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Objectives: To build a radiomics model and combined model based on dual-energy CT
(DECT) for diagnosing serosal invasion in gastric adenocarcinoma.

Materials and methods: 231 gastric adenocarcinoma patients were enrolled and
randomly divided into a training (n = 132), testing (n = 58), and independent validation
(n = 41) cohort. Radiomics features were extracted from the rectangular ROI of the 120-kV
equivalent mixed images and iodine map (IM) images in the venous phase of DECT, which
was manually delineated perpendicularly to the gastric wall in the deepest location of
tumor infiltration, including the peritumoral adipose tissue within 5 mm outside the serosa.
The random forest algorithm was used for radiomics model construction. Traditional
features were collected by two radiologists. Univariate and multivariate logistic regression
was used to construct the clinical model and combined model. The diagnostic efficacy of
the models was evaluated using ROC curve analysis and compared using the Delong’s
test. The calibration curves were used to evaluate the calibration performance of the
combined model.

Results: Both the radiomics model and combined model showed high efficacy in
diagnosing serosal invasion in the training, testing and independent validation cohort,
with AUC of 0.90, 0.90, and 0.85 for radiomics model; 0.93, 0.93, and 0.89 for combined
model. The combined model outperformed the clinical model (AUC: 0.76, 0.76 and 0.81).

Conclusion: The radiomics model and combined model constructed based on tumoral
and peritumoral radiomics features derived from DECT showed high diagnostic efficacy
for serosal invasion in gastric adenocarcinoma.

Keywords: stomach neoplasms, serosal invasion, dual-energy CT, iodine map, radiomics
March 2022 | Volume 12 | Article 8484251

https://www.frontiersin.org/articles/10.3389/fonc.2022.848425/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.848425/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.848425/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.848425/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.848425/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:gaofengs62@sina.com
https://doi.org/10.3389/fonc.2022.848425
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.848425
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.848425&domain=pdf&date_stamp=2022-03-21


Yang et al. Radiomics Based on Dual-Energy CT
INTRODUCTION

In China, the incidence and mortality of gastric cancer remain
high, and the majority of patients are in the advanced stage (1).
Gastric serosa has a defensive function, preventing tumor cells
from spreading to the surroundings. The risk of peritoneal
metastasis (PM) increases after serosal invasion in gastric
cancer patients (2–5). According to the 2016 clinical practice
guidelines for gastric cancer established by the National
Comprehensive Cancer Network (NCCN) (6), neoadjuvant
chemotherapy (NAC) is recommended for patients with T4
advanced gastric cancer to achieve lower staging, improve R0
resection rate, and improve prognosis. Both European Society for
Medical Oncology (ESMO) (7) and National Comprehensive
Cancer Network (NCCN) guidelines (6) recommended that
laparoscopy exploration should be applied to patients with
advanced gastric cancer to detect occult PM. However,
laparoscopy is an invasive diagnostic procedure and cannot
directly determine serosal invasion. Currently, postoperative
pathology is the gold standard for the diagnosis of serosal
invasion, but it has a certain hysteresis. Therefore, if the
serosal status can be accurately determined preoperatively,
most inappropriate surgeries will be avoided.

MDCT is a first-line imaging modality for the preoperative
evaluation of gastric cancer (8, 9). CT findings (10–12), (such as
serosal nodule, enhancement of the serosa, perigastric fatty
infiltration, and perigastric vascular invasion) are common
indicators for serosal invasion. However, inflammatory
peritumoral reaction and lack of perigastric adipose tissue can
affect the determination of serosal status. Additionally, in cases of
serosal microinvasion, it is difficult to observe the typical features
of the serosal surface. CT accuracy for diagnosis of serosal
invasion was reported to be 55.9%–90.8% (10–13). Thus, more
objective and quantitative parameters are required for detecting
serosal invasion more accurately.

Dual-energy CT (DECT) can provide more information
without increasing the radiation dose (14, 15). It has been
reported that the quantification of iodine concentration (IC)
with DECT in peritumoral adipose tissue provides an accurate
method for detecting serosal invasion in gastric cancer (16).

Radiomics is an emerging tool to quantitatively assess lesion
characteristics from texture analysis techniques (17). A recent
study showed that a radiomics model had a relatively high
diagnostic efficacy for serosal invasion compared with a
traditional model based on conventional CT signs (18).
Another radiomics study showed that iodine map (IM) derived
from DECT increased the diagnostic value of restaging in
advanced gastric cancer patients after NAC (19). The volumes
of interest (VOIs) were delineated in three dimensions without
the peritumoral tissue in the above two studies. Numerous
studies have demonstrated that the peritumoral radiomics
features may provide important clues for predicting tumor
aggressiveness (20, 21).

This study is aimed to construct a radiomics model and
combined model based on tumoral and peritumoral radiomics
features derived from DECT using a time-saving delineation
Frontiers in Oncology | www.frontiersin.org 2
method and evaluate their diagnostic efficacy for predicting
serosal invasion in gastric adenocarcinoma.
MATERIALS AND METHODS

Characteristics of Patients
We retrospectively reviewed the data of gastric cancer patients in
our institution between April 2015 and December 2017. This
study has been approved by the Ethics Committee of The Fourth
Hospital of Hebei Medical University. Inclusion and exclusion
criteria were as follows:

Inclusion criteria: (1) Gastric cancer was confirmed by
gastroscopic biopsy and the patients had not received any
antitumor therapy (e.g., radiotherapy, chemotherapy, and
targeted therapy) before surgery. (2) Dual-energy abdominal
enhancement scan was performed within 2 weeks before
surgery, and the complete imaging data were available. (3)
Gastric adenocarcinoma was confirmed by postoperative
pathology with clear staging.

Exclusion criteria: (1) Inadequate preparation for CT
examination (e.g., poor gastric filling and excessive food
retention). (2) The presence of breathing or sclerotic artifacts
in the image. (3) The lesion was too small to be detected by CT.
(4) There was too little peritumoral adipose tissue to meet the
requirements of the ROI delineation.

231 patients were eligible for enrollment (Figure 1). The
patients were randomly divided into the developing and
independent validation set at the ratio of 8:2, respectively.
Moreover, the patients in the developing set were randomly
divided into the training set and testing set at the ratio of 7:3.

Imaging Protocol and Postprocessing
Patient Preparation
After fasting for 6–8 hours, all patients received intramuscular
injection of 10 mg of 654-2 (anisodamine) 10 min before the
examination, and orally administered 6 g of aerogenic powder
with a small volume of tap water to fill the gastric cavity.

Examination Method and Scanning Parameters
The scan was performed using a dual-source CT scanner
(SOMATOM Definition Flash; Siemens Healthcare, Germany).
The scan range was from 5 cm above the diaphragm to the level
of the lower margin of the symphysis pubis. The patients
maintained a supine position during the examination. The
plain scan parameters were as follows: tube voltage:120 kVp;
tube current: 210 mAs; collimation width 32 × 1.2 mm, and
pitch: 0.9. Non-ionic contrast agent (Iohexol, 300 mg/dL; GE
Healthcare, USA) was injected intravenously through the elbow
vein at a flow rate of 3 ml/s (2 mL/kg body weight). Two phase-
enhanced with dual-energy scans were performed at 25 s (for the
arterial phase) and 70 s (for the venous phase) after injection.
Enhancement scan parameters were as follows: tube voltage A
100 kVp; reference tube currents 230 mAs; tube voltage B 140
kVp with a tin filter; reference tube currents 178 mAs;
March 2022 | Volume 12 | Article 848425
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collimation:32 × 0.6 mm; pitch: 0.55, and gantry rotation
time: 0.5s.

Image Reconstruction and Postprocessing
The raw data were transferred to the postprocessing workstation
(syngoMMWP, VE36A) to generate 120-kV equivalent mixed
images (with a weighted factor of 0.5) and IM images in the
venous phase. The reconstruction thickness was 1.0 mm in
all cases.

Clinical Model Development
Traditional features of patients, including clinical and semantic
features, was obtained from the picture archiving and
communication systems (PACS) of the hospital. Clinical
features included sex (female = 0, male = 1), age (< 60 years =
0, ≥ 60 years = 1) and serum tumor markers (CEA, CA-199 and
CA72-4) (negative=0, Positive=1). Two radiologists (SJY and YL
with 5 and 17 years of experience in abdominal radiology,
respectively) independently reviewed the venous phase CT
images in PACS combined with multiple planes reconstruction
(MPR) technology and recorded the semantic features using a
dichotomous classification method. The radiologists knew the
location of the tumor, but they were blinded to postoperative
pathology. Detailed description on semantic features is provided
in Supplementary A1. A consensus was reached through
consultation in case of disagreement. The independent
predictors from traditional features were identified using
univariate and multivariate logistic regression for the
construction of clinical model.
Frontiers in Oncology | www.frontiersin.org 3
Radiomics Model Development
Tumor Segmentation
The mixed images and IM images were imported into a
dedicated radiomics software (Radiomics, Frontier, Siemens
Healthineers, Forchheim, Germany). The ROIs were delineated
manually on a single layer of the mixed images by a radiologist
(SJY with 5 years of experience in abdominal radiology). As
Figure 2 shows, a rectangular ROI was delineated from the
mucosal to the serosal surface perpendicularly to the gastric wall,
in the deepest location of tumor infiltration. The delineation
slices where tumor infiltrated deepest were validated by a
radiologist (YL with 17 years of experience in abdominal
radiology). Differences in slice selection were resolved by
consensus through negotiation. The gastric lumen, perigastric
vessels, and lymph nodes were excluded. Meanwhile, the
peritumoral fatty tissue within 5 mm outside the serosa was
included. For ulcer type gastric cancer, the annular dike
was delineated, instead of the bottom of ulcer. The ROI was
automatically synchronized between the mixed image and IM
with identical location, size, and shape.

Feature extraction and selection
The radiomics features were extracted using the Radiomics
software. To ensure the reproducibility and robustness of the
features, the ROIs of 50 randomly selected cases were re-drawn
by same radiologist (SJY) after one month from the initial
delineation. The intraclass correlation consistency analysis was
used to assess the reliability of the two delineations, the features
with intraclass correlation coefficient (ICC) of >0.8 were selected.
FIGURE 1 | Flowchart of patient enrollment.
March 2022 | Volume 12 | Article 848425

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Radiomics Based on Dual-Energy CT
The random-forest-based Boruta algorithm was used to select
predictors. Boruta is a recursive feature selection algorithm by
disrupt the order of feature variables and calculate the
importance of feature variables to select the features with the
highest importance (22). There are several methods available for
feature selection based random forest algorithm. For datasets
with many predictor variables, Boruta is preferable due to its
higher computational efficiency (23).

Radiomics Modeling
The radiomics model was constructed with the R package
randomForestSRC (24). In a random forest, multiple
classification and regression trees are constructed, and the
results of each tree are aggregated to make predictions for each
observation. Random forest consistently provides the high
prediction accuracy compared to other models (25) and is not
prone to overfitting (26). A 10-fold cross-validation on the model
was applied in the developing cohort to optimize the parameters
(including the number of trees, the maxima depth for trees,
minimum size of terminal node) of random forest classifiers.
Finally, the model generalization was evaluated in the
independent validation cohort.

Establishing a Combined Model
The multivariate analysis was performed with binomial logistic
regression in the statistically significant clinical factors identified
by univariate analysis and multivariate analysis in clinical model
development, and Rad-score. The factors with p-values < 0.05
were considered as significant predictor and used for developing
combined model.

The radiomics workflow diagram of this study is presented
in Figure 3.

Statistical Methods
Kolmogorov–Smirnov test was used to test the normality of
continuous variables. Independent samples t-test or Mann–
Whitney U test was used for continuous variables whenever
appropriate, and Fisher’s exact test or chi-square test was used
Frontiers in Oncology | www.frontiersin.org 4
for categorical variables. The diagnostic efficacies of the three
models were assessed by using ROC curves, and the AUC,
accuracy (ACC), sensitivity (SEN), and specificity (SPE) were
calculated. Delong’s test was performed to compare the AUCs of
each model and p-value < 0.0167 was considered as statistically
significant for multiple comparisons according to the Bonferroni
correction. Hosmer–Lemeshow test analyzed the goodness of fit
for our risk prediction models and the calibration performance
was evaluated by the calibration curve. The net clinical benefits
were assessed by decision curve analysis (DCA).R software
(version 4.0.5 http://www.Rproject.org) was used for statistical
analysis and a two-sided p-value of <0.05 was used to indicate a
statistically significance.
RESULTS

Patients’ Characteristics
231 gastric adenocarcinoma patients (187 males, 44 females;
mean age, 57.7 ± 9.9 years; age range, 27–80 years) were included
in this study. Among them, 160 patients were pathologically
confirmed serosal invasion-positive and 71 were negative,
respectively. The training, testing, and independent validation
cohort included 132, 58, and 41 patients, respectively. The
traditional features of patients in the three cohorts are shown
in Table 1.

Clinical Model
Univariate logistic regression analysis was performed and the two
factors, i.e., rough serosal surface and increased density of
peritumoral adipose tissue, were combined owing to their high
collinearity with a multiple variance inflation factor (VIF) of > 10.
Supplementary Table 1 showed that CEA, the area of cancerous
lumps involvement, Borrmann type, the thickness of the cancerous
lumps, enhancement forms, rough serosal surface, increased density
of peritumoral adipose tissue, serosal nodule, positive lymph nodes,
and abdominal and pelvic effusion were significantly associated with
A B

FIGURE 2 | 120-kV equivalent mixed image in the venous phase (A) and iodine map (B) for simultaneous ROI generation.
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serosal invasion (p < 0.05). Multivariate analysis showed that
increased density of peritumoral adipose tissue was an independent
predictor of serosal invasion (Supplementary Table 2).

Radiomics Model
A total of 2452 (1226 × 2) radiomics features were extracted from
the mixed images and IM images for each patient, which did not
include the three-dimensional information (Laplacian of
Gaussian, LoG). The features of each cohort included 18
histogram features, 14 shape features, 24 gray co-occurrence
matrix features, 16 gray-level run-length matrix features, 16
gray-level size zone matrix features, 5 neighboring gray tone
difference matrix features, and 14 gray-level dependence matrix
features. Moreover, 631 features (ICC > 0.8) were retained in the
consistency analysis, and finally, 9 radiomics features with the
highest mean importance were selected using Boruta for model
construction. Among them, seven features were from the mixed
images, including two first-order and five texture features, and two
texture features were from IM. The importance of the 9 radiomics
features are shown Figure 4. The original_firstorder_variance had
the largest mean importance.

As the violin plot showed (Figure 5), The Rad-score had
lower values in the serosal invasion-negative group than that in
the positive group, which was statistically significantly different
between the two groups in the training, testing, and independent
validation cohort (all p < 0.001).

Combined Model
As shown in Supplementary Table 2, the multivariate logistic
regression analysis indicated the increased density of peritumoral
adipose tissue and Rad-score are the independent risk factors of
Frontiers in Oncology | www.frontiersin.org 5
serosal invasion and a combined model was constructed based on
the two factors. An individualized nomogramwhich incorporated
the twopredictive factors basedon the combinedmodel in training
cohort was constructed to predict serosal invasion (Figure 6).
Figure 7 shows a typical clinically overstaged case of gastric
adenocarcinoma without serosal invasion, and the nomogram
showed better diagnostic performance.

Comparison of the Three Models
Pairwise comparisons of the AUCs of the clinical model,
radiomics model, and combined model were performed by the
Delong’s test. As Table 2 shows, in the training, testing, and
independent validation sets, the AUC of the combined model
was slightly higher than that of the radiomics model, although
not statistically significant (all p > 0.0167). In the training cohort,
the AUC of the combined model as well as the radiomics model
was significantly higher than that of the clinical model (p < 0.01).
In the testing cohort, the AUC of the combined model was
significantly higher than that of the clinical model (p < 0.01) and
the AUC of the radiomics model was slightly higher than that of
the clinical model (p > 0.0167). And in the independent
validation cohort, the AUC of the combined model and
radiomics model were both slightly higher than that of the
clinical model (both p > 0.0167).

In addition, pairwise comparisons of the AUCs of the radiomics
model for the training, testing, and independent validation cohort
were performed with Delong’s test respectively, which showed no
statistical difference (all p > 0.0167).

The ROC curves for the clinical model, radiomics model, and
combined model are shown in Figure 8. Supplementary Table 3
shows the ACC, SEN and SPE of the three models. The combined
FIGURE 3 | Schematic diagram of the radiomics workflow.
March 2022 | Volume 12 | Article 848425
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TABLE 1 | Clinical and semantic features of the patients.

ort Independent validation cohort

+) p value Serosa (−) Serosa (+) p value
n = 17 n = 23

0.313 0.631
) 1 (6.25%) 4 (17.4%)
) 15 (93.8%) 19 (82.6%)

0.711 1
) 7 (41.2%) 9

(39.1%)
) 10 (58.8%) 14 (60.9%)

0.708 0.107
) 16 (94.1%) 16 (69.6%)
) 1 (5.88%) 7 (30.4%)

0.170 0.123
) 17 (100%) 19 (82.6%)
) 0 (0.00%) 4 (17.4%)

0.708 1.000
) 15 (88.2%) 20 (87.0%)
) 2 (11.8%) 3 (13.0%)
) 9 (52.9%) 0 (0.00%)
) 8 (47.1%) 23 (100%)

1) <0.001 0.69 (0.41) 1.91 (0.47) <0.001
0.046 0.001

) 9 (52.9%) 1 (4.35%)
) <0.001 8 (47.1%) 22 (95.7%) 0.264

<0.001 0.264
) 12 (70.6%) 11 (47.8%)
) 5 (29.4%) 12 (52.2%)

<0.001 <0.001
) 12 (70.6%) 1 (4.35%)
) 5 (29.4%) 22 (95.7%)

<0.001 <0.001
) 12 (70.6%) 2 (8.70%)
) 5 (29.4%) 21 (91.3%)

<0.001 <0.001
) 12 (70.6%) 2 (8.70%)
) 5 (29.4%) 21 (91.3%)

0.024 0.205
) 16 (94.1%) 17 (73.9%)
) 1 (5.88%) 6 (26.1%)

0.057 <0.001
) 12 (70.6%) 2 (8.7%)
) 0.154 5 (29.4%) 21 (91.3%) 0.624
) 16 (94.1%) 20 (87.0%)
) 1 (5.88%) 3 (13%)
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Parameters Training cohort Testing coh

Serosa (−) Serosa (+) p value Serosa (−) Serosa (
n = 38 n = 96 n = 16 n = 41

Sex 0.236
Female 10 (26.3%) 15 (15.6%) 2 (12.5%) 11 (26.8%
Male 28 (73.7%) 81 (84.4%) 14 (87.5%) 30 (73.2%
Age 0.117
<60 years 13 (34.2%) 49 (51.0%) 7 (43.8%) 14 (34.1%

≥60 years 25 (65.8%) 47 (49.0%) 9 (56.2%) 27 (65.9%
CEA 0.022
Negative 36 (90.0%) 67 (69.8%) 14 (87.5%) 33 (80.5%
Positive 4 (10.0%) 29 (30.2%) 2 (12.5%) 8 (19.5%
CA19-9 0.079
Negative 37 (92.5%) 75 (78.1%) 16 (100%) 35 (85.4%
Positive 3 (7.50%) 21 (21.9%) 0 (0.00%) 6 (14.6%
CA72-4 0.679
Negative 34 (85.0%) 77 (80.2%) 14 (87.5%) 35 (85.4%
Positive 6 (15.0%) 19 (19.8%) 2 (12.5%) 8 (19.5%
Localized type 16 (42.1%) 7 (7.29%) 4 (25.0%) 2 (4.88%
infiltrative type 22 (57.9%) 89 (92.7%) 12 (75.0%) 39 (95.1%
Thickness of the cancerous lumps 1.30 [0.80;1.78] 1.75 [1.30;2.32] 0.001 0.94 (0.48) 1.84 (0.7
Enhancement range 0.222
Nontransmural 4 (10.5%) 4 (4.17%) 4 (25.0%) 2 (4.88%
Transmural 34 (89.5%) 92 (95.8%) 0.073 12 (75.0%) 39 (95.1%
Enhancement forms 0.073
Homogeneous 21 (55.3%) 35 (36.5%) 15 (93.8%) 11 (26.8%
Heterogeneous 17 (44.7%) 61 (63.5%) 1 (6.25%) 30 (73.2%
Rough serosal surface <0.001
Negative 22 (57.9%) 8 (8.33%) 11 (68.8%) 5 (12.2%
Positive 16 (42.1%) 88 (91.7%) 5 (31.2%) 36 (87.8%
Increased density of peritumoral adipose tissue <0.001
Negative 23 (60.5%) 8 (8.33%) 12 (75.0%) 7 (17.1%
Positive 15 (39.5%) 88 (91.7%) 4 (25.0%) 34 (82.9%
Increased fat density (Rough serosal surface) <0.001
Negative 23 (60.5%) 8 (8.33%) 12 (75.0%) 7 (17.1%
Positive 15 (39.5%) 88 (91.7%) 4 (25.0%) 34 (82.9%
Serosal nodule 0.028
Negative 35 (92.1%) 70 (72.9%) 15 (93.8%) 24 (58.5%
Positive 3 (7.89%) 26 (27.1%) 1 (6.25%) 17 (41.5%
Positive lymph nodes <0.001
Negative 16 (42.1%) 11 (11.5%) 6 (37.5%) 5 (12.2%
Abdominal and pelvic effusionPositive 22 (57.9%) 85 (88.5%) 0.069 10 (62.5%) 36 (87.8%
Negative 36 (94.7%) 77 (80.2%) 15 (93.8%) 31 (75.6%
Positive 2 (5.26%) 19 (19.8%) 1 (6.25%) 10 (24.4%
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model showed the best accuracy in all three cohorts. The calibration
curves (Figure 9) of the combined model showed great calibration
performances in the training, testing and validation cohorts. There
was no statistical significance performing in the three groups
(p >0.05) through the Hosmer–Lemeshow test, which
demonstrated good agreement between prediction and
observation. As Figure 10 shows, the net clinical benefit for the
combined model was higher than that of the other two models
when the threshold for the training, testing, and independent
validation cohort was >0.09, >0.17, and >0.54, respectively.
DISCUSSION

Accurate preoperative determination of the serosal invasion
plays a crucial role in treatment decisions of gastric cancer
Frontiers in Oncology | www.frontiersin.org 7
patients (27). In this study, we developed a radiomics model
and a combined model to detect serosal invasion of gastric
adenocarcinoma patients based on the mixed images and IM
images derived from DECT. Both models outperformed the
clinical model in the training, testing, and independent
validation cohort in terms of diagnostic efficacy, and among
them, the combined model performed best.

The univariate logistic regression of traditional features
showed that most of the features were significantly associated
with serosal invasion (p < 0.05), which is consistent with previous
studies (28–32). Among the features, the heterogeneous
enhancement of the tumor reflects heterogeneity, and
numerous studies have suggested that tumor heterogeneity is
related to aggressiveness (33, 34). Similarly, in this study, the
weight of variance was significantly higher than the other
features among the 9 radiomics features used for the radiomics
model construction. As a first-order feature, variance is a
measure of the spread of the distribution about the mean,
which indicates the degree of data deviation. A higher value of
variance may represent stronger heterogeneity of the tumor,
which may suggest a higher probability of serosal invasion in
cases with strong heterogeneity.

Multivariate logistic regression of the traditional features
revealed that increased density of peritumoral adipose tissue
was an independent predictor of serosal invasion, which was
consistent with the findings of Xu Chang et al. (18) and Sun et al.
(35). However, Kim et al. (12) showed that irregular or nodular
changes of serosal surface were independent predictors of serosal
invasion, it might be attributed to inconsistent criteria of serosal
nodule among investigators. In the present study, the sign of an
irregular serosal surface without a significantly localized
protrusion was only classified as rough serosal surface. The
rough serosal surface was almost always accompanied by
increased density of peritumoral adipose tissue in cases of this
study, and thus, the two signs were combined. Therefore,
compared with the study of Kim et al, the frequency of
increased density of peritumoral adipose tissue was higher in
the patients with serosal invasion (91.7%, 88/96 vs. 75.6%, 31/
FIGURE 4 | Weights of the nine radiomics features in the radiomics model.
FIGURE 5 | Violin plot of Rad-score distribution in the training (A), testing
(B), and independent validation cohort (C), with the outermost shape
showing the density at that location. The dot on the black line is the median
and the black line from the top to the end range is from the lower quartile to
the upper quartile.
March 2022 | Volume 12 | Article 848425
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FIGURE 6 | A individualized nomogram based on Rad-score and traditional feature.
A B

FIGURE 7 | A 65-year-old male patient with increased perigastric fat density and Rad-score of 0.277,the nomogram showed a low risk of serosal invasion (risk =
0.11). (A) A mixed image in the portal venous phase showed the thickening of the lateral wall of the gastric lesser curvature with transmural enhancement, rough
serosal surface, and increased perigastric fat density, with a positive clinical model diagnosis of serosal invasion. (B) Pathological images (HE, 100×) showed a large
number of lymphocytes aggregated on the serosal surface with fibrous hyperplasia, and no cancer cell infiltration was observed, which was consistent with the
judgement of nomogram.
TABLE 2 | Pairwise comparisons of AUCs of the clinical model, radiomics model, and combined model.

Cohorts AUC p value (0vs1) p value (0vs2) p value (1vs2)

(95%CI)

Clinical model (0) Radiomics model (1) combined model (2)

Training cohort 0.76 0.9 0.93 0.002* <0.001* 0.1191
(0.68-0.84) (0.85-0.95) (0.88-0.97)

Testing cohort 0.79 0.9 0.93 0.1315 0.005* 0.319
(0.67-0.91) (0.82-0.99) (0.87-1.00)

Independent validation cohort 0.81 0.85 0.89 0.6199 0.135 0.167
(0.68-0.94) (0.73-0.97) (0.79-0.99)
Frontiers in Oncology | www.frontier
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41), but that of serosal nodule was lower (26/96, 27.1% vs. 75.6%,
31/41), which suggested that there were differences in the
interpretation of subjective signs by different observers. Thus,
quantitative parameters are required for more objective
determination for the serosal status.
Frontiers in Oncology | www.frontiersin.org 9
Cutting-edge technologies such as IM derived from DECT
and radiomics enable the quantitative assessment of lesion
features (14–17). In this study, we established a radiomics
model and a combined model based on DECT to detect serosal
invasion. Unlike previous studies, we explored a new
A B C

FIGURE 8 | ROC curves of the three models in the training (A), testing (B), and independent validation (C) cohort.
A B C

FIGURE 9 | Calibration curves of the combined model in the training (A), testing (B), and independent validation (C) cohort. The horizontal axis represents the
prediction probability of the traditional combined with radiomics feature model, and the vertical axis represents the actual occurrence probability, both of which
demonstrated good agreement between prediction and observation of the model.
A B C

FIGURE 10 | Decision curves for the three models in the training (A), testing (B), and independent validation (C) cohort. The x- and y-axes of the curve represent
the threshold probability and the net benefit, respectively.
March 2022 | Volume 12 | Article 848425
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segmentation method, which is more timesaving than the whole
tumor segmentation, avoiding errors due to the inaccurate
determination of tumor boundaries. Meanwhile, peritumoral
adipose tissue was included in the ROI, which helped to assess
tumor aggressiveness more comprehensively. The results showed
that the diagnostic performance of the combined model in the
present study was superior to that of the combined model based
on conventional enhanced CT (AUCs of testing set, 0.93 vs.
0.812) (16), and was comparable with that of the combined
model based on DECT fromWang L et al.’s study (19) (AUCs of
testing set, 0.93 vs. 0.914). The whole tumor segmentation was
used in both two previous studies.

There were several limitations in this study. Firstly, this was a
single-center study with relatively small sample size. Although an
independent validation cohort was established, the results
obtained herein still need to be validated based on multicenter
data. Secondly, the width of ROI was not limited in spite of the
relatively fixed delineation depth. And thus, the radiomics
features with ICC of >0.8 only accounted for 25.7% (631/
2452). Therefore, this proposed delineation method needs to
be further standardized. In addition, 13 patients were excluded
from the study due to the lack of peritumoral adipose tissue; it
can be seen that the results of this study may not be applicable to
certain patients with cachexia.

This study showed that the radiomics model and combined
model, which were constructed based on tumoral and
peritumoral radiomics features based on DECT, have good
diagnostic efficacy and could be a useful tool to determine the
serosal invasion for gastric adenocarcinoma.
Frontiers in Oncology | www.frontiersin.org 10
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