angiogenesis, cell proliferation, and apoptosis
and in various diseases, including SLE, renal damage, RA,
cancer, and conditions associated with cutaneous inflammation
(152–154). FN14-mediated forward signaling leads to NF-κB
activation (155, 156).

TWEAK-mediated reverse signaling has not been reported.
However, a naturally occurring fusion protein between
the ICD of TWEAK and the receptor binding domain of
APRIL, called TWE-PRIL (157–159), has been reported.
Analysis of APRIL−/− mice (which lack APRIL and TWE-
PRIL) demonstrated the involvement of TWE-PRIL reverse
signaling in suppression of sympathetic axon growth and tissue
innervation (160).

TWEAK mRNA expression has been detected in both
microglia and astrocytes (161). FN14 expression has been
reported in astrocytes; however, its expression has not been
detected in brain microglia. The TWEAK/FN14 interaction
has been implicated in CNS inflammation. Proliferation of
FN14-expressing astrocytes is increased upon exposure to
recombinant TWEAK protein. Moreover, TWEAK mRNA
expression is enhanced in spinal cords during EAE, and disease
severity is increased in transgenic mice overexpressing TWEAK.
These results indicate that the TWEAK/Fn14 interaction in
spinal glia is involved in CNS autoimmune inflammatory
responses and can be targeted for EAE and MS therapy.
Consistent with this, treatment of cultured human astrocytes
with TWEAK increases ICAM expression and IL-6/IL-8
secretion, inducing reactive astrocyte-like characteristics
(162). TWEAK also induces C-C motif chemokine ligand
2 (CCL2) release from astrocytes and endothelial cells
in culture. Blockade of TWEAK/FN14 signaling inhibits
TWEAK-induced CCL2 production and ameliorates EAE (163).
Furthermore, administration of anti-TWEAK neutralizing
antibodies reduces leukocyte infiltration and disease severity
in EAE animals (164). These results are consistent with the
pro-inflammatory and disease-promoting effects of TWEAK in
CNS inflammation.

CD137L (4-1BBL)

CD137 (4-1BB), originally identified as a T-cell costimulatory
molecule, is expressed in activated T cells, B cells, NK cells,
neutrophils, macrophages, and DCs and functions to promote
their effector functions (165–167). The ligand of CD137
(CD137L, 4-1BBL) was found to be expressed in B cells,
macrophages, andDCs (168, 169). Although CD137- or CD137L-
knockout mice show no severe defects, they have a higher
sensitivity to viral infection (170). Treatment with agonistic
anti-CD137 antibodies or CD137L-Fc fusion protein results in
expansion of tumor-specific T cells and ameliorates experimental

autoimmune encephalomyelitis through modulation of the
balance between Th17 and Tregs (171, 172).

For CD137L-mediated reverse signaling, most studies have
been conducted using monocytes/macrophages. Stimulation
of peripheral blood monocytes or bone marrow-derived
macrophages with anti-CD137L mAbs or CD137-Fc fusion
protein triggers a robust proliferative response, enhances
cell adhesion, and/or stimulates pro-inflammatory activation
associated with phosphotyrosine-mediated signaling (173, 174).
This proliferation-inducing effect of CD137L has been reported
to be mediated by the AKT/mammalian target of rapamycin
(mTOR) pathway, resulting in reprogramming of glucose
metabolism in a way that supports energy demand and biomass
production. CD137L stimulation increases glucose uptake and
upregulates enzymes involved in glucose transport/lysis and
lactate production. Expression of genes involved in the pentose
phosphate pathway and lipogenesis is also enhanced (175).

Bone marrow macrophages can be differentiated
into osteoclasts by M-CSF and RANKL treatment. This
osteoclastogenic process is inhibited by additional treatment with
immobilized CD137L-Fc fusion protein or recombinant CD137
(176). Various experiments investigating this reverse signaling
pathway have indicated that the signaling pathway is mediated by
MAPKs, AKT, mTOR, PI3K, PKA, C/EBP, and CREB, resulting
in induction of IL-6 and TNF expression (174, 177–179).
Recombinant CD137 treatment also inhibits phagocytosis and
oxidative burst (180). Interestingly, the extracellular domain of
CD137L has been reported to directly interact with TNFR1, and
this interaction appears to be required for CD137L-mediated
reverse signaling. As a consequence, treatment of monocytes
with TNF augments CD137-induced IL-8 expression, and
inhibition of TNFR1 using TNFR1-neutralizing antibodies
results in inhibition of CD137L-mediated responses, such as
cell adhesion, apoptosis, CD14 expression, and IL-8 production
(181). Using a two-hybrid system in a mouse macrophages, a
novel transmembrane protein TMEM126A was found to interact
with CD137L, and knockdown of TMEM126A was shown to
abolish CD137L-mediated induction of tyrosine phosphorylation
and pro-inflammatory cytokines (182). These results suggested
the complex nature of CD137L-mediated reverse signaling.
Further studies are needed to fully elucidate these mechanisms.

CD137L-mediated reverse signaling enhances DC maturation
and potentiates the ability of DCs to stimulate T cells (180,
183). In contrast, a recent report showed that blockade of
CD137L-mediated reverse signaling resulted in promotion of
intratumoral differentiation of IL-12-producing CD103+ DCs
and type 1 tumor-associatedmacrophages, which are required for
the generation of IFN-γ-producing CD8+ T cells (184).

Most recently, CD137-CD137L signaling has been implicated
in the hypothalamic interglial crosstalk under obese conditions
(185). Mice fed with high-fat diet (HFD) showed an enhanced
expression of CD137 and CD137L in the brain hypothalamus
(186). Treatment of cultured glial cells with obesity-related
molecules including free fatty acid and glucose promoted the
expression of CD137 in astrocytes and CD137L in microglia,
respectively (186). While forward signaling through CD137
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in astrocytes increased their reactivity, reverse signaling
through CD137L in microglia augmented the secretion of
proinflammatory mediators, such as MCP-1. These recent
findings suggest that CD137-CD137L signaling mediates
microglia-astrocyte crosstalk in hypothalamic inflammatory

responses under obese conditions, and CD137L reverse signaling
in microglia might be a potential therapeutic target for the

suppression of obesity-induced hypothalamic inflammation and
related metabolic diseases.

REVERSE SIGNALING INITIATED FROM
OTHER TNFSF MEMBERS

The list of TNSF members that can induce reverse signaling
is increasing as more studies focus on this aspect of the
TNFSF/TNFRSF system. In the case of TNF, its ICD contains a
nuclear localization signal sequence that can be liberated upon
stimulation of the membrane-bound form of TNF (mTNF) with
anti-TNF antibodies. This cleaved 10-kD fragment containing
the ICD and TMD were found to be localized to internal
membranes and nuclear fractions (187). Stimulation of mTNF
with soluble TNFR increases intracellular calcium levels in
RAW264.7 mouse monocytes (188). Additionally, soluble TNFR
treatment causes changes in mTNF phosphorylation status, and
casein kinase, which can phosphorylate the serine residues in
the ICD of mTNF, has been implicated in this reverse signaling
mechanism (188–190).

In monocyte/macrophage lineage cells, stimulation of mTNF
with mAbs or soluble receptors leads to activation of MAPKs,
particularly ERK, and the cells have been shown to be resistant to
subsequent stimulation with LPS (191, 192). Other investigators
have shown that stimulation of mTNF with anti-TNF antibodies
results in internalization of the mTNF/anti-TNF complex into
early endosomes and then lysosomes in macrophages and
DCs (193). In addition, stimulation of synovial macrophages
in RA joints with chimeric anti-TNF mAbs (infliximab) or
soluble TNFR (etanercept) results in the induction of caspase-
independent apoptotic cell death (194–196).

Some members of the TNFSF/TNFRSF show major crosstalk
among ligand/receptor pairs. For example, DcR3, which is the
counterpart of LIGHT, TNF-like ligand 1A (TL1A), and FasL,
contains three conserved cysteine-rich domains characteristic
of a TNFR (47, 197–199). Originally, DcR3 was thought to
neutralize these members of the TNFSF through competition
with their receptors. However, treatment of DCs with DcR3
modulates the differentiation and activation of DCs, which
then directs naïve T cells to differentiate into a Th2 phenotype
(200). In addition, monocytes and THP-1 cells respond to
DcR3 treatment with induction of actin reorganization and
enhancement of adhesion. Analysis of this reverse signaling
revealed the involvement of protein kinase C (PKC), PI3K,
focal adhesion kinase, and Src kinases (69). Additionally,
the involvement of DcR3 in osteoclast development was also
reported. When cells of monocyte/macrophage lineage were
treated with DcR3, osteoclastogenesis was induced through
MAPK signaling and TNF-α expression. These responses

enhanced the development of osteoclast phenotypes, such
as polynuclear giant morphology, bone resorption, and
expression of tartrate-resistant acid phosphatase, CD51/61, and
MMP-9 (201).

Of the three counterparts (LIGHT, TL1A, and FasL) of DcR3,
reverse signaling has been reported for LIGHT and FasL, but
not in TL1A. To date, there is no direct evidence supporting
the generation of reverse signaling from TL1A. However, the
expression of full-length TL1A has been shown to be correlated
with the senescence of endothelial cells, and knockdown of TL1A
expression has been shown to reverse the senescence phenotype
(202). In a murine colitis model, cell surface expression levels
of TL1A were found to be related to the suppressive activity
of Tregs in a DR3-dependent manner, suggesting that the
strength of signaling initiated from TL1A closely regulates Treg
activity (203).

OX40 (CD134) is mainly expressed in activated T cells and
acts as a costimulatory molecule for receiving activation and
survival signals (204–206). The ligand of OX40 (OX40L) is
mainly expressed in T and B cells, activated macrophages and
DCs, and endothelial cells (207–209). The OX40/OX40L system
has been implicated in T-cell costimulation, Treg generation, cell
adhesion, and extravasation of T cells (210–214).

When B cells are co-incubated with OX40-expressing
T cells or stimulated with soluble OX40, OX40L-mediated
reverse signaling is induced, and the B cells undergo terminal
differentiation into plasma cells. Because T cells are also activated
through this interaction, the OX40/OX40L interaction appears to
induce bidirectional signaling events (215, 216). A recent analysis
of OX40L expression levels in B cells from patients with allergic
rhinitis indicated that OX40L expression is positively correlated
with allergic markers, such as serum levels of IgE and IL-4 (217).

In freshly isolated human blood DCs, mAb-mediated
crosslinking of OX40L enhances CD40L-mediated expression
of IL-12. In DCs derived from monocytes with IL-4 and
granulocyte-macrophage CSF treatment, ligation of OX40L
enhances the production of pro-inflammatory cytokines (e.g.,
TNF-α, IL-12 p40, IL-1β, and IL-6) and the expression of
DC activation markers (e.g., CD83, CD80, CD86, CD54,
and CD40) (218). Although the signaling pathway has
not been elucidated, these data clearly support the role
of OX40L-mediated reverse signaling in DC activation
and maturation.

As a ligand of CD40, CD40L (CD154, gp39) is expressed in
and activates T cells, B cells, DCs, macrophages, smooth muscle
cells, endothelial cells, and platelets. CD40 expression has been
detected in B cells, monocyte/macrophages, DCs, mast cells,
fibroblasts, and endothelial cells (219–221). The CD40/CD40L
system is important for activation of B cells and subsequent
differentiation of these cells into plasma cells and stimulation
of immunoglobulin class switching. In addition, this system
is also involved in T-cell priming, T cell-mediated effector
functions, macrophage/NK cell/endothelial cell activation,
organ-specific autoimmune diseases, graft rejection, and
atherosclerosis (222–225).

CD40L-mediated reverse signaling has been studied in CD40-
knockout mice, in which defective germinal center development
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and antibody production were restored by soluble CD40
treatment. Additionally, reverse signaling was also found to
be required for acquisition of B-cell activating potential (226).
Although its ICD is only 22 amino acids, this region is highly
conserved across various species and generates signaling through
Lck, Rac1, MAPKs, and PKC in T cells (227–229). The presence
of CD40 and CD40L in lipid rafts has also been reported
and could explain the ability of these proteins to generate
signaling (230, 231).

The expression of RANK has been detected mainly in
osteoclasts and their precursors, DCs, and activated T and B
cells. In addition, RANK expression has also been detected in
a wide variety of tissues. The ligand of RANK (RANKL, also
known as TRANCE) has been detected at osteoblasts, T cells,
and stromal cells (232). The interactions between RANK and
RANKL can be regulated by the decoy receptor OPG, which has
affinity for both RANKL and TNF-related apoptosis-inducing
ligand (233, 234). The RANK/RANKL/OPG system is involved in
osteoclast differentiation/activation, bone remodeling, immune
cell function, lymph node development, thermal regulation, and
mammary gland development (235–238).

A few reports have provided evidence of RANKL-mediated
reverse signaling. The expression of both RANK and RANKL
has been detected in B chronic lymphocytic leukemia cells.
Treatment of these cells with RANK-Fc fusion protein, but not
with RANKL-Fc fusion protein, results in potent enhancement
of IL-8 expression (239). Additionally, immobilization of RANK-
Fc fusion protein augments IFN-γ secretion by Th1 cells in a
p38 MAPK-dependent manner. Addition of RANK-Fc fusion
protein during coculture of Th1 cells with antigen-presenting
cells results in suppression of IFN-γ expression from Th1
cells, probably by blocking the interaction between RANK and
RANKL (240). Moreover, osteoblasts, which express RANKL,
regulate the differentiation and activation of osteoclasts and
their precursors through the interactions of RANK and RANKL.
Recent reports, however, have shown that reverse signaling
initiated from RANKL is also possible. Soluble RANK treatment
enhances p38-mediated mineralization of osteoblasts, which
is abolished by knockdown of RANKL. When co-incubated
with osteoclasts, osteoblasts respond by increasing p38 MAPK
phosphorylation levels, and this response is blocked by abundant
soluble RANKL (241).

CD30 is expressed in activated T and B cells and is a clinical
marker for Hodgkin’s lymphoma and related malignancies (242,
243). Interestingly, crosslinking of surface CD30 can activate
latent human immunodeficiency virus in T cells (244, 245).
CD30-mediated signaling has costimulatory effects in T and B
cells, and serum levels of soluble CD30 serve as a prognostic
marker of Hodgkin’s disease and acquired immunodeficiency
syndrome (246–248). The ligand of CD30 (CD30L, CD153) is
expressed in activated T cells, B cells, and neutrophils. When
peripheral blood neutrophils were stimulated with CD30L-
specific mAbs or CD30-Fc fusion protein, cells responded by
IL-8 production and oxidative burst. Peripheral blood T cells
also responded to anti-CD3 and anti-CD30L antibody co-
treatment by increasing metabolic activity, proliferation, and
IL-6 production (249). According to a recent report, IgD+

IgM+ B cells express CD30L after activation with CD40L, IL-
4, and specific antigen. Additional treatment with anti-CD30L
antibodies or CD30-Fc fusion protein inhibits CD40-mediated
signaling through TRAF2 and NF-κB, which results in reductions
in class switch DNA recombination and subsequent production
of IgG, IgA, and IgE (250).

The expression of CD27L (the ligand of CD27, CD70) has
been detected in T cells, B cells, and NK cells. CD27 serves as
a T-cell costimulatory molecule that enhances T-cell receptor-
mediated signaling, proliferation, differentiation, and effector
functions. The ligand of CD27 (CD27L, CD70) can be detected in
lymphocytes, NK cells, and subsets of DCs (251–255). There have
been numerous reports on the role of CD27-mediated forward
signaling in the activation of T cells, B cells, and NK cells;
however, few reports have demonstrated the existence of CD27L-
mediated reverse signaling. In a study that explored the immune
surveillance function of NK cells in cancer, B cells expressing
cytoplasmic deletion mutant of CD27 were implanted in a B-cell
acute lymphoblastic leukemia xenotransplant model. Expression
of a truncation mutant in malignant cells increased the number
of tumor-infiltrating IFN-γ-producing NK cells. Further analysis
indicated that signaling mediated by CD70 on NK cells was
transduced by AKT signaling and enhanced the survival and
effector function of NK cells (256). In an earlier investigation,
a subset of leukemic B cells was found to express CD27L,
and stimulation with this ligand using specific mAbs resulted
in enhanced cell proliferation. Furthermore, the proliferative
response was synergistically enhanced by CD40 ligation (257).

FUTURE PERSPECTIVES

Although many studies have demonstrated the existence of
reverse signaling initiated from TNFSF, it is still unclear how
such signals are actually generated. The main reason for this
is the short ICDs of these molecules, which usually lack any
known signaling motifs. One exception is FasL, which contains
several known protein motifs that can interact with multiple
signaling adaptors. Although most members of TNFSF has
short ICDs with lack of known signaling motifs, the high
level conservation of ICD among various mammalian species
and its uniqueness in each members of the TNFSF supports
that these ICDs are involved in signal generation through yet
unidentified mechanism. Bidirectional activation and possible
crosstalk among signaling generated from these molecules are
expected to generate a complex signaling network that regulates
macrophage activity. Further studies are needed to explore this
aspect of macrophage regulation.

Many antibody-based therapeutic approaches target the
ligand part of TNFSF/TNFRSF system and aim for the blocking
of receptor-mediated forward signaling. Some of these agents
were proven to be effective for blocking the interaction between
cognate ligand and receptor and thus the induction of forward
signaling, which manifested in the alleviation of the severity
of target disease(s). However, agents targeting the ligand itself
or mimicking soluble receptor have the risk of activating
membrane-bound form of ligands and, subsequently, generate
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the reverse signaling. These unwanted effects may degrade
the therapeutic potential of the agents and may be able to
explain some of the side effects observed during clinical trials.
Additionally, it is also possible to develop agents that aim for the
blockage of reverse signaling in the future.

Finally, the roles of the TNFSF/TNFRSF in CNS inflammation
are complex and can be pro-inflammatory or anti-inflammatory
depending on the context. Different members of the TNFSF
and their receptors are expressed in distinct types of brain
glial cells and neurons and exert context-dependent effects on
neuroinflammation. Because the expression of these TNFSF
members is dynamically regulated under a diverse CNS
milieu, their functional roles may be modulated accordingly,
with spatiotemporal regulation of the crosstalk of different
TNFSF/TNFRSF members. Given the critical role of these
TNFSF/TNFRSF members in regulating neuroinflammation,
TNFSF/TNFRSF members and related signaling pathways can
be potential drug targets for the control of neuroinflammation
and the treatment of related diseases in the CNS. However, the
benefits and challenges of such an approach must be weighed
carefully given the multiple cell-cell interactions that might be
affected. Compared with forward signaling of the TNFRSF, little
is known about the reverse signaling through the TNFSF. Thus,
further studies are needed to better understand reverse signaling
pathways in brain glial cells and to determine the therapeutic
applications of these pathways in the field of CNS inflammation.
Finally, targeting forward and reverse signaling may have its own

advantages and disadvantages depending on specific TNFSF and
TNFRSF members; therefore, a combination of both is likely to
be useful in the clinical settings.
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