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Abstract

Circulating tumor DNA (ctDNA) sequencing is being rapidly adopted in precision oncology, but 

the accuracy, sensitivity, and reproducibility of ctDNA assays is poorly understood. Here we 

report the findings of a multi-site, cross-platform evaluation of the analytical performance of 

five industry-leading ctDNA assays. We evaluated each stage of the ctDNA sequencing workflow 

with simulations, synthetic DNA spike-in experiments, and proficiency testing on standardized 

cell line–derived reference samples. Above 0.5% variant allele frequency, ctDNA mutations were 

detected with high sensitivity, precision and reproducibility by all five assays, whereas below 

this limit detection became unreliable and varied widely between assays, especially when input 

material was limited. Missed mutations (false-negatives) were more common than erroneous 

candidates (false-positives), indicating that the reliable sampling of rare ctDNA fragments is the 

key challenge for ctDNA assays. This comprehensive evaluation of the analytical performance 

of ctDNA assays serves to inform best-practice guidelines and provides a resource for precision 

oncology.
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Editorial summary:

Reliable detection of mutations below 0.5% variant allele frequency remains a key challenge for 

circulating tumor DNA sequencing assays.

INTRODUCTON

Cancer cells undergoing apoptosis or necrosis release fragments of DNA into the circulatory 

system1,2. These circulating tumor DNA (ctDNA) fragments may harbor somatic mutations 

from their tumor of origin, and their abundance correlates with tumor size and stage3,4. 

Accordingly, ctDNA can act as an accessible biomarker to inform cancer detection, 

molecular stratification, therapeutic monitoring and post-treatment surveillance5–9.

Assays that measure ctDNA have several advantages over tumor-tissue biopsies (see 

Supplementary Table 1). The collection of ctDNA is fast, cheap, minimally invasive, and can 

be performed serially to monitor tumor evolution or response to therapy. In theory, ctDNA 

can provide a representative cross-section of heterogeneous tumors and multi-focal disease. 

Moreover, whilst a tumor-tissue biopsy cannot be performed without prior knowledge of 

the tumor, ctDNA assays can identify evidence of unknown lesions, thereby enabling 

detection of minimal residual disease following treatment or even cancer screening in 

healthy populations5–9.

These advantages are best realized via the unbiased analysis of ctDNA by next-generation 

sequencing (NGS) and, on this basis, ctDNA sequencing is being rapidly adopted in 

precision oncology. However, ctDNA sequencing assays face major technical challenges. 

Cell-free DNA exists as small fragments (~160 bp) at low concentrations (typically < 10 ng, 

or < 3000 genome copies, per mL of plasma in cancer patients)10. Furthermore, only a small 

fraction of cell-free DNA is tumor-derived (commonly < 1% of alleles in circulation, but 

sometimes as low as < 0.01%)10. The detection of rare somatic mutations from such limited 

input material is highly challenging.

CtDNA sequencing assays are also affected by a range of experimental variables and 

artifacts. Extensive PCR amplification is typically required to generate an NGS library 

from the small quantity of cell-free DNA available, as well as further targeted enrichment 

of informative cancer genes (by hybrid-capture or amplicon methods)10. The small size 

of cell-free DNA fragments can inhibit target enrichment, reduce alignability to the 

human reference genome and prevent the resolution of complex loci or mutations. These 

variables further exacerbate the quantitative biases and sequencing errors that affect all NGS 

experiments11.

In spite of these challenges, ctDNA assays of increasing resolution have been 

developed12–24. With clinical adoption already underway, it is critical for the community to 

understand the sensitivity, accuracy and reproducibility of ctDNA assays, and the variables 

that impact analytical performance. Discordant results between alternative assays or parallel 

ctDNA and tumor-biopsy tests have been reported25–27. Accordingly, a joint review by 

the American Society of Clinical Oncology and College of American Pathologists recently 
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identified the pressing need for proficiency testing using standardized samples to assess 

the analytical validity of ctDNA assays and enable unbiased comparisons between different 

technology platforms and laboratories28.

Here we report the findings of a multi-lab, cross-platform evaluation of analytical 

performance among NGS-based ctDNA assays carried out as part of the FDA-led 

Sequencing Quality Control Phase 2 (SEQC2) project, or the fourth phase of the MAQC 

consortia. The Oncopanel Sequencing Working Group – comprising academic, industry, 

government and regulatory stakeholders – tested the performance of five leading ctDNA 

assays across twelve participating clinical and research facilities. We employed simulated 

and synthetic experiments, as well as rigorous proficiency testing on contrived human 

ctDNA reference materials to measure the impact of variables at each step within the 

ctDNA sequencing workflow. The study assesses the analytical validity of ctDNA assays for 

potential clinical applications and informs best practice guidelines (see Box 1).

RESULTS

Evaluating ctDNA assays with simulated sequencing data

The detection of ctDNA fragments occurs by random sampling from a background of non

cancerous cell-free DNA. To investigate the analytical variables that govern this process, in 

the absence of confounding experimental variables, we initially generated simulated NGS 

libraries that emulate targeted analysis of cell-free DNA by hybrid-capture sequencing (see 

Methods).

We created simulated libraries from 155 cancer genes, covered at ~9,000-fold depth by 

~160 bp sequence fragments (Fig. S1a). This level of coverage can be theoretically obtained 

from a routine patient blood-draw, given that cell-free DNA occurs at up to ~3,000 genome 

copies per mL of plasma (see Supplementary Table 2). The cancer genes harbored 2,356 

simulated somatic mutations (one COSMIC SNV per exon) that were represented at known 

variant allele frequencies (VAFs) ranging from 5% to 0.1% (Fig. S1a). We then performed 

an in silico hybrid-capture enrichment step to obtain typical convex coverage profiles over 

targeted exons, resulting in a final 8,252-fold median fragment-depth at mutation sites (Fig. 

S1a,b). An example is shown for the oncogene MET (Fig. 1a).

We used these simulated libraries to evaluate the impact of coverage on the detection of 

ctDNA mutations. Due to random sampling, the number of sequence fragments containing 

a given mutation follows a Poisson distribution, with a median fragment count that is 

proportional to the product of VAF and global fragment-depth (Fig. S1c). At maximum 

depth, >99% of mutations were detected by at least two independent fragments (Fig. S1d). 

However, any decrease in coverage or increase in detection stringency (i.e., >2 supporting 

fragments) caused a reduction in sensitivity.

To model these relationships, we incrementally adjusted the simulated alignment coverage 

and detection stringency (see Methods). For low-frequency mutations (VAF < 0.5%), 

coverage had a pronounced impact on detection sensitivity, with this relationship modelled 

by a sigmoidal function (Fig. 1b; Fig. S1d). The stringency imposed during mutation 
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detection similarly impacted sensitivity for low-frequency mutations (Fig. 1c; Fig. S1d). 

By contrast, mutations at higher frequencies (VAF > 0.5%) were detected with maximum 

sensitivity even at relatively low fragment-depth and high stringencies (Fig. 1b,c; Fig. S1d). 

These analyses illustrate the inherent challenge of reliably detecting low-frequency ctDNA 

mutations by random sampling.

The enrichment of DNA fragments by hybrid-capture results in heterogeneous coverage 

across targeted exons. Even in the absence of hybridization biases, we found the detection of 

ctDNA mutations was similarly heterogeneous: since mutations in the edge regions of exons 

had lower fragment-depth than central mutations, detection sensitivity was up to 10% lower 

among edge mutations (Fig. 1d; Fig. S1e,f). Given that many pathogenic mutations occur 

within exon edge regions, especially at splice-site positions where coverage is lowest29, 

this edge-effect is a relevant consideration when designing hybrid-capture panels for ctDNA 

sequencing.

The short fragment length of cell-free DNA can cause erroneous or ambiguous alignment 

to the human reference genome. We found that ~5% of exons analyzed (118 of 2,356) 

had sub-optimal alignability, with these exons exhibiting lower fragment-depth and the 

mutations they harbored being detected with reduced sensitivity (Fig. 1e; Fig. S1f). This 

effect hindered the detection of mutations in notable gene families, such as the RAS 
family (KRAS, NRAS, HRAS)30. The impact of local alignability and exon position were 

most pronounced when evaluating low-VAF mutations, and when depth or stringency were 

limiting (Fig. 1d,e). These results demonstrate that, even in the absence of experimental 

variables, genomic context can have an influence on the detection of ctDNA mutations.

Evaluating ctDNA assays using synthetic DNA controls (sequins)

We next evaluated the detection of ctDNA mutations using synthetic DNA controls known 

as ‘sequins’. Sequins are synthetic DNA sequences that emulate natural human genes and 

mutations, and recapitulate many of the technical biases that impact their analysis by 

NGS31,32 (Fig. 2a).

We assembled a mixture of sequin controls representing 134 recurrent and/or clinically 

actionable somatic mutations within the functional domains of 87 cancer-related genes 

(Supplementary Data 1). Sequins representing wild-type and mutant alleles for each gene 

were combined in precise ratios to form a staggered reference ladder spanning a wide range 

of VAF levels (from 0.1% to 100%; Fig. 2b). The sequin mixture was fragmented and 

size-selected to emulate cell-free DNA fragments (Fig. S2a), then added at ~0.2% fractional 

abundance to human mock cell-free DNA samples (described below). These combined 

samples were then analyzed by targeted hybrid-capture sequencing (see Methods). In total, 

119 kb of synthetic sequence was captured and analyzed.

We evaluated the detection of synthetic mutations encoded by the sequin mixture. After 

calibrating sequins to match the coverage of their accompanying human sample (6311-fold 

median fragment-depth; Fig. S2b), 125/134 synthetic mutations were detected (sensitivity 

= 0.93). To assess the impact of coverage on sensitivity, we repeated variant detection 

across a range of down-sampled libraries. Decreasing coverage had a strong impact on 
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the detection of low-frequency mutations (VAF < 0.5%), whilst mutations at intermediate 

(0.5–5%) and high (> 5%) frequencies were detected with high sensitivity even at low 

fragment-depths (0.96–1.00; Fig. 2c). We observed little difference in sensitivity for single 

nucleotide variants (SNVs) and small insertions/deletions (1–16 bp; Fig. S2c), suggesting 

variant frequency had a larger effect than variant type.

In addition to global coverage depth, performance is also influenced by coverage 

heterogeneity, resulting from regional variation in hybridization kinetics, PCR amplification 

and library conversion efficiency. Sequin mutations ranged over 300-fold in fragment-depth 

(12,080-fold to 36-fold), with sequin coverage profiles closely resembling corresponding 

genes in their accompanying human sample (r2 = 0.89; Fig 2a; Fig. S2d,e). Such 

heterogeneity had a strong effect on variant detection: mutations in regions of high coverage 

(> 5000-fold) were detected with up to 30% higher sensitivity than regions of low coverage 

(< 3000-fold; Fig. 2d).

To elucidate the underlying determinants of this heterogeneity, synthetic variants were 

stratified according to genomic context (see Methods). We observed reductions in detection 

sensitivity for mutations in (i) exon edge regions (Fig. 2e), (ii) regions of high or low 

GC-content (Fig. 2f) and (iii) regions of low sequence complexity (Fig. 2g), identifying 

these as likely contributing variables. Many pathogenic mutations exist in such challenging 

genomic contexts. For example, low coverage was obtained within the GC-rich TERT 
promoter region, obscuring detection of the synthetic c.−57A>C mutation33, represented at 

1.5% VAF in this region (Fig. S2f).

Changes observed in the abundance of ctDNA fragments in patient plasma may indicate 

tumor progression, response or resistance to therapy, or disease relapse9. It is therefore 

essential that in addition to detecting ctDNA mutations, ctDNA assays can accurately 

measure their frequency. At maximum fragment-depth, two-fold magnitude changes in 

ctDNA abundance could be reliably resolved down to a VAF of 0.8% but were inaccurate 

below this level (Fig. 2b). Resolution was also impacted by fragment-depth, with decreasing 

coverage eroding the lower limit of quantitative accuracy (Fig. S2g). This demonstrates 

the difficulty of accurately identifying changes in the abundance of low-frequency ctDNA 

mutations during patient treatment.

Multi-site, cross-platform proficiency study

We next undertook a large-scale proficiency study utilizing a set of contrived reference 

DNA samples that are described in detail in a companion article34. Briefly, genomic DNA 

extracted from ten diverse human cancer cell-lines was pooled at equal abundance to create 

a mock cancer sample (Sample A; Fig. 3a). This pooled sample, as well as each individual 

cell-line, was genotyped to establish a set of ~40,000 ‘known variants’ and ~10.2 Mb of 

‘known negatives’ (positions that matched the human reference genome in every cell line) 

within the exonic coding regions. Together, these form a reference annotation against which 

diagnostic performance was subsequently evaluated.

To emulate the range of VAFs typically encountered in ctDNA assays, Sample A was 

combined at known ratios with DNA extracted from a non-cancer background cell-line 
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(Sample B) to create two further reference samples: Lbx-high (20% A / 80% B) and 

Lbx-low (4% A / 96% B; Fig. 3a). These samples were enzymatically sheared, and size 

selected to form DNA fragment-size distributions of ~160–180 bp (see Methods).

These mock cell-free DNA samples were administered to twelve independent laboratory 

sites, across the United States, United Kingdom, China and Australia (Fig. 3a). Each 

laboratory performed one or more participating ctDNA sequencing assay (Supplementary 

Table 3), which included hybrid-capture assays from Roche Sequencing Solutions (ROC), 

Illumina (ILM), Integrated DNA Technologies (IDT) and Burning Rock Dx (BRP), and 

an amplicon sequencing panel from Thermo Fisher Scientific (TFS). All sequencing was 

performed using Illumina instruments (NovaSeq or NextSeq), with the exception of the 

TFS amplicon assay, which was sequenced using Thermo Fisher Scientific’s IonTorrent 

instrument (Fig. 3b).

Each participating assay was performed at 2–3 independent test labs, with four technical 

replicates per lab for each mock ctDNA sample, at a fixed DNA input amount (25 ng). 

In addition, Lbx-low was analyzed with increased (50 ng) and decreased (10 ng) input 

amounts, to investigate the impact of cell-free DNA input quantity. To assess the impact 

of technical variables during plasma DNA extraction, Lbx-low was also analyzed following 

extraction from a synthetic plasma solution, with extractions performed independently at 

each test lab (Fig. 3b).

Each sequencing library was then analyzed by the relevant ctDNA assay vendor. 

Bioinformatic analysis was not standardized across the study, with each vendor instead 

employing an internal analysis pipeline, and providing a final set of variant candidates for 

centralized evaluation by an independent team (Fig. 3a). Together, the proficiency study 

encompassed 360 ctDNA assays, and constitutes the most comprehensive evaluation of 

analytical performance in ctDNA sequencing to date (Supplementary Data 2).

Coverage depth & heterogeneity

We evaluated coverage depth, which is considered a key variable in ctDNA sequencing10. 

We observed substantial differences in coverage between different assays, with median 

unique fragment-depth ranging from ~4,700-fold (BRP, ROC) to ~1,200-fold (ILM; at 25ng 

input; Fig. 3c). Given DNA input quantities were standardized, these differences reflect the 

capacity of each assay to exhaustively profile the unique DNA fragments within the input 

sample and may have a relevant impact on assay performance. Assuming 25ng input equates 

to ~7,500 genome equivalent copies, estimated molecular recovery rates ranged from ~63% 

in ROC to 17% in ILM (Fig. 3c; Supplementary Tables 2,4). The TFS amplicon assay 

achieved comparable fragment-depth to participating hybrid-capture assays (Fig. 3c).

As observed above, multiple technical variables can result in uneven coverage across target 

regions. After normalizing for overall depth, assays were distinguished by clear differences 

in coverage heterogeneity (Fig. S3a,b). For example, although the BRP and ROC assays 

achieved similar median fragment-depths, BRP showed lower heterogeneity than ROC 

across their respective target regions (normalized IQR = 0.23 vs 0.35; Fig. S3a) and at 
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matched sites present on both hybrid-capture panels (normalized IQR = 0.20 vs 0.46; Fig. 

S3b).

Analytical sensitivity

We next evaluated the sensitivity of hybrid-capture ctDNA assays by measuring the fraction 

of on-target known variants that were detected in each library (see Methods; Supplementary 

Data 2). Known variants were detected with superior sensitivity in Lbx-high compared 

to Lbx-low for all assays, reflecting their higher frequency in the former sample (Fig. 

3d, Fig. S3c,d, Fig. S4a,b). Indeed, all assays were highly sensitive for known variants 

at high (VAF > 2.5%; 0.99–1.00) and intermediate (0.5–2.5%; 0.96–1.00) frequencies but 

showed progressively weaker sensitivity for variants at lower frequencies (VAF < 0.5%), 

with significant variation observed between assays (0.1–0.5%; 0.39–0.83; Fig. 4a). The most 

sensitive assays (IDT, BRP) achieved sensitivity > 0.90 for variants with 0.3–0.5% VAF, 

however, no assays reached this mark for variants with 0.2–0.3% or 0.1–0.2% VAF (Fig. 4a).

As demonstrated above, high coverage is essential for reliable sampling of rare ctDNA 

mutations. Consistent with this, differences in assay sensitivity partially reflected the 

differences observed between assays in coverage depth. For example, the high depth 

achieved by BRP enabled sensitive detection for variants as low as 0.3–0.5% VAF (0.89–

0.93), whereas the ILM assay exhibited lower fragment-depth and lower sensitivity at this 

level (0.24–0.77; Fig. 3c, Fig. 4a). However, coverage depth alone was not necessarily a 

good predictor of sensitivity, with IDT achieving superior sensitivity to ROC despite its 

lower fragment-depth (Fig. 3c; Fig. 4a). This result is likely attributed, at least in part, to the 

lower coverage heterogeneity in the IDT assay (Fig. S3a,b), emphasizing the importance of 

achieving even coverage, in addition to overall depth.

Sensitivity is also influenced by bioinformatic variables. For example, among BRP assays, 

there were several known variants that were missed by every replicate despite other variants 

of similar or lower VAF being reproducibly detected (Fig. 4a). This suggests the BRP 

analysis pipeline was highly stringent, with strict filtering of variant candidates slightly 

reducing the sensitivity of variant detection that was achieved (Fig. 3c; Fig. 4a).

Analytical accuracy

We next identified false-positive (FP) variant candidates that were erroneously detected at 

known negative positions by each assay (see Methods; Supplementary Data 2). With all 

assays utilizing unique molecular identifiers (UMIs) to correct sequencing errors35, FPs 

were relatively rare, ranging from a mean of 1.65 to 5.3 FP candidates per replicate (at 

25ng input; Supplementary Table 5). After accounting for panel sizes, BRP exhibited the 

lowest FP rate (0.03 FP/kb) and IDT the highest (0.07 FP/kb), however, given the small 

number of FPs, the differences between assays were not statistically significant (p > 0.05). 

Erroneous variant candidates occurred almost exclusively at low frequency (VAF < 0.5%; 

Supplementary Table 5).

To compare the accuracy of the participating ctDNA assays we generated precision-recall 

curves36, ranking known variants and FPs according to their observed VAFs. For Lbx
low samples at 25 ng input, BRP was the most accurate assay, with roughly equivalent 
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sensitivity but superior precision to IDT (Fig. 4b, Fig. S4c). While this analysis enables 

useful cross-platform comparisons, it should be noted that precision is strongly influenced 

by the mutational burden of the sample under analysis (i.e., the number of positives 

available for detection), and should not be taken to indicate the inherent precision of the 

participating ctDNA assays. Overall, despite the differences observed in fragment-depth and 

sensitivity among the different ctDNA assays, FP rates were modest and broadly similar. 

Therefore, sensitivity, rather than precision was the major determinant of overall analytical 

performance.

Reproducibility between assay replicates

We next evaluated reproducibility by comparing the outcomes of replicate assay within and 

between labs (see Methods). We defined reproducibility as the fraction of variant candidates 

shared between any pair of replicates, with all possible pairwise comparisons considered.

Similar to sensitivity, reproducibility was generally high (0.99–1.00 and 0.95–1.00) for 

variants at high (>2.5%) and intermediate (0.5–2.5%) VAF, respectively, but was relatively 

low and differed widely between panels for low-frequency variants (0.1–0.5%; 0.58–0.83; 

Fig. 4c; Fig. S4d). Once again, coverage was a relevant variable, but was not alone sufficient 

to explain differences in reproducibility between assays, with IDT achieving relatively high 

reproducibility despite its lower fragment-depth (Fig. 3c; Fig. 4c). The results highlight 

the difficulty of reproducibly detecting low-frequency ctDNA mutations, and suggest that 

sensitivity is the major determinant of assay reproducibility. Within known positions, 

we found that FPs constituted only a small minority (< 10%) of the discordant variant 

candidates between any given pair of replicates (Fig. S4e), although we note that this 

fraction may be larger in samples with lower mutational burden than the reference samples 

analyzed here.

The concordance between reproducibility and sensitivity indicates that measurements of 

reproducibility can provide a useful proxy for diagnostic performance that is not dependent 

on the availability of a reference annotation. However, we noted that, whereas FNs are 

guaranteed to reduce assay sensitivity, this is not necessarily true for reproducibility, where 

systematic FNs (i.e., known variants missed in every replicate) are not penalized. In this 

case, reproducibility would slightly over-estimate the performance of the BRP assay, in 

which systematic FNs were most common (Fig. 4a,c). This emphasizes the value of well

characterized reference samples that can directly measure diagnostic performance37.

Finally, despite the wide variation between samples and panels, we observed no significant 

differences in reproducibility across within- and between-lab comparisons (Fig. 4d). This 

implies that all assays were robust to technical variables between facilities, and were 

impacted largely by random, rather than systematic variation.

Impact of cell-free DNA input quantity & plasma extraction

The quantity of cell-free DNA retrieved from a patient blood-draw is typically small, and 

this can be a major limitation for ctDNA assays10. To assess the impact of cell-free DNA 

input quantity, we next measured the performance of each hybrid-capture assay with high 

(50 ng), medium (25 ng) and low (10 ng) amounts of input DNA (Lbx-low; see Methods).
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Coverage depth scaled linearly with input quantity for a given assay but varied widely 

between assays (Fig. 5a). Low input (10 ng) ILM assays did not reach the minimum 

coverage requirements for analysis, so were excluded from subsequent evaluation (Fig. 5a).

The increasing fragment-depth afforded by 25 ng input, compared to 10 ng, resulted in 

substantial improvements in sensitivity, reproducibility and overall diagnostic performance 

for all assays, particularly for low-frequency variants (Fig. 5b–e; Fig. S5a,b). However, some 

assays (BRP, ROC) showed minimal further improvement with the addition of 50 ng input 

(Fig. 5b–e; Fig. S5a,b). The extent to which performance varied over the range of input 

quantities tested indicates the robustness of each assay to the variable cell-free DNA input 

amounts encountered in the clinic. Overall, the greater fragment-depth achieved by an assay 

at a given input level, the more robust that assay was to variation in input quantity, with BRP 

being the most stable (Fig. 5b–e).

We also evaluated the impact of cell-free DNA extraction, with each laboratory 

independently performing multiple extractions on DNA from Lbx-low suspended in 

synthetic plasma solutions (Lbx-low-plasma). Extraction efficiencies ranged from mean 33% 

(TFS) to 55% (BRP; Supplementary Data 3), with the DNA retrieved being subsequently 

quantified and analyzed at 25ng input quantities (see Methods). In general, we observed 

no significant difference in sensitivity, FP-rates or overall accuracy between Lbx-low 
and Lbx-low-plasma (Fig. S6a–c). Pairwise reproducibility was equivalent for Lbx-low 
and Lbx-low-plasma replicates, as well as for the pairwise comparison of Lbx-low to 

Lbx-low-plasma replicates (Fig. S6d). Finally, just as for Lbx-low, there was no difference 

in pairwise reproducibility across within-lab and between-lab comparisons for Lbx-low
plasma replicates (Fig. S6e). These results indicate that all participating ctDNA assays were 

relatively robust to technical variables between test labs at the plasma-DNA extraction stage.

Comparison of TFS amplicon assay to hybrid-capture panels

Amplicon sequencing methods enable targeted analysis of cancer mutation hotspots and can 

be applied in ctDNA analysis. We next compared the Thermo Fisher Scientific Oncomine 

cfDNA assay (TFS) to the other participating ctDNA-assays, which all use hybrid-capture 

enrichment (Fig. 3a,b). The TFS target regions (~1.9 kb) encompass driver-mutation 

hotspots within 11 cancer genes (Supplementary Table 3), such as BRAF p.V600E, a highly 

recurrent melanoma mutation38 that is one of the known variants in our analysis (Fig. 

6a). With these target regions almost entirely contained within the ROC, ILM and BRP 

capture panels, we were able to perform direct comparisons of sensitivity, accuracy and 

reproducibility within this clinically relevant window (see Methods).

Overall, performance was similar between the TFS amplicon assay and hybrid-capture 

assays. TFS showed perfect detection sensitivity for on-target known variants in Lbx-high, 

and achieved equivalent sensitivity to ROC/BRP for Lbx-low, when high input was used 

(25 or 50 ng; Fig. 6a,b). Due to its lower fragment-depth (Fig. 3c), TFS suffered a larger 

reduction in sensitivity than ROC/BRP when input quantity was restricted (10 ng), but still 

outperformed ILM, the hybrid-capture assay with the lowest fragment-depth (Fig. 6a,b). 

With this loss of sensitivity, BRAF p.V600E (VAF = 0.33%) was missed in half of all TFS 

replicates at 10 ng, whereas it was detected with perfect reliability at 25 and 50 ng (Fig. 6a). 

Deveson et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2021 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TFS and ILM also showed poor reproducibility at low input levels, compared to ROC and 

BRP (Fig. 6c). Finally, as we observed for hybrid-capture panels (Fig. 4d), TFS showed no 

difference in reproducibility between within- and between-lab comparisons (Fig. 6d).

To further evaluate the detection of low-frequency mutations, TFS test sites also analyzed 

synthetic DNA control (AcroMetrix Oncology Hotspot Control) containing 15 known 

cancer mutations that overlapped TFS hotspot regions (out of 521 in total; 50ng input; see 

Supplementary Methods). This enabled more robust measurement of diagnostic performance 

for low frequency variants, with all 15 mutations being present at ~0.1% VAF. Low

frequency mutations were detected with relatively high sensitivity (0.86–1.0; Fig. S7a). A 

number of false-positives were also detected, however, these were almost entirely excluded 

by applying a minimum detection threshold of VAF > 0.05% (Fig. S7a,b). Accordingly, a 

strong improvement in reproducibility (median 0.65 vs 0.94) was observed when applying 

this filter, at a relatively small cost to sensitivity (median 0.96 vs 0.90; Fig. S7c).

Overall, these results indicate comparable performance between the TFS amplicon 

sequencing assay and participating hybrid-capture based assays for the detection of SNVs. 

Indeed, we found the performance of a given assay, and especially its robustness to 

reductions in input quantity, was largely determined by the fragment-depth achieved, not 

the method of target enrichment or sequencing.

DISCUSSION

The ability to diagnose and monitor cancer through ctDNA sequencing promises 

to revolutionize clinical oncology5–9. Accordingly, there is considerable interest and 

investment in the ongoing development of NGS-based ctDNA assays39. Yet the reliable 

detection of trace amounts of fragmented ctDNA from a routine blood-draw remains 

a major technical challenge10. Government, regulatory and clinical organizations have 

therefore called for thorough analytical evaluation of ctDNA assays, in order to define 

diagnostic limits, assess reproducibility and identify key experimental variables that impact 

performance28.

This study begins to address these unmet needs and to the best of our knowledge provides 

the first large-scale assessment of analytical performance among industry-leading ctDNA 

assays. We report that mutations represented above ~0.5% VAF could be detected with 

high sensitivity, accuracy and reproducibility by all participating assays. However, variant 

detection was generally unreliable and variable between assays for mutations lower than 

~0.5% VAF. This was primarily driven by the proportion of known variants that missed 

detection (i.e., lack of sensitivity) due to stochastic sampling, in agreement with our initial 

simulated experiments. False-positives were a less significant source of discordant results, 

with UMIs used effectively to minimize errors in all assays. Cell-free DNA input quantity 

was a key variable, with increasing input leading to improved fragment-depth, sensitivity 

and reproducibility.

Previous studies have reported discordant results between alternative assays or parallel 

ctDNA and tumor-biopsy tests, although the underlying causes and extent to which this 
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resulted from biological, rather than technical, factors were unclear25–27 (see below). We 

also observed discordant results between vendors, labs and assay replicates. However, 

this was limited to low-frequency mutations (VAF < 0.5%), and largely reflected the 

limitations of stochastic sampling rather than technical biases or errors. In fact, we found 

that participating assays were generally robust to technical variables between test labs, from 

plasma extraction to sequencing workflow stages.

The performance characteristics of the assays evaluated here were broadly similar to what 

has been reported by several ctDNA sequencing providers (based on internal testing) that 

did not participate in this study. During validation of the Guardant360 CDx™ hybrid-capture 

assay, variants were detected with high sensitivity (~94%) at VAF ≥ 0.4%, declining to 

~64% among variants with VAF ranging from 0.05%–0.25%23. FoundationACT™ showed 

~99% sensitivity for SNVs with VAF > 0.5%, ~95% for 0.25%–0.5% VAF and ~70% 

for 0.125–0.25% VAF13. MSK-ACCESS™ showed ~98% sensitivity for SNVs with VAF 

> 0.5%, declining to ~74% for 0.1%–0.5% VAF12. Validation of the amplicon-based 

InVisionFirst™ assay, suggested this may have superior LOD to the hybrid-capture assays 

above, with ~99% sensitivity for SNVs as low as 0.25–0.35% VAF24. Consistent with 

our findings, all of these providers also reported low false-positive rates. Although direct 

comparisons between studies that used different test samples and DNA input quantities 

must be treated with caution, it appears generally true that the sensitive detection of ctDNA 

mutations below ~0.5% VAF is a major challenge.

While the accurate detection of mutations > 0.5% VAF and robustness to technical 

variables among ctDNA assays is cause for optimism, data arising during early clinical 

implementation of several tests highlight necessity for reliable detection of low-frequency 

mutations. A survey of > 1,000 plasma samples from cancer patients tested with 

Guardant360 CDx™ found that half of all detected SNVs occurred below ~0.5% VAF 

and a quarter below ~0.2% VAF40. Among 859 patients tested with FoundationACT™, 

half of all variants detected had VAFs below ~1.3% and a third below ~0.5%13. Among 

435 patients tested with MSK-ACCESS™, >5% of all mutations detected were missed by 

NGS but identified by more sensitive genotyping methods, with these having a median 

VAF of ~0.08%12. These results, which are generally based on the analysis of patients with 

advanced disease, demonstrate the tendency for ctDNA mutations to be represented at very 

low frequencies. Moreover, given the likelihood that many low-frequency variants missed 

detection, the median VAFs reported in these studies represent upper-bound estimates.

The analytical performance characteristics of a given ctDNA assay determine its potential 

suitability for specific applications in research and clinical oncology, with different assays 

being suited to different purposes. For example, higher sensitivity and precision and lower 

LOD are required for molecular characterization of early-stage vs late-stage cancer, due to 

the lower mutational burden and abundance of ctDNA fragments in circulation8,9.

That mutations above ~0.5% VAF were accurately detected indicates that the participating 

ctDNA assays may be suitable for molecular stratification and profiling tumor evolution in 

advanced cancer patients, where informative mutations are commonly detected with VAFs 

ranging from ~1–10%14,18–20. Given that variants were also accurately quantified above 
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an LOQ of ~0.8% VAF, ctDNA sequencing appears suitable to monitor frequencies over 

time and in response to therapeutic intervention14. Characterization of early-stage, localized 

disease with ctDNA sequencing requires accurate detection of mutations with VAFs ranging 

from ~0.1–1% VAF, although we note that this is likely to vary between cancer types 

and individual patients3,4,41,42. In patients with Non-Small-Cell Lung Cancer, for example, 

a tumor ~10 cm3 in volume yields ctDNA fragments at ~0.1% VAF, on average, in the 

plasma3. Therefore, while further improvement is required to ensure reliable detection of 

low frequency mutations, suitability for early-stage cancer appears within reach of current 

ctDNA sequencing assays.

The ability to detect and monitor post-surgical minimal residual disease (MRD) via ctDNA 

sequencing is an application with great potential utility8,9. However, MRD monitoring 

demands highly sensitive detection of mutations with VAFs ranging from ~0.1–0.01% 

to reliably predict disease relapse3,5,43,44. Given the participating assays in our study 

were generally unreliable for mutations with VAFs ~10-fold higher than this, substantial 

further development is required for use in monitoring MRD, and targeted analysis of 

known mutations by droplet digital PCR (ddPCR; or related approaches) remains the most 

promising strategy for this application.

The breadth a ctDNA assay’s target regions and the types of mutations detected are also 

a relevant consideration. For example, large hybrid-capture panels like the ILM panel 

tested here (154 target genes, ~500 kb) are ideal for unbiased genomic characterization 

in advanced metastatic disease, but are not cost effective for targeted monitoring of known 

driver mutations during and after therapy. Amplicon methods like the TFS panel tested here 

(11 target genes, ~1.9 kb) enable more affordable, focused analysis of mutation hotspots 

but their small panel sizes limit suitability for unbiased genomic surveillance. Limited 

ability to detect mutations types beyond SNVs and small indels is a further drawback of 

amplicon-based approaches.

The use of ctDNA sequencing for early cancer detection demands unbiased surveillance 

of broad target regions with high sensitivity and low LOD. Moreover, given the low prior 

probabilities involved in screening healthy subjects, false-positive rates must be exquisitely 

low for an assay to achieve clinical utility7. Given these requirements, considerable 

improvements to existing assays, as well as continued depreciation of sequencing costs, 

will be needed for this much-anticipated application to approach feasibility.

Given the discussions above, improved sensitivity for mutations below ~0.5% VAF 

should be a priority for the ongoing development of ctDNA assays. Optimizations to the 

efficiency of plasma-DNA extractions, target capture and NGS library preparations may 

yield incremental improvements in coverage and, thereby, in the detection of low-frequency 

mutations. Such advances are critical to ensure the robustness of ctDNA assays to the 

variable cell-free DNA input quantities encountered in the clinic10. However, participating 

assays showed diminishing returns with increasing sample input and/or fragment-depth and 

remained unable to exhaustively identify low-frequency mutations.
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This deficit in sensitivity reflects the difficulty of reproducibly detecting rare ctDNA 

fragments by random sampling of amplified fragments; an inherent statistical challenge 

that may not be fully overcome simply by increasing global fragment-depth. Substantial 

additional improvements to ctDNA assays may therefore require further innovations, such 

as the selective enrichment of ctDNA fragments over the background of non-cancerous 

cell-free DNA fragments, potentially by exploiting discrepancies in fragment size45,46 or 

methylation status47.

CtDNA assay performance will also benefit from ongoing improvement in the detection 

of cancer mutations beyond SNVs and small indels. Translocations and other structural 

variants48,49, copy number alterations50 and microsatellite instability51 can be informative 

cancer biomarkers, but their detection is challenging due to the small fragment sizes and 

amplification biases in ctDNA assays. Further assay development and proficiency testing on 

these features is therefore required.

The reliability of ctDNA sequencing assays is commonly assessed by measuring 

concordance between alternative assays or assay replicates27, parallel ctDNA and tumor

biopsy tests25,26,40, or orthogonal analysis of plasma samples with non-NGS based 

techniques, such is ddPCR23. These approaches have been applied across large cohorts of 

clinical specimens to inform assay development and validation12,23,40.

While highly useful, several caveats must be acknowledged. As noted earlier, concordance 

measurements between assays do not penalize systematic errors, such as mutations that 

are missed by multiple assays or replicates, and may therefore over-estimate performance. 

The comparison of plasma and tumor-tissue biopsies is also confounded by an array of 

biological factors, such as tumor type, stage, morphology and heterogeneity. For example, a 

mutation detected in a tumor-tissue biopsy but not with matched ctDNA sequencing might 

be truly absent from the plasma, due to restricted local circulation at its site of origin. 

Therefore, discordance is not necessarily indicative of poor analytical performance for either 

test. While, orthogonal analysis of a plasma sample with ddPCR can reliably determine 

whether detected mutations are true, it is not practical with this targeted approach to assess 

all invariant sites across a large hybrid-capture sequencing panel to rule out potential false

negatives28.

Arguably the most relevant limitation in using bona fide cell-free DNA samples for 

analytical validation experiments, is the inability to standardise across different assays, 

sites & replicates. Patient plasma samples vary widely in mutational burden and cell-free 

DNA yields, with no single sample representing the full diversity of mutation types and 

frequencies that should be considered in rigorous proficiency testing. The use of different 

clinical cohorts, cell-free DNA input quantities and test materials makes it difficult to draw 

reliable comparisons between validation studies performed by different ctDNA sequencing 

providers12,13,23,24.

To avoid these caveats, we utilised a combination of synthetic DNA controls (sequins31,32, 

AcroMetrix) and cell-line derived reference samples (Lbx-high, Lbx-low)34 to evaluate the 

analytical performance of ctDNA assays. This approach allows: (i) appropriate numbers, 
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types and frequencies of known mutations to be analyzed; (ii) unambiguous classification or 

true/false-positives/negatives across large target regions; (iii) standardization of samples and 

input quantities between sites, assays and assay replicates and; (iv) absence of confounding 

biological variables.

However, there are also limitations to this approach. The enzymatic process by which 

samples were fragmented does not perfectly emulate the fragmentation of natural cell-free 

DNA, on which the participating assays have been optimized. It is therefore possible that 

the efficiency of fragment capture and library conversion for these contrived samples may 

be lower/higher for any given kit than for natural cell-free DNA. Moreover, we cannot 

be certain that the kinetics of fragmentation are equivalent between all genome regions, 

potentially resulting in some sites being over/under-represented or represented by fragments 

of atypical sizes. While we deliberately devised reference samples with a high mutational 

burden to improve the power of performance measurements, this means that measures 

of assay precision are inflated and should not be interpreted as realistic measures of 

performance on clinical samples (instead, they are useful for making technical comparisons 

between assays, given common reference samples were tested).

Contrived reference samples can never fully recapitulate the many nuanced biological 

factors that influence the potential utility of ctDNA sequencing assays in real clinical 

contexts. For example, the ability to distinguish informative ctDNA mutations from a 

background of benign variants in cell-free DNA, generated during clonal haematopoiesis52, 

is a challenge that cannot be evaluated using synthetic reference materials. Therefore, while 

they are an ideal substrate on which to assess the analytical performance characteristics of 

ctDNA assays in the absence of confounding biological variables, contrived samples alone 

cannot be used to determine clinical thresholds (e.g., LOD & LOB), which must account 

for, rather than exclude, such variables. Importantly, clinical performance cannot exceed 

analytical performance and analytical validity is a pre-requisite for clinical validity and 

clinical utility, with these properties requiring demonstration in clinical trials employing 

assays that have achieved analytical validity28.

This study advances the community’s understanding of analytical performance 

characteristics in ctDNA sequencing, outlines a set of best-practice guidelines (Box 1), 

and constitutes astep toward the ultimate goal of establishing clinical utility for precision 

oncology. Moreover, the study establishes a unique set of reference materials, annotations 

and an analytic framework for standardized proficiency testing on ctDNA assays. While 

ongoing studies are required to establish the potential clinical validity and utility of ctDNA 

assays, the SEQC2 Oncopanel Sequencing Working Group has helped lay the foundation for 

such future work.

METHODS

Simulated ctDNA sequencing assays

To model the parameters of ctDNA sequencing assays, we generated simulated NGS 

libraries that emulate targeted analysis of cell-free DNA by hybrid-capture sequencing. 

Simulated reads were created using wgsim (v1.9; https://github.com/lh3/wgsim), with 
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mutation and error rates set to zero (-e 0 -R 0 -r 0 -X 0). Paired-end (2 × 150 bp) read

fragments were generated, with a mean fragment size of 160 bp and a standard deviation 

of 15 bp (−1 150 −2 150 -d 160 -s 15). Read-fragments were simulated uniformly over 155 

cancer-related loci on a generic gene panel for oncology applications (Roche NimbleGen; 

For Research Use Only, Not for Diagnostic Procedures), based either on the hg38 reference 

sequence or a modified hg38 sequence containing one Cosmic SNV per exon (n = 2,356; 

selected randomly and inserted using gatk FastaAlternateReferenceMaker (v3.8)53.

Reads simulated from reference and mutant sequences were combined in precise ratios 

to create eight independent simulated libraries in which all SNVs were represented at a 

specified VAF level (5%, 2%, 1%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%), with genes covered 

uniformly at ~9,000-fold fragment-depth. Simulated read-fragments were aligned to hg38 
using bwa mem (v0.7.16)54. In silico capture enrichment was performed by intersecting 

aligned read-fragments with the capture targets BED file and retaining only fragments 

with ≥ 60 bp overlap to a target region. This process creates convex coverage profiles 

over targeted exons that resemble typical coverage profiles obtained during hybrid-capture 

sequencing (Fig. S1a). These libraries were then down-sampled (gatk DownsampleSam) to 

create additional libraries with incremental reductions in fragment-depth.

Simulated SNVs were then detected using VarScan (v2.4.3)55 and detection sensitivity 

(TPs/(TPs+FNs)) was calculated for SNVs within each library, across a range of detection 

stringency levels (i.e., the minimum number of supporting fragments for a SNV to be 

called). To measure the effect of variant position, simulated SNVs were parsed based on 

their distance to the nearest exon boundary (‘edge regions’ < 20 bp; ‘central regions’ > 50 

bp). To measure the effect of local alignability, SNVs were parsed based on the alignability 

of their occupied exon sequence. Exons were considered to have ‘sub-optimal’ alignability if 

≥ 5% of overlying alignments had MapQ = 0.

Manufacture and sequencing of synthetic DNA controls (sequins)

We evaluated the detection of ctDNA mutations using synthetic DNA controls known as 

‘sequins’ (www.sequinstandards.com). Synthetic controls were manufactured in a purpose

built facility at the Garvan Institute of Medical Research (Sydney, Australia). Detailed 

descriptions of the design, manufacture and experimental validation of sequins have been 

published previously31,32.

For this study a custom sequin mixture for ctDNA sequencing experiments was created, 

encompassing 354 individual sequins ranging in size from ~1–6 kb for a combined ~757 kb 

of synthetic DNA sequence in total. This mixture provides synthetic ‘chiral’ representations 

of relevant exons/domains within 87 cancer-related genes and includes 134 synthetic 

mutations (Supplementary Data 1).

As described previously, sequin sequences were initially synthesized and validated 

by a commercial vendor (Thermo Fisher Scientific, GeneArt). Within a purpose-built 

manufacturing facility, synthetic sequences were amplified by bacterial culture, excised by 

restriction enzyme digest, quantified by UV fluorometry (Thermo Fisher Scientific Qubit) 

and combined using a liquid-handling robot (Eppendorf epMotion). By combining synthetic 
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molecules representing reference and variant alleles in precise ratios, synthetic mutations 

were represented across a wide range of VAF levels, ranging from 100% to 0.1% in two-fold 

increments. This staggered reference ladder allows detection sensitivity and quantitative 

accuracy to be assessed at different VAF levels.

To emulate the fragmentation of cell-free DNA, the synthetic sequin mixture was 

enzymatically sheared using NEBNext dsDNA Fragmentase in 10X Fragmentase Reaction 

Buffer for 30 minutes at 37°C. The reaction was terminated by addition of 0.5M EDTA 

and the resulting fragments were purified using double sided SPRI size selection. 0.65X 

Agencourt AMPure XP beads were used to exclude fragments >250 bp, while 1.8X 

Agencourt AMPure XP beads were used to enrich fragments < 250 bp and the purified 

DNA was visualized with an Agilent TapeStation. This neat, fragmented sequin mixture was 

validated by NGS, using a Nextera XT DNA library prep kit and sequenced on an Illumina 

MiSeq.

Following validation, the fragmented sequin mixture was spiked into mock human ctDNA 

reference samples (Lbx-high, Lbx-low; described below) at ~0.2% fractional concentration. 

These combined samples were analyzed by hybrid-capture sequencing, using a custom 

oncology panel (Roche NimbleGen; For Research Use Only, Not for Diagnostic Procedures) 

targeting the 87 human cancer genes that were represented by sequin controls, as well as the 

sequin controls themselves (this approach is described in detail elsewhere32). In total, 119 kb 

of synthetic sequence was captured and analyzed.

NGS libraries were prepared with a KAPA LTP Library Preparation Kit (Illumina platform 

KR0453 – v6.17), in conjunction with IDT xGen dual index adaptors, according to the 

manufacturer’s protocol with 10 cycles of PCR amplification. Capture enrichment was 

performed according to an established protocol (Roche Double Capture Technical Note, 

August 2012). Purified libraries were quantified on an Agilent TapeStation and sequenced 

on an Illumina NovaSeq (S1 flow cell).

Sequin bioinformatics analysis

Targeted NGS libraries containing reads from mock human ctDNA samples spiked with 

synthetic sequin controls were initially trimmed using TrimGalore (https://github.com/

FelixKrueger/TrimGalore) then processed using the purpose-built anaquin toolkit for sequin 

analysis, via a workflow that is described in detail elsewhere31. Briefly, sample-derived 

and sequin-derived reads were separated, and sequin reads were reversed in orientation 

(anaquin split). Sample and sequin reads were aligned separately to the hg38 reference 

genome using bwa mem (v0.7.16). Off-target reads were excluded and PCR duplicates 

collapsed using gatk MarkDuplicates (v4.0). Sequin-derived alignments were then calibrated 

to equivalent coverage depth to accompanying sample alignments within matched genome 

regions (anaquin calibrate). VarScan (v2.4.3) was then used to call variants (SNVs and 

indels) within on-target sequin regions, with a minimum of three supporting read-fragments 

required for detection. Anaquin somatic was used to evaluate the detection of sequin 

variants.
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Sequin libraries were then incrementally down-sampled (gatk DownsampleSam) and variant 

detection was repeated across a range of depreciating fragment-depths. Detection sensitivity 

(the fraction of known sequin variants detected) was calculated in each down-sampled 

library to generate curves that model the relationship between sensitivity and fragment

depth, with sequin variants parsed into pre-defined VAF bins (< 0.5%, 0.5–5%, > 5%). 

Sequin variants were also parsed according to: (i) fragment depth (high fragment-depth 

> 5000-fold; low fragment-depth < 3000-fold), (ii) distance to the nearest exon boundary 

(edge regions < 20 bp; central regions > 50 bp). (iii) GC-content within a 120 bp local 

window. GC-content was calculated using bedtools nuc (v2.25; high > 60%, low < 40%). 

(iv) Sequence complexity within a local 120 bp window. Complexity was calculated using 

SeqComplex (https://github.com/caballero/SeqComplex), with windows showing entropy 

scores < 1.9 considered to have low complexity.

Preparation of human ctDNA reference samples

The cross-platform ctDNA sequencing proficiency study from the present manuscript 

utilized a set of contrived reference DNA samples that are described in detail in a companion 

article34. Briefly, Sample A comprised genomic DNA extracted from ten diverse cancer 

cell-lines (Agilent UHRR cell lines) and Sample B is non-cancerous genomic DNA (Agilent 

Male Control DNA). Sample A and Sample B were combined to create two further reference 

samples: Lbx-high (20% A / 80% B) and Lbx-low (4% A / 96% B). Note that Lbx-high 
and Lbx-low are also referred to as Sample D and Sample E (prior to fragmentation) in the 

accompanying article describing the preparation of reference samples34.

Aliquots of these samples, as well as Sample A and Sample B, were enzymatically 

fragmented, using the KAPA Frag kit (KAPA Biosystems) according to the manufacturer’s 

instructions. Samples dissolved in TE buffer were first purified with the Agencourt AmPure 

XP Kit at a 3:1 bead to sample volumetric ratio to remove EDTA. Purified DNA samples 

(5 μg) in 10 mM Tris-HCl pH 8.0 (35 μL) were mixed with KAPA Frag Enzyme (10 μL) 

and 10X KAPA Frag Buffer (5 μL) on ice and incubated at 37°C for 25 minutes. After 

fragmentation, DNA samples were purified with Agencourt AmPure XP beads again, as 

described above.

Size selection of fragmented DNA (5 µg / well) was performed on a Pippin Prep instrument 

(Sage Science) using 3% agarose gel cassette (Sage Science # CDP3010) with the range 

from BP start (110) to the BP end (190) to achieve an average fragment length of ~165 

bp. Post size-selection DNA samples were characterized using an Agilent Bioanalyzer 2100 

with DNA high sensitivity kit (Agilent Technologies, Inc.). Typically, a yield of 6–8% was 

obtained. Samples were quantified and dissolved in Tris buffer (10 mM Tris, pH 8.0) at 5 

ng/μL for storage and distribution.

The plasma DNA sample (Lbx-low-plasma) was prepared with a DNA concentration at 40 

ng/mL in synthetic plasma (Horizon Discovery, United Kingdom) and two aliquots of 8 mL 

were shipped to each test site in two 10 mL tubes. Test labs did not assess the concentration 

of DNA samples except the plasma sample to avoid any site-to-site variation that could be 

introduced by independent quantification. Qubit dsDNA HS (High Sensitivity) Assay Kit 

Q32851 (Thermo Fisher Scientific) was used for DNA sample quantification for all ctDNA 
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samples and also mandated at each test site for quantification after DNA extraction from 

synthetic plasma. An SOP was developed and distributed to all test sites for plasma sample 

quantification including a step of Qubit dsDNA HS assay calibration with distributed ctDNA 

samples as standards.

Multi-site ctDNA proficiency testing

Each testing laboratory performed one or more participating ctDNA sequencing assays 

(five in total; Supplementary Table 3), according to the vendor’s instructions. Sequencing 

was performed using Illumina (NovaSeq 6000, NextSeq 500) or Thermo Fisher Scientific 

IonTorrent instruments (Supplementary Table 3). Sequencing information is supplied in 

Supplementary Table 6. Detailed experimental procedures for each assay are provided in 

Supplementary Methods.

Each participating assay was performed in 2–3 independent labs, with four technical 

replicates per lab for each mock ctDNA sample, at a fixed DNA input amount (25 ng). 

In addition, Lbx-low was analyzed with increased (50 ng) and decreased (10 ng) input 

amounts. Each test lab also performed four independent plasma-DNA extractions on the 

provided Lbx-low-plasma sample (2.5 mL per replicate) and analyzed the extracted DNA at 

a fixed DNA input amount (25 ng per replicate).

All sequencing libraries were then administered to the relevant ctDNA assay vendor for 

blind analysis. Bioinformatic analysis was not standardized across the study, with each 

vendor instead employing an internal analysis pipeline and providing a final set of variant 

candidates for centralized evaluation by an independent team at the Garvan Institute 

of Medical Research and the US FDA National Centre for Toxicological Research. All 

participating assays utilized Unique Molecular Identifiers (UMIs) to collapse duplicate read

pairs into consensus fragments. Comparisons of assay yields/depths throughout the study 

are based on unique fragment-depth, rather than raw read or alignment counts. Detailed 

information about the bioinformatics pipeline employed by each vendor is provided in 

Supplementary Methods.

Evaluation of results

Pre-processing variant candidates—Assay vendors provided a single independent 

VCF file containing candidate variants called in each assay replicate, at each test lab. 

The following pre-processing steps were used to ensure direct comparability between all 

call-sets. Where relevant, candidates marked with filter flags by the vendor bioinformatics 

pipeline, or indicated as VAF = 0, were excluded. Multi-allelic variant sites were broken into 

multiple individual variants using bcftools norm (v1.9). Complex and/or multi-nucleotide 

variants were broken into their simplest individual components using RTG-tools (https://

github.com/RealTimeGenomics/rtg-tools) vcfdecompose (v3.10.1) with the --break-mnps 

--break-indels parameters set to TRUE and gatk LeftAlignAndTrimVariants (v4.0.11) was 

used to ensure consistent representation of indels.

Sensitivity and accuracy—To measure the sensitivity of participating ctDNA assays 

we compared each set of variant candidates to the reference annotation described in34. 
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RTG-tools vcfeval (v3.10.1) was used to compare the VCF file for each assay replicate to 

the set of ‘known variants’ in Lbx-high/Lbx-low, and the set of known germline variants in 

the non-cancer background Sample B. These comparisons were restricted to the intersection 

of all ‘known positions’ with the on-target reportable regions provided by the relevant 

assay vendor. All candidates within known positions were classified as true-positive (TP) 

or false-positive (FP). Sensitivity was defined as the number of TPs in a given replicate 

divided by the number of on-target known variants for the relevant panel, and was calculated 

both globally and within pre-defined VAF bins (0.1–0.5%, 0.5–2.5%, >2.5%). FP-rates were 

defined as the number of FPs in a given replicate divided by the size of the on-target 

known negative positions for the relevant panel, thereby accounting for differences in panel 

size. Precision-recall curves were generated by incrementally varying the minimum VAF 

threshold (below which candidates are excluded) from 0% to 100% and re-calculating 

sensitivity (TP/(TP+FN)) and precision (TP/(TP+FP)) at each increment.

Reproducibility—To measure the reproducibility of participating ctDNA assays we 

performed reciprocal pairwise comparisons between variant call-sets for all replicates of 

a given assay/sample/input. Comparisons were performed using RTG-tools vcfeval (v3.10.1) 

and were restricted to the capture target regions provided by the relevant assay vendor. 

For a given pair of replicates, reproducibility was defined as the fraction of total variant 

candidates that were concordant between call-sets, with all possible pairwise comparisons 

being performed. Reproducibility was calculated globally, across within-lab and between

lab comparisons, and within pre-defined VAF bins (0.1–0.5%, 0.5–2.5%, >2.5%). When 

calculating reproducibility within VAF bins, candidates in a given bin in the first sample 

were compared to the whole call-set for the second sample, and vice versa, in order to avoid 

bin-edge effects.
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Refer to Web version on PubMed Central for supplementary material.
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Descriptive data about individual ctDNA assays are provided in Supplementary Data 2. 

Descriptive data about individual variants, including their detection status in each ctDNA 

assay, are provided in variant classification tables within the Source Data Excel file. 

These tables were used to generate variant detection heatmaps and other data plots. 

Raw sequencing data has been deposited to the NCBI Bioproject PRJNA677999. Variant 

calls generated by each assay vendor (in VCF format) and panel region files (in BED 

format) can be accessed at the following link: https://figshare.com/projects/SEQC2_Onco

panel_Sequencing_Working_Group_-_Liquid_Biopsy_Study/94523
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Box 1.

Summary of concepts, findings & recommendations.

Issue Findings Outlook & recommendations

Mutation 
frequency

Mutations present above ~0.5% 
VAF were detected with high 
sensitivity and reproducibility by 
all participating ctDNA assays 
but performances were generally 
suboptimal below this level and 
variable between assays (Fig. 4).

A key challenge in ongoing development 
of ctDNA sequencing assays is to 
improve detection sensitivity for low
frequency mutations (< 0.5% VAF).

Coverage 
depth & 
heterogeneity

Fragment-depth was a critical 
variable in ctDNA assays, with 
high coverage essential for sensitive 
detection of low-frequency mutations 
(Fig. 3,4). In addition to depth, even 
coverage across target regions was 
important to ensure high sensitivity 
and reproducibility (Fig. S3).

Improvements to the efficiency/stability 
of capture enrichment, NGS library 
conversion and amplification may yield 
increased coverage depth and decreased 
heterogeneity, leading to improved 
performance and robustness.

DNA input 
quantity

Increasing DNA input quantity 
generally improved fragment-depth, 
sensitivity and reproducibility (Fig. 
5).

Limited availability of cell-free DNA is 
a challenge for clinical translation of 
ctDNA assays. Input material may be 
increased via improvements to efficiency 
of plasma-DNA extractions, increasing 
the volume of patient blood draws (when 
feasible) or obtaining cell-free DNA 
from other body fluids (e.g., urine, stool, 
CSF, etc.) for relevant cancers.

UMIs Unique molecular identifiers (UMIs) 
enabled effective consensus error 
correction, minimizing the detection 
of false-positives (Table 2).

Wherever possible, UMIs should be 
employed for consensus error correction 
in ctDNA sequencing assays.

Inter-
laboratory 
variation

Participating assays were robust 
to technical variables between test 
labs – from plasma extraction to 
sequencing workflow stages – and 
were impacted largely by random, 
rather than systematic variation (Fig. 
4, Fig. S6).

Robustness to technical variables is 
essential for clinical implementation of 
ctDNA sequencing assays.

Random 
sampling

The detection of low-frequency 
mutations (VAF < 0.5%) by random 
sampling poses an inherent statistical 
challenge, even when high fragment
depth is available (Fig. 1).

Novel strategies for the enrichment of 
ctDNA fragments over non-cancerous 
cell-free DNA (e.g., by fragment size 
selection) and alternative signals, such 
as ctDNA methylation profiles, may 
help overcome limitations of random 
sampling.

Targeted 
enrichment 
method

Performance was broadly comparable 
between participating amplicon and 
hybrid-capture assays, with sensitivity 
and robustness largely determined by 
the fragment-depth achieved, not the 
method of enrichment (Fig. 6).

Amplicon methods can enable sensitive, 
cost effective detection of ctDNA 
mutations in single genes or mutation 
hotspots but small panel sizes limit their 
suitability for unbiased surveillance (e.g., 
for tumor evolution profiling).

Exon edge-
effect

In hybrid-capture sequencing, 
mutations in exon edge regions were 
detected with lower sensitivity than 
central regions, due to lower coverage 
(Fig. 1,2).

Increasing the size of captured flanking 
regions around exons during panel 
design may alleviate this exon edge
effect.

Sequence 
context

Mutations in challenging genome 
sequence contexts, such as high/low 
GC-content, low sequence complexity 
or suboptimal alignability, were 
detected with lower sensitivity (Fig. 
1,2).

Some of these effects may be alleviated 
by increasing capture-probe density in 
challenging regions or via improvements 
to NGS library preparations.

Reference 
standards

Reproducibility measurements 
provided a useful but imperfect proxy 
for analytical performance that is not 

Well-characterized reference standards 
can directly measure analytic 
performance characteristics in absence 
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Issue Findings Outlook & recommendations

dependent on the availability of a 
reference sample and annotation (Fig. 
4).

of confounding biological variables and 
are a useful tool for comparing ctDNA 
assays.
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Figure 1. Evaluating ctDNA assays with simulated sequencing data.
(a) Genome browser view showing coverage of simulated sequencing fragments within the 

MET oncogene, with single nucleotide variants (SNVs) represented in each exon. Inset 

(right) shows the distribution of fragment coverage within a single coding exon, illustrating 

the convex coverage profile that results from in silico capture enrichment and causes lower 

fragment-depth among mutations in edge regions. (b–e) Curves modelling the relationship 

between simulated library depth (median fragment-depth) and detection sensitivity for 

simulated mutations under various conditions: (b) shows mutations represented at different 

frequencies (0.1–5% VAF), with ≥ 4 supporting fragments required for detection; (c) 

mutations at VAF = 0.1%, with different levels of detection stringency applied (≥ 2–

6 supporting fragments); (d) mutations within exon edge regions (< 20bp from exon 

boundary), compared to central regions (> 50bp from exon boundary); (e) mutations in 

regions of sub-optimal alignability (low), compared to optimal regions (high).
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Figure 2. Evaluating ctDNA assays with sequins.
(a) Genome browser view showing fragment coverage within a synthetic sequin control 

(upper) representing the oncogene FGFR3, harboring multiple synthetic mutations at VAF 

= 50%. For comparison, coverage is also shown within the natural FGFR3 gene (lower) 

obtained from the accompanying human sample. (b) Scatter-box plots show observed vs 

expected variant allele frequencies (VAFs) for synthetic sequin mutations (n = 134), which 

are represented in two-fold VAF increments from 0.1%−100%. Asterisks indicate significant 

differences in measured VAFs between increments (two-sided t-test; p < 0.001; n > 8 
data points per bin). Boxes show median ± range (whisker) and interquartile range (box). 

Colored lines indicate high, mid and low VAF groups used in c. (c–g) Curves modelling 

the relationship between library depth (median-fragment depth) and detection sensitivity for 

synthetic sequin mutations under various conditions: (c) shows mutations within different 

VAF groups, indicated on lower axis of b; (d) mutations with high fragment-depth (> 

5000-fold), compared to low fragment-depth (< 3000-fold); (e) mutations within exon edge 

regions (< 20bp from exon boundary), compared to central regions (> 50 bp from exon 

boundary); (f) mutations in regions of high or low GC-content (< 40% / > 60%), compared 

to moderate regions; (g) mutations in regions of low sequence entropy (< 1.9), compared to 

typical regions.
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Figure 3. Structure of cross-platform ctDNA sequencing proficiency study.
(a) Schematic overview of the proficiency study. Briefly, contrived mock cell-free DNA 

samples (Lbx-high, Lbx-low) were administered to 12 test labs, where they were analyzed 

by one or more participating ctDNA sequencing assays (ROC, ILM, IDT, BRP, TFS; 

see Supplementary Table 3). Bioinformatic analysis was performed by the relevant assay 

vendor, using their custom pipelines. Results were then submitted for analytical evaluation 

by an independent team. (b) Schematic overview of the proficiency testing scheme. Each 

participating ctDNA assay was performed at two or three independent test labs, with four 

technical replicates per lab generated for each test sample. Each of Lbx-high, Lbx-low and 

Sample B were analyzed at a fixed 25 ng input amount, and Lbx-low was additionally 

analyzed at 10 ng and 50 ng input amounts, and at 25ng input following extraction from 

a synthetic plasma solution (Lbx-low-plasma). In total, 360 ctDNA assays were evaluated. 

(c; upper) Violin plots show coverage distributions (unique fragment-depth) for Lbx-high 
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and Lbx-low (25 ng input) replicates in each participating assay. (c; lower) Distribution of 

variants allele frequency (VAF) for on-target variant candidates in Lbx-high and Lbx-low 
(25 ng input). For comparison, expected VAF distributions for known variants in Lbx-high 
and Lbx-low are also shown (lower left).
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Figure 4. Comparison of performance between hybrid-capture ctDNA assays at 25ng input.
(a; upper) Ordered heatmaps show the detection of known variants (rows) in ctDNA assay 

replicates (columns). All on-target variants for a given assay are shown. Variants are sorted 

by expected variant allele frequency (VAF) in descending order, and replicates are arranged 

hierarchically by assay type, test lab and replicate number. Heatmaps show results for Lbx
low at 25ng input and equivalent heatmaps for Lbx-high are shown in Fig. S4a. (a; lower) 

Aligned below each heatmap column, bar charts indicate the sensitivity of variant detection 

in each replicate. Sensitivity is reported separately for known variants in the following 

VAF ranges: 2.5–0.5%, 0.5–0.3%, 0.3–0.2%, 0.2–0.1%, with measurements taken from both 

Lbx-high (high- and mid-VAF) and Lbx-low (low-VAF). (b) Precision-recall curves compare 

diagnostic performance of participating ctDNA assays for Lbx-low (25ng input; VAF range 

2.5–0.1%). Equivalent curves for Lbx-high are shown in Fig. S4c. (c,d) Bar charts show 

pairwise reproducibility scores for participating assays (n = 132 for ROC, ILM; n = 56 for 
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IDT, BRP; median ± range): (c) reproducibility is reported separately for variant candidates 

at high, mid and low frequency (as above); (d) reproducibility is reported separately for all 

within-lab and between-lab pairwise comparisons. Note that due to its smaller panel size and 

VAF distribution of on-target variants the TFS amplicon sequencing assay is not included in 

these analyses.
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Figure 5. Impact of cell-free DNA input quantity (Lbx-low) on hybrid-capture ctDNA assay 
performance.
(a) Violin plots show coverage distributions (unique fragment-depth) for Lbx-low replicates 

at 10ng, 25ng and 50ng input amounts for hybrid-capture ctDNA assays. Note that 

10ng ILM assays did not reach minimum coverage requirements, so were excluded 

from subsequent analysis (b) Precision-recall curves compare diagnostic performance of 

participating ctDNA assays for Lbx-low at each input amount above (VAF range 2.5–0.1%). 

(c-e) Curves showing the relationship between cell-free DNA input quantity (Lbx-low) 

and variant detection sensitivity (c), pairwise reproducibility (d) and false-positive rates 

(FPs/kb; e) for each participating ctDNA assay profiling low frequency variants (VAF range 

0.5–0.1%). Error bars are mean ± 95% CI . Note that, due to its smaller panel size and 

VAF distribution of on-target variants, the TFS amplicon sequencing assay is not included in 

these analyses.
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Figure 6. Evaluation of TFS amplicon sequencing assay.
(a) Heatmaps show the detection of known variants (rows) in ctDNA assay replicates 

(columns). Variants are sorted by expected variant allele frequency (VAF) in descending 

order for each sample/input quantity (Lbx-high 25ng, Lbx-low 10–50ng), and replicates are 

arranged hierarchically by assay type, test lab and replicate number. Grey rows indicate 

where known variant was not within the target regions for a given assay. (b,c) Curves 

showing the relationship between cell-free DNA input quantity (Lbx-low) and variant 

detection sensitivity (b) and pairwise reproducibility (c). (d) Bar charts show pairwise 

reproducibility scores for participating assays (n = 132 for ROC, ILM TFS; n = 56 for 

BRP; median ± range). Reproducibility is reported separately for all pairwise comparisons in 

Lbx-high and Lbx-low and separately for all within-lab and between-lab comparisons. Note 

that the IDT hybrid-capture assay is not included in these comparisons because this panel 

had limited overlap with TFS amplicon target regions.

Deveson et al. Page 36

Nat Biotechnol. Author manuscript; available in PMC 2021 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Editorial summary:
	INTRODUCTON
	RESULTS
	Evaluating ctDNA assays with simulated sequencing data
	Evaluating ctDNA assays using synthetic DNA controls (sequins)
	Multi-site, cross-platform proficiency study
	Coverage depth & heterogeneity
	Analytical sensitivity
	Analytical accuracy
	Reproducibility between assay replicates
	Impact of cell-free DNA input quantity & plasma extraction
	Comparison of TFS amplicon assay to hybrid-capture panels

	DISCUSSION
	METHODS
	Simulated ctDNA sequencing assays
	Manufacture and sequencing of synthetic DNA controls (sequins)
	Sequin bioinformatics analysis
	Preparation of human ctDNA reference samples
	Multi-site ctDNA proficiency testing
	Evaluation of results
	Pre-processing variant candidates
	Sensitivity and accuracy
	Reproducibility


	References
	Table T1
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

