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Moderate GLUT4 Overexpression Improves Insulin
Sensitivity and Fasting Triglyceridemia in High-Fat Diet—

Fed Transgenic Mice

Brittanie J. Atkinson, Beth A. Griesel, Caleb D. King, Miranda A. Josey, and Ann Louise Olson

The GLUT4 facilitative glucose transporter mediates insulin-
dependent glucose uptake. We tested the hypothesis that moderate
overexpression of human GLUT4 in mice, under the regulation
of the human GLUT% promoter, can prevent the hyperinsuli-
nemia that results from obesity. Transgenic mice engineered to
express the human GLUT% gene and promoter (hGLUT4 TG) and
their nontransgenic counterparts (NT) were fed either a control
diet (CD) or a high-fat diet (HFD) for up to 10 weeks. Homeosta-
sis model assessment of insulin resistance scores revealed that
hGLUT4 TG mice fed an HFD remained highly insulin sensitive.
The presence of the GLUT% transgene did not completely prevent
the metabolic adaptations to HFD. For example, HFD resulted in
loss of dynamic regulation of the expression of several metabolic
genes in the livers of fasted and refed NT and hGLUT4 TG mice.
The hGLUT4 TG mice fed a CD showed no feeding-dependent
regulation of SREBP-1c and fatty acid synthase (FAS) mRNA
expression in the transition from the fasted to the fed state. Sim-
ilarly, HFD altered the response of SREBP-1¢ and FAS mRNA
expression to feeding in both strains. These changes in hepatic
gene expression were accompanied by increased nuclear phospho-
CREB in refed mice. Taken together, a moderate increase in
expression of GLUT4 is a good target for treatment of insulin
resistance. Diabetes 62:2249-2258, 2013

LUT4, the insulin-responsive facilitative glucose

transporter, is expressed in adipose, skeletal

muscle, and cardiac muscle cells. GLUT4 ex-

pression levels are correlated with whole-body
insulin-mediated glucose homeostasis. Two lines of evi-
dence support this notion. First, enhanced insulin sensi-
tivity after exercise is associated with increased GLUT4
expression in skeletal muscle (1,2), and second, trans-
genic manipulation of GLUT4 in mice revealed a pro-
found effect on both glucose and lipid homeostasis (3-6).
In addition, insulin-resistant glucose transport in adipocytes
from obese and diabetic subjects correlates with re-
duced GLUT% mRNA and protein expression (7-9), con-
firming a role of GLUT4 for insulin-dependent glucose
homeostasis.

Adipose tissue and skeletal muscle play unique roles in
the regulation of insulin-dependent glucose homeostasis.
Proliferation of adipose mass is tightly linked to obesity
and the development of insulin resistance. Expansion of
adipose mass in obesity is associated with decreased GLUT%
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mRNA and protein expression, leading to insulin-resistant
glucose transport (10,11). The fat-specific knockout of
GLUT% affects whole-body glucose homeostasis and
leads to insulin resistance in muscle and liver (12). This
clearly demonstrates a central role for adipose tissue
and that GLUT4 levels in adipose tissue affect metabolic
control. It is not clear why nutrient excess leads to a loss
of GLUT4 in adipose tissue or that overexpression of
GLUT4 only in adipose tissue is not sufficient to protect
against diet-induced glucose intolerance (13).

Skeletal muscle is the major site of dietary glucose dis-
posal in the body (14). In states of insulin resistance, glu-
cose transport into skeletal muscle is impaired (15,16).
At the outset, skeletal muscle insulin resistance occurs
through inhibition of GLUT4 redistribution to the cell sur-
face (17,18), indicating a distinct mechanism for the regu-
lation of GLUT4 in muscle tissue compared with adipose
tissue. In severe insulin resistance, muscle GLUT4 pro-
tein and mRNA expression can be reduced similarly to
adipose tissue (19). Muscle-specific transgenic expres-
sion of GLUT4 improves insulin action in diabetic mice
(20,21), which may be attributable to enhanced basal ac-
cumulation of GLUT4 at the cell surface as well as to a
partial correction of the defect in insulin-mediated GLUT4
translocation (21). Conversely, transgenic, muscle-specific
ablation of GLUT4 results in insulin resistance and in-
adequate glucose tolerance (22). Taken together, GLUT4-
dependent glucose transport in skeletal muscle is likely
the major mechanism for dietary glucose disposal by skel-
etal muscle.

Whole-body insulin-dependent glucose homeostasis
results from the interactions of several tissues, including
the pancreatic B-cells, liver, adipose tissue, and skeletal
muscle. Transgenic mouse models have clearly demon-
strated that manipulation of insulin action in one tissue
can affect function of other tissues, making it difficult to
identify any one target for prevention and treatment of
type 2 diabetes (23). In the present study, we used trans-
genic mice that moderately overexpress the human GLUT%
gene under the control of its own promoter, as previously
described (4,24), to better understand the physiologic role
GLUT4 plays in the protection against insulin-resistant
glucose homeostasis. This line of transgenic mice, referred
to as hGLUT4 TG mice, has two unique features that set
it apart from other models. First, the level of overex-
pression is two- to threefold over the endogenous GLUT4,
which is similar to increased expression that might be
attained from a long-term exercise program (25,26). Sec-
ond, the transgene is driven by a dynamic human GLUT%
promoter, allowing it to undergo physiologic regulation
(4,27). Through this model, we demonstrate that this level
of moderate GLUT4 overexpression is highly protective
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against the development of peripheral insulin resistance in
response to diet-induced obesity.

RESEARCH DESIGN AND METHODS

Animals and diets. The animals used for these experiments were male C57BL/6
mice carrying a random insertion of the human GLUT% gene (hGLUT4 TG)
and have been described elsewhere (4,27). The control mice were the non-
transgenic (NT) littermates. All procedures involving animals were approved
by the Institutional Animal Care and Use Committee at the University of Oklahoma
Health Sciences Center.

All mice were kept in a temperature-controlled room with a 12-h light/dark
cycle. Eight to 10 weeks after birth, the mice were housed in individual cages,
fasted 17 h for measurement of initial fasting parameters, and fed ad libitum
either a control diet (CD) (10% kcal from fat, D12450B) or a high-fat diet (HFD)
(60% kcal from fat, D12492) from Research Diets Inc. (New Brunswick, NJ) for
indicated times.

Food consumption measurement. Food consumption was estimated weekly
by subtracting the mass of food left from the initial mass of food supplied.
Energy intakes were calculated on the basis of 3.8 kcal/g for CD and 5.2 kcal/g
for HFD.

Blood and plasma assays. Blood was collected after 0, 4, and 8 weeks of
feeding. The mice were fasted for 17 h, and blood samples from tail veins of
conscious mice were collected in tubes containing EDTA. Plasma insulin
concentrations were determined with the Ultra Sensitive Mouse Insulin ELISA
Kit (Crystal Chem, Downers Grove, IL). Fasting plasma leptin concentrations
were determined with the Mouse Leptin ELISA Kit (Crystal Chem). Blood
glucose level was measured with the TRUETrack glucometer.

Homeostasis model assessment of insulin resistance scores. The ho-
meostasis model assessment of insulin resistance (HOMA-IR) scores were
calculated from glucose and insulin concentrations obtained from mice after 17 h
of fasting. The following equation was used: fasting blood glucose (mg/dL) X
fasting insulin (uU/mL)/405.

Body mass and body composition measurements. Body mass and body
composition was measured with a minispec Body Composition Analyzer (LF-
90; Bruker Corporation). Measurements were made weekly between 10 AM. and
12 pM. in nonfasted mice.

Pyruvate tolerance test. After an overnight fast, mice were given sodium
pyruvate 2 g/kg i.p. Blood glucose levels were measured 0, 20, 40, 60, 90, and 120
min postinjection.

Protein analysis. Western blot analysis to estimate GLUT4 protein concen-
tration was completed for epididymal white adipose tissue (WAT), subscapular
brown adipose tissue (BAT), and quadriceps femoris skeletal muscle. Total
detergent extracts were prepared in lysis buffer containing 20 mmol/LL HEPES,
2% NP-40 (nonyl phenoxypolyethoxylethanol), 2 mmol/L EDTA, 10 mmol/L
sodium fluoride, 10 mmol/L sodium pyrophosphate, 1 mmol/L. sodium ortho-
vanadate, 1 mmol/L. molybdate, protease inhibitor cocktail (complete Mini
EDTA-free Protease Inhibitor Cocktail; Roche Diagnostics), and 1 mmol/L
phenylmethylsulfonyl fluoride. Liver nuclear extracts were obtained with use of
a kit (Thermo Scientific Pierce). Protein concentrations were determined by
using a Coomassie Plus (Bradford) Assay Kit (Thermo Scientific Pierce).
Lysates were fractionated with 10% SDS-PAGE, and proteins were transferred
to an Immobilon-FL polyvinylidene fluoride membrane (EMD Millipore
Corporation, Billerica, MA). Membranes were stained with anti-GLUT4 antibody

(C-20 goat polyclonal antibody, Santa Cruz Biotech), total Akt antibody
(Cell Signaling), phospho-CREB (Cell Signaling), or total CREB (Cell Sig-
naling) and visualized with appropriate secondary antibodies conjugated
with AlexaFluor 680. Fluorescence was quantified with an Odyssey imager
(Li-Cor Biosciences-U.S.).

RNA extraction, quantitative real-time PCR. Mice were fasted for 17 h or
were fasted for 17 h then refed for 4 h. After the fasting or fasting and
refeeding, the animals were killed, and tissues were harvested and snap
frozen in liquid nitrogen. Tissues were stored at —80°C until used later.
mRNA was extracted as previously described (28). Samples were stored as
an ethanol precipitate at —20°C until further analysis. mRNA levels of mouse
GLUT%, human GLUT%, phosphoenolpyruvate carboxykinase (PEPCK), glucose-
6-phosphatase (G6Pase), SREBP-1c, fatty acid synthase (FAS), and HMG-CoA
reductase were quantified by quantitative real-time PCR (qPCR). Primer se-
quences were as follows: mouse GLUT%, 5'-AAAAGTGCCTGAAACCAGAG-3’
(forward), 5'-TCACCTCCTGCTCTAAAAGG-3' (reverse); human GLUTY%, 5'-
GCGGCGAAGATGAAAGAAC-3' (forward), 5'-CTCCAGGCCGGAGTCAGA-3’
(reverse); UCP-1, 5'-GTGAAGGTCAGAAT GCAAGC-3' (forward), 5'-AGGG-
CCCCCTTCATGAGGTC-3' (reverse); UCP-2, 5'-CAGCCAGCGCCCAGTACC-3’
(forward), 5'-CAATGCGGACGGAGGCAAAGC-3' (reverse); PEPCK, 5'-ACA-
CACACACATGCTCACAC-3’ (forward), 5'- ATCACCGCATAGTCTCTGAA-3’
(reverse); G6Pase, 5'"-TGGTAGCCCTGTCTTTCTTTG-3" (forward), 5'- TTCC-
AGCATTCACACTTTCCT-3' (reverse); SREBP-1c, 5'-GTGAGCCTGACAAG-
CAATCA-3' (forward), 5'-GGTGCCTACAGAGCAAGAG-3' (reverse); FAS,
5'-GCTGCGGAAACTTCAGGAAAT-3' (forward), 5'-AGAGACGTGTCACTCC-
TGGACTT-3' (reverse); and TATA-binding protein (7BP), 5'-GAAGCTGCGG-
TACAATTCCAG-3’ (forward), 5'-CCCCTTGTACCCTTCACCAAT-3' (reverse).
The relative mRNA levels were calculated with a standard curve developed
from normal mouse tissues. All qPCR analyses were completed with a modular
thermal cycler platform comprising a C1000 Touch thermal cycler chassis
(Bio-Rad) and a CFX96 optical reaction module (Bio-Rad). gPCR data were
read by CFX Manager software (Bio-Rad).

Triacylglycerol analysis. Plasma triacylglycerol (TAG) levels were measured
with the triglyceride determination kit (Sigma) according to the manufacturer’s
specifications. Liver TAG levels were measured with the same kit after a Folch
extraction of lipids and resuspension in 0.1% Triton X-100.

Statistical analysis. Data are expressed as mean and SEM. All statistical
analyses were completed by VassarStats web-based software. Comparisons
were carried out by one- or two-way ANOVA, mice fed CD or NT mice serving as
the control groups. Pairwise comparisons were made with the CI set at 95%.
Unless otherwise noted, significance was P < 0.05.

RESULTS

Moderate GLUT4 expression protects against diet-
induced insulin resistance. To evaluate the effects of
moderate hGLUT4 overexpression under conditions of
HFD feeding, we measured blood glucose and plasma in-
sulin levels in hGLUT4 TG mice and NT littermate con-
trols. Blood glucose levels of hGLUT4 TG mice were
significantly lower than NT mice fed both CD and HFD
(Table 1). In NT mice, blood glucose levels were signif-
icantly increased after 4 and 8 weeks on HFD compared

TABLE 1
Fasting plasma glucose and insulin levels
NT CD TG CD NT HFD TG HFD
Fasting plasma glucose (mg/dL)
No. animals 11 11 14 15
0 wk 120 (10) 74 (4)* 130 (7) 77 (5)*
4 wk 116 (9) 62 (4)* 171 (10)>+ 85 (5)*P
8 wk 113 (10) 59 (8)* 178 (11)>+ 93 (11)*P
Fasting plasma insulin (ng/mL)
No. animals 8 6 11 10
0 wk 0.31 (0.04) 0.14 (0.03)* 0.41 (0.07) 0.20 (0.04)*
4 wk 0.21 (0.03)f 0.14 (0.03) 0.45 (0.08)>+ 0.17 (0.02)*
8 wk 0.21 (0.02)f 0.14 (0.02)* 0.59 (0.008)"+ 0.28 (0.04)*"

Data are mean (SEM) unless otherwise indicated. *P < 0.005 compared with same diet, °P < 0.05 compared with same strain, and fsignificant
change (P < 0.05) compared with 0 weeks of same group. Analysis for these data was by two-way repeated-measures ANOVA. There were no

interactions between strain and diet.
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with 0 weeks. Blood glucose levels in hGLUT4 TG mice fed
HFD were increased at 8 weeks but were still significantly
lower than their NT counterparts fed HFD.

Similar to blood glucose levels, fasting insulin levels
were lower in hGLUT4 TG than in NT mice under both
dietary regimens at each time point (Table 1). The HFD
regimen increased fasting plasma insulin levels in NT
animals at both 4 and 8 weeks and in hGLUT4 TG animals
at 8 weeks only.

The fasting blood glucose level and plasma insulin level

data are consistent with the notion that hGLUT4 TG mice
are less predisposed to HFD-induced insulin resistance. To
quantify insulin resistance, we used HOMA-IR. hGLUT4 TG
mice fed CD had a significantly lower average HOMA-IR
score than NT mice fed CD at all time points (Fig. 1).
Throughout HFD feeding, the HOMA-IR score for hGLUT4
TG mice was significantly lower than that for NT mice.
These data indicate that moderate hGLUT4 overexpression
in mice significantly reduces the development of HFD-
induced insulin resistance.
Moderate GLUT4 overexpression increases food
intake but not adiposity. To determine whether mod-
erate hGLUT4 overexpression affects HFD-induced body
composition, body mass, adipose mass, and lean mass
were measured in both strains of mice fed either CD or
HFD for 8 weeks. HFD conditions significantly increased
both body mass and adipose mass in both strains of mice
(Fig. 2A). The change in adipose mass reflected increases
in white adipose pads but not brown adipose pads (Fig.
2B). Although total adiposity is not different between
hGLUT4 TG and NT mice fed HFD, the mass of the epi-
didymal fat pad of hGLUT4 TG mice was significantly
greater when expressed as a percentage of body mass
(Fig. 2B).

The increase in adipose mass was accompanied by in-
creased food intake over the 8-week feeding period. HFD
increased energy intake in both NT and hGLUT4 TG mice
compared with their CD-fed counterparts (Fig. 34). When
fed HFD, the hGLUT4 TG mice consumed, on average, 10%

more kilocalories per week than NT mice (Fig. 3A). Al-
though the 10% increase in food intake increased epidid-
ymal fat pat size (Fig. 2B), it was not sufficient to result in
a measurable increase in total adiposity in hGLUT4 TG
compared with NT mice fed HFD (Fig. 2A4). The increased
food intake may be partially offset by changes in UCP-1
expression in the visceral fat pad, which is supported by
the observation that HFD feeding specifically reduced
UCP-1 but not UCP-2 mRNA in the epididymal fat of NT
mice fed HFD (Fig. 3B and C). In both strains, the increase
in adipose mass correlated with increased plasma leptin
levels (Fig. 3D). Plasma leptin levels rose as a function of
time on HFD for both strains; however, leptin levels were
significantly lower in hGLUT4 TG mice fed HFD at 4 and 8
weeks compared with NT mice fed HFD (Fig. 3D).

Moderate GLUT4 overexpression does not prevent
loss of GLUT4 expression in adipose tissue. The blood
glucose, plasma insulin, and HOMA-IR data suggest that
hGLUT4 TG mice may be protected from insulin resistance
presumably through enhanced glucose uptake as a result
of mild overexpression of human GLUT4 in peripheral
tissues (4,6). However, it is not clear which tissues are
responsible for this effect. To determine whether HFD-
induced reductions in GLUT4 expression is modified in
WAT, BAT, and skeletal muscle in hGLUT4 TG mice, im-
munoblot analysis of GLUT4 levels in these tissues was
carried out after 10 weeks on CD or HFD. As expected,
hGLUT4 TG mice fed CD had a two- to threefold higher
GLUT4 expression in WAT, BAT, and skeletal muscle than
NT mice fed CD (Fig. 4) (4,24). When fed HFD, GLUT4
expression in WAT decreased to similar levels in both
strains (Fig. 44). The changes in GLUT4 protein were
correlated with changes in GLUT4 mRNA (Fig. 4B). Both
endogenous mouse GLUT4 mRNA and transgenic mRNA
were similarly downregulated in response to the HFD.
HFD feeding reduced GLUT4 levels in BAT; however, the
GLUT4 levels in hGLUT4 TG mice fed HFD remained sig-
nificantly higher than in NT mice fed HFD (Fig. 4C). The
HFD feeding significantly reduced GLUT4 protein levels in
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FIG. 1. HOMA-IR scores from NT and hGLUT4 TG mice fed CD or HFD. HOMA-IR scores were calculated from recorded fasting blood glucose and
plasma insulin levels at the time indicated. The following equation was used: fasting blood glucose (mg/dL) X fasting insulin (nU/mL)/405. Analysis
was by two-way repeated-measures ANOVA. *Significant difference compared with week 0 within the same strain. Differences between strains fed
the same diet are shown. There were no interactions between strain and diet.
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FIG. 2. Body composition and adipose pad weight from NT and hGLUT4 TG mice fed CD or HFD for up to 8 weeks (n = 5-8 per group). A nuclear
magnetic resonance method was used to measure body composition as described in RESEARCH DESIGN AND METHODS. A: Body weight, adipose mass, and
lean body mass were measured. B: Wet weights for epididymal WAT and BAT are reported as a percentage of body mass. Data were analyzed by
two-way ANOVA. *Significant difference between diets for the same strain. Differences between strains fed the same diet are shown.

skeletal muscle in NT mice but had no effect on that in
hGLUT4 TG mice (Fig. 4D). Taken together, it appears that
the main effects of GLUT4 overexpression may be a result
of enhanced glucose uptake in skeletal muscle and BAT.
This finding is consistent with the observation that skeletal
muscle is a significant reservoir for hGLUT4 TG mice fed
CD (6).

Moderate GLUT4 overexpression does not prevent
diet-dependent changes in hepatic gene expression
because of high-fat feeding. Although moderate over-
expression of hGLUT4 appears to maintain GLUT4 in
skeletal muscle and protect against peripheral insulin
resistance, it is not known whether it prevents all phys-
iologic adaptations to an HFD. To test this possibility, we
evaluated hepatic expression of gluconeogenic genes in
the fasted and fasted and refed states to determine
whether dynamic regulation during this transition is
retained. To evaluate gene expression in the transition

2252 DIABETES, VOL. 62, JULY 2013

between fasting and refeeding, both hGLUT4 TG and NT
mice fed either CD or HFD were subjected to a 17-h fast
or a 17-h fast followed by a 4-h refeeding. Under the
refed condition, both hGLUT4 TG and NT mice fed CD
showed a significantly lower expression of PEPCK and
G6Pase mRNA compared with their fasted counterparts
(Fig. 5A and B). When fed HFD, both hGLUT4 TG mice
and NT mice lost dynamic regulation PEPCK or G6Pase
mRNA expression compared with the fasted and refed
state (Fig. bA and B). These data demonstrate that HFD
resulted in constitutive gluconeogenic gene expression
in the liver as previously described (29). Despite the changes
in gluconeogenic gene expression with HFD, the hGLUT4
TG mice had significantly increased tolerance to pyru-
vate compared with NT mice (Fig. 5C), suggesting that
either hepatic gluconeogenesis was lower or periph-
eral clearance of glucose was higher in the hGLUT4 TG
mice.

diabetes.diabetesjournals.org
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The loss of dynamic regulation of gluconeogenesis was
not correlated with diet-induced changes in fed insulin
levels because these did not change for hGLUT4 TG mice
fed CD compared with HFD (Fig. 5D). Fasted and refed
glucose levels were significantly lower in hGLUT4 TG fed
both CD and HFD compared with NT mice fed the same
diets. Fed insulin levels were indistinguishable between
strains fed CD; however, NT mice fed HFD showed trends
toward higher fed insulin levels (Fig. 5D).

To determine whether HFD altered counter-regulatory
hormone action in the refed state, we measured phospho-
CREB and total CREB in liver nuclear extracts (Fig. 5E).
As expected, the ratio of phospho-CREB to total CREB in
liver nuclei was higher in fasted mice than in refed mice.
This pattern was observed in both strains fed CD and in NT
fed HFD. The hGLUT4 TG mice fed HFD lost the dynamic
regulation of phospho-CREB in the transition from the
fasted to the refed state. Hepatic nuclear accumulation of
phospho-CREB in hGLUT4 TG mice was significantly
lower in the fasted state and significantly higher in the
refed state (Fig. bE).

The transition from fasting to refeeding is accompanied
by increased SREBP-1c expression, a transcription factor

diabetes.diabetesjournals.org

required for transcription of lipogenic genes regulated by
insulin (29). As expected, hepatic expression of SREBP-1c
mRNA increased after refeeding of fasted NT mice fed CD
(Fig. 6A). SREBP-1c expression did not increase in re-
sponse to refeeding in hGLUT4 TG mice fed CD (Fig. 6A4).
NT mice fed HFD lost the ability to increase SREBP-1c
mRNA in response to refeeding. Under both feeding regi-
mens, SREBP-1¢ mRNA in refed hGLUT4 TG mice was
significantly lower than in refed NT mice, indicating that
the transgene, rather than the diet, was the dominant regu-
lator of SREBP-1¢c mRNA expression. Changes in expres-
sion of FAS mRNA, a target of SREBP-1c, mirrored the
diet and strain-dependent changes observed for SREBP-1c
mRNA (Fig. 6B).

Fasting plasma TAG levels were higher in hGLUT4 TG
mice than in NT mice fed CD (Fig. 6C). HFD did not alter
fasting plasma TAG levels in NT mice; however, HFD sig-
nificantly reduced fasting plasma TAG levels in hGLUT4
TG (Fig. 6C).

Refed plasma TAG levels were similar in all four groups
of mice (Fig. 6C). In the transition from fasted to fed,
hGLUT4 TG mice had a significant decrease in plasma
TAG levels, whereas this transition led to an increase in
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TAG levels in NT mice (Fig. 6C). This strain-dependent
change in plasma TAG levels from fasting to refeeding may
reflect the relative hypoinsulinemia present in the hGLUT4
TG mice fed CD. When fed HFD, both strains showed no
significant change in plasma TAG levels in the transition
from fasting to refeeding.

The liver TAG levels were subject to the expected tem-
poral changes in the transition from the fasted to the refed
state. In all cases, fasted liver TAG levels were significantly
higher than that in refed liver (Fig. 6D). In all cases, re-
feeding lowered the liver TAG content; however, both strains
had significantly higher fed liver TAG levels when fed HFD.
Fasted liver TAG levels were significantly higher in hGLUT4
TG mice fed CD than in NT mice fed the same diet. When
fed HFD, both strains had significantly elevated fasting
liver TAG levels in the fasted state than NT mice fed CD.

2254 DIABETES, VOL. 62, JULY 2013

DISCUSSION

HOMA-IR measurements revealed that hGLUT4 TG mice
remained relatively insulin sensitive after 8 weeks on HFD,
although the insulin sensitivity was slightly decreased
compared with transgenic mice fed CD over the same
time period. The HOMA-IR score for hGLUT4 TG mice
fed HFD stayed within the range of scores for NT mice
fed CD, indicating that the moderate overexpression of
GLUT4 was sufficient to reduce hyperinsulinemia and
hyperglycemia.

GLUT4 is known to play a major role in regulating
insulin-mediated glucose homeostasis in normal physiology.
Targeted and whole-body genetic manipulation of GLUT4
levels demonstrate that GLUT4 is limiting for glucose up-
take and use in skeletal muscle and adipose tissue
(4,6,12,21,30,31). Changes in GLUT4 expression in adipose
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tissue and insulin-dependent GLUT4 translocation in skel- together, the current study shows that loss of GLUT4 at
etal muscle in models of insulin deficiency and insulin re- the cell surface in response to insulin (either through de-
sistance imply a role for GLUT4 in the pathogenesis of creased expression or decreased translocation) is corre-
insulin-resistant metabolic diseases (7,9,18,32). Taken lated with insulin resistance.
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Transgenic overexpression of GLUT4 under the control
of either the native promoter or a tissue-specific heterol-
ogous promoter leads to enhanced insulin sensitivity, en-
hanced glucose clearance, and some protection against
insulin resistance. These observations have led many au-
thors to conclude that upregulating glucose transporters
may be an effective approach for the treatment of human
type 2 diabetes (11,20,33-36). This notion was initially
challenged by the observation that transgenic expression
of human GLUT4 under the control of its own promoter
enhances insulin sensitivity in chow-fed mice but at the
same time, significantly increased serum TAG, free fatty
acid, and ketone levels (6). Similarly, transgenic expres-
sion in adipose tissue, under the control of the aP2 pro-
moter, also had increased serum TAG and free fatty acid
levels (37). In the current study, we demonstrate that
when stressed with an HFD, mild overexpression of GLUT4
under the control of a dynamic human GLUT4 promoter
protects against insulin resistance and results in plasma
TAG levels in the fasted and refed state that are indis-
tinguishable between hGLUT4 TG and NT mice. The ele-
vated plasma TAG levels in the hGLUT4 TG mice fed CD
likely were a result of reduced clearance of VLDL particles
as a result of the unusually low plasma insulin levels.
Chronically low plasma insulin levels may reduce adipose
and muscle lipoprotein lipase activity as well as VLDL
receptor number (38,39). When fed HFD, both strains
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developed plasma TAG levels that were indistinguish-
able between strains. More importantly, under HFD, the
difference between fasted and refed plasma TAG levels
was no longer statistically significant. The loss of regu-
lation appeared to result from a trend toward increased
fasting plasma TAG levels, which may reflect insulin-
resistant lipoprotein lipase activity associated with diet-
induced obesity (40).

Despite very low HOMA-IR scores, moderate over-
expression of GLUT4 may not completely prevent the
metabolic adaptations to an HFD. Although hGLUT4 TG
animals remained relatively insulin sensitive, changes in
adipose GLUT% gene expression and the changes in he-
patic gluconeogenic gene expression were consistent with
expected adaptations to an obesogenic diet (41,42). Be-
cause the HFD-dependent changes in gluconeogenic gene
expression were not correlated with the pyruvate toler-
ance test (hGLUT4 TG mice remained highly pyruvate
tolerant), it is likely that enhanced insulin sensitivity was
a result of increased peripheral glucose uptake, pre-
sumably in skeletal muscle. This finding is consistent with
hyperinsulinemic clamp studies performed on hGLUT4 TG
mice fed the obesogenic Surwit diet (34). After 8 weeks on
HFD, the HOMA-IR score for hGLUT4 TG mice was in-
creased compared with hGLUT4 TG mice fed CD. This
slight increase in HOMA-IR may be a reflection of de-
creased GLUT4 expression in adipose tissue (Fig. 4A) or of
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potential diet-dependent changes in GLUT4 abundance at
the cell surface of skeletal muscle.

The current data reveal that HFD-dependent altered
gene expression in both adipose tissue and liver occurred
independently of the magnitude of changes in HOMA-IR.
For example, the changes in GLUT4 expression in adipose
tissue decreased to a similar extent in NT and hGLUT4 TG
mice, even though the HOMA-IR scores were different
(Figs. 1 and 4B). The changes in gene expression were
also not a result of changes in fed insulin levels because
these values were not statistically different between groups.
The changes may be a result of either the diet compo-
sition or the changes in counter-regulatory hormone action
(Fig. bE).

It is unclear whether the changes in adipose and liver
gene expression cause the change in HOMA-IR or are
a result of changes in insulin sensitivity. The changes in
GLUT% gene expression in adipose tissue correlated with
loss of regulation of the gluconeogenic gene expression.
The possibility of coordinated regulation of GLUT4 in ad-
ipose tissue and gluconeogenic gene expression in liver is
reinforced by the recent demonstration that down-
regulation of GLUT4 in WAT and upregulation of gluco-
neogenic genes are both under the control of class II
HDAC proteins (42,43).

Although the gluconeogenic gene expression followed
predictable patterns for the development of hepatic insulin
resistance, the changes in lipogenic gene expression were
more complicated. The presence of the human GLUT4
transgene altered the expression pattern of SREBP-1c¢ and
FAS mRNA under fasted and refed conditions, regardless
of the diet regimen (Fig. 6A). Normally, SREBP-1c and
FAS mRNA expression is increased in refed animals as
a result of insulin signaling in the liver (41); however, the
increased nuclear phospho-CREB (Fig. 5F) may be re-
sponsible for inhibiting the response to refeeding (44). The
presence of the human GLUT4 transgene prevented the
normal induction of SREBP-1c and FAS expression, sug-
gesting that normal lipogenesis is altered in the transgenic
animals. It is likely that de novo fatty acid synthesis is
lower in hGLUT4 TG mice fed both CD and HFD.

Plasma and hepatic TAG levels in fasted hGLUT4 TG
mice fed CD were significantly higher than in all other
groups, which is most likely a result of enhanced lipid
release from adipose tissue and enhanced VLDL secretion
from the fasting liver because of hypoinsulinemia (45).
These lipid abnormalities were corrected by HFD in the
transgenic mice, reinforcing the notion that relative fasting
hypoinsulinemia is the cause of the dyslipidemia.

Diet-induced obesity resulted in a small decrease in
GLUT4 expression in BAT and skeletal muscle compared
with WAT in both hGLUT4 TG and NT mice. It is likely,
then, that elevated GLUT4 expression in skeletal muscle
and BAT are responsible for enhanced insulin sensitivity in
the hGLUT4 TG mice fed HFD. In addition to increased
insulin sensitivity, the hGLUT4 TG animals fed HFD ate
10% more kilocalories but had no significant difference in
body composition, suggesting that energy output through
either increased activity or uncoupled cellular respiration
was higher in the transgenic mice. The latter explanation is
plausible because UCP-1 mRNA was lower in NT mice fed
HFD than in hGLUT4 TG mice (Fig. 3).

The reason for enhanced food intake in hGLUT4 TG
mice fed HFD compared with NT mice is not clear. Reg-
ulation of food is complex and may be related to changes
in circulating factors or to expression of the transgene in
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GLUT4-expressing neurons. For example, the plasma lep-
tin levels in the obese transgenic mice were significantly
lower than in the obese NT mice. The decrease in leptin is
most likely a result of the enhanced insulin sensitivity and
generally lower plasma insulin levels in the transgenic
mice (46).

In summary, moderate overexpression of GLUT4 is
protective against hyperinsulinemia and hyperglycemia in
transgenic mice with diet-induced obesity. The level of
overexpression is similar to the level of overexpression
that might be attained by long-term exercise, which gives
a direction to pursue for therapeutic intervention. GLUT4
overexpression does not prevent all metabolic adaptations
to an obesogenic diet, particularly loss of regulation of
hepatic gluconeogenic gene expression. On the other
hand, the increased glucose flux through skeletal muscle
may limit availability of glucose in liver to be used for de
novo fatty acid synthesis. This possibility is predicted by
the loss of insulin-dependent SREBP-1¢ and FAS mRNA
expression in the transgenic mice. The results of the cur-
rent study strongly support that increased expression of
GLUT4, particularly in skeletal muscle, is a relevant target
for treatment of insulin-resistant metabolic disorders.
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