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Abstract: Background: Autism spectrum disorder (ASD) is a developmental disorder characterized by
deficits in social interaction, restricted interest and repetitive behavior. Oxidative stress in response to
environmental exposure plays a role in virtually every human disease and represents a significant
avenue of research into the etiology of ASD. The aim of this study was to explore the diagnostic
utility of four urinary biomarkers of oxidative stress. Methods: One hundred and thirty-nine (139)
children and adolescents with ASD (89% male, average age = 10.0 years, age range = 2.1 to 18.1 years)
and 47 healthy children and adolescents (49% male, average age 9.2, age range = 2.5 to 20.8 years)
were recruited for this study. Their urinary 8-OH-dG, 8-isoprostane, dityrosine and hexanoil-lisine
were determined by using the ELISA method. Urinary creatinine was determined with the kinetic
Jaffee reaction and was used to normalize all biochemical measurements. Non-parametric tests and
support vector machines (SVM) with three different kernel functions (linear, radial, polynomial) were
used to explore and optimize the multivariate prediction of an ASD diagnosis based on the collected
biochemical measurements. The SVM models were first trained using data from a random subset
of children and adolescents from the ASD group (n = 70, 90% male, average age = 9.7 years, age
range = 2.1 to 17.8 years) and the control group (n = 24, 45.8% male, average age = 9.4 years, age
range = 2.5 to 20.8 years) using bootstrapping, with additional synthetic minority over-sampling
(SMOTE), which was utilized because of unbalanced data. The computed SVM models were then
validated using the remaining data from children and adolescents from the ASD (n = 69, 88% male,
average age = 10.2 years, age range = 4.3 to 18.1 years) and the control group (n = 23, 52.2% male,
average age = 8.9 years, age range = 2.6 to 16.7 years). Results: Using a non-parametric test, we found
a trend showing that the urinary 8-OH-dG concentration was lower in children with ASD compared
to the control group (unadjusted p = 0.085). When all four biochemical measurements were combined
using SVMs with a radial kernel function, we could predict an ASD diagnosis with a balanced
accuracy of 73.4%, thereby accounting for an estimated 20.8% of variance (p < 0.001). The predictive
accuracy expressed as the area under the curve (AUC) was solid (95% CI = 0.691–0.908). Using the
validation data, we achieved significantly lower rates of classification accuracy as expressed by the
balanced accuracy (60.1%), the AUC (95% CI = 0.502–0.781) and the percentage of explained variance
(R2 = 3.8%). Although the radial SVMs showed less predictive power using the validation data, they
do, together with ratings of standardized SVM variable importance, provide some indication that
urinary levels of 8-OH-dG and 8-isoprostane are predictive of an ASD diagnosis. Conclusions: Our
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results indicate that the examined urinary biomarkers in combination may differentiate children with
ASD from healthy peers to a significant extent. However, the etiological importance of these findings
is difficult to assesses, due to the high-dimensional nature of SVMs and a radial kernel function.
Nonetheless, our results show that machine learning methods may provide significant insight into
ASD and other disorders that could be related to oxidative stress.

Keywords: autism spectrum disorder; oxidative stress; urine biomarkers

1. Introduction

Autism spectrum disorder (ASD) is a developmental disorder that affects social communication
and behavior. People with ASD have (1) difficulty communicating and interacting with other people,
(2) restricted interests and repetitive behaviors, and (3) their symptoms impact their ability to function
properly in school, work, and other life domains. ASD occurs in all ethnic, racial, and socioeconomic
groups and represents in the vast majority of cases a lifelong disorder. In the Diagnostic and
Statistical Manual of Mental Disorders (DSM-IV) and the International Classification of Mental and
Behavioral Disorders (ICD-10), autism was part of the Pervasive Developmental Disorders diagnostic
category (Pervasive Developmental Disorders, PDD) and was characterized by a severe and pervasive
impairment in social interaction, behavior, and communication [1]. The Diagnostic and Statistical
Manual of Mental Disorders, 5th Revision (DSM-5) defines autism spectrum disorder (ASD) as
a neurodevelopmental disorder with a spectrum of qualitative impairments in social interaction,
qualitative impairments in communication, and restricted and stereotyped patterns of behavior,
interests, and activities [2]. A diagnosis of ASD is given based solely on clinical features. At present,
there are consistently validated biomarkers for diagnostic and/or screening purposes [3].

Increased vulnerability to oxidative stress by endogenous or environmental pro-oxidants in
conjunction with genetic susceptibility factors may lead to the development and clinical manifestations
of autism.

The shift in the balance between oxidants and antioxidants in favor of the former is termed
oxidative stress (OS) [4].

OS is a pathological condition which is due to an abnormal increase of reactive species (RS), called
free radicals, and a concomitant reduction of antioxidant defenses against free radicals. It is widely
accepted that an excess of RS is toxic and damages essential cell components such as nucleic acids,
proteins and lipids, leading to cell death. RS can lead to the oxidation of amino acid side chains,
the formation of protein–protein cross-linkages, and the oxidation of the protein backbone resulting
in protein fragmentation. The body produces a defined amount of RS due to the physiological cell
metabolism. RS are dangerous because they have the spontaneous tendency to oxidize molecules due
to their capacity to capture an electron or a hydrogen atom from any substance that gets in contact
with them. An imbalance in the oxidant/antioxidant relationship such as an overproduction of RS can
become toxic to neurons by inducing DNA methylation [5] and damage to various tissues [6]. One of
the most common mechanisms by which RS attack molecules of our body is the generation of so-called
“hydroperoxides” or ROOH. RS are neutralized by anti-oxidants, which are used by the body to protect
it from the damaging effects of free radicals. Anti-oxidant enzymes represent a wide range of enzymes
that transform RS into harmless substances. Oxidative damage produced by reactive oxygen species
(ROS) has been implicated in the etiology and pathology of many health conditions, including a large
number of chronic diseases.

A number of studies have reported evidence of OS in individuals with ASD [7–14], implicating OS
a contributory factor in the development of ASD. Its impact on individuals with ASD may be caused
by a range of RS. RS could come from external sources (e.g., environmental pollution, metabolism
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of xenobiotics) or could be generated in the body by NADPH oxidases [12,13,15,16]. RS includes
superoxide (O2

�−), hydroxyl, peroxyl, alcoxy, and nitric oxide (NO) free radicals.
Biomarkers of OS are measured in the blood/plasma, urine, and saliva, with urinary biomarkers

representing the least invasive way to assess OS in the individual patient. Urinary biomarkers of
oxidative status present a great opportunity to study redox balance in human populations. In addition,
specimen collection is non-invasive, and urine offers a better matrix than blood/plasma since it contains
a lower organic and inorganic metal content. Also, urinary levels of the biomarkers present intergraded
indices of redox balance over a longer period of time compared to blood levels.

The most common oxidative markers of protein oxidation are protein carbonyls and protein
nitrates. The common markers of lipid peroxidation by free radicals are malonyldialdehyde
(MDA), 4-hydroxynonenal (HNE), and F2-isoprostanes. The nucleic acid oxidation products that are
frequently used for measurement of oxidative stress are 8-hydroxy deoxyguanosine for DNA, and
8-hydroxyguanosine for RNA.

Although extensive studies have been carried out on autism, there are still controversies regarding
its underlying mechanisms. Evidence of neurodegeneration has been seen in some cases of children with
ASD who experienced a progressive loss of neurological function, with signs of elevated 8-oxoguanine
levels, which could be evidence of oxidative stress [17]. In our study, we focused on four relevant
biochemical markers of OS.

1.1. 8-Hydroxy-2′-Deoxyguanosine (8-OH-dG)

Lipids of cellular membranes, proteins, and DNA are regularly damaged by ROS. While studying
their impact on cellular biomolecules, major efforts have been devoted to understanding how RS attack
and modify DNA [18–20], including ROS’s induction of aberrant DNA methylation [21]. Among
the most studied topics in this respect is 8-hydroxy-2’-deoxyguanosine (8-OH-dG) [20], a product
of oxidatively damaged DNA formed by hydroxy radicals, singlet oxygen and direct photodynamic
action. 8-OH-dG can be detected in tissues, serum, urine and other biomaterials. 8-OH-dG has been
validated as a biomarker for oxidative stress in animal models, but so far, this has not been shown in
human studies. Previous research has validated it as a sensitive biomarker of DNA damage due to
oxidative stress [22,23]. The impact of inter-individual variability in DNA repair capacity on the levels
of 8-OH-dG in urine remains unknown. Intra-individual variability is also uncertain. However, this
biomarker can be useful as a monitoring tool.

1.2. F2-Isoprostanes

F2-isoprostanes are formed during the non-enzymatic oxidation of arachidonic acid by different
types of free radicals [24]. F2-isoprostanes and their metabolites, excreted in the urine, are chemically
stable compounds [24] and are not sensitive to the dietary intake of lipids [25]. Among them, 8-isoPGF2α
is an especially reliable indicator of lipid peroxidation, due to its stability. The measurement of
F2-isoprostanes in bodily fluids is regarded as a trustworthy biomarker for the in vivo determination of
lipid peroxidation by free radical pathways [24–27]. This is a well-studied and validated biomarker of
oxidative status, with known inter- and intra-individual variations [28]. However, there is some concern
that inter-individual variation in F2-isoprostane hydrolysis form esterified lipids could contribute to
the differences in their steady-state urinary levels.

1.3. Dityrosine (DT)

Tyrosine is one of the major targets of protein oxidation. DT is a tyrosine dimer, derived
from tyrosyl radicals, which is formed by RS, metal-catalyzed oxidation, ultraviolet irradiation, and
peroxidases. DT has previously been proposed to be a good indicator of protein oxidation [15,29]. When
measured in urine, it is sensitive to pathological conditions associated with oxidative stress [30–33].
Promising understudied biomarkers, such as dityrosine, reflect oxidative protein damage. The addition
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of this biomarker to the panel of validated indices of oxidative status diversifies the existing tools in
studying the role of oxidative status in human health and disease.

1.4. Hexanoyl-Lysine (HEL)

Hexanoyl-lysine (HEL) adduct is a novel lipid hydroperoxide-modified lysine residue. HEL is
formed by oxidative modification by oxidized omega-6 fatty acids such as linoleic acid or arachidonic
acid. HEL can be a useful biomarker for initial stages of lipid peroxidation [34]. Urinary levels of HEL
were also found to be elevated in children with ASD [35], with a recent study by Yui et al. showing
that increased HEL is associated with decreased antioxidant capacity in children with ASD [36].

The aim of the present study was to examine the levels of OS markers in the urine of children and
adolescents with ASD in comparison to their healthy peers. We also wanted to examine if differences in
OS markers could be used in combination to differentiate both groups using modern machine learning
methods, in part replicating earlier efforts by Anwar et al. [37] to use support vector machines (SVMs)
to predict the presence of ASD based on different biomarkers.

2. Subjects and Methods

2.1. Patients

Our group of patients was composed of 139 children and adolescents with autism spectrum disorder
(ASD). The children and adolescents were diagnosed previously in a tertiary out-patient clinic by a
developmental pediatrician or psychiatrist and psychologist. Children and adolescents were diagnosed
with ASD based on four behavioral criteria: (1) deficits in social communication and interaction
(including social-emotional reciprocity, nonverbal communication, and development/maintenance of
relationships); (2) restricted, repetitive patterns of behavior, interests, or activities (such as movements
like arm flapping, excessive adherence to routine or rituals, resistance to change, obsessive fixations,
and sensory sensitivity); (3) presentation of symptoms during early childhood; and (4) impairment of
everyday functioning [1].

The diagnosis was made using a multidisciplinary approach that combined a clinical evaluation
along with a psychological assessment. Children were grouped according to the criteria detailed and
summarized by DSM-5 [38]. Additional behavioral ratings were based on a standardized classification
of behavior for children with ASD developed by the local educational authority for providing additional
school support [39]. Ratings were given for two separate dimensions: a) presence of deficits in social
communication and social interaction, and b) presence of deficits in behavioral flexibility and of limited
interests and activities. Each child in the ASD group received a rating on each of the two dimensions
on a three-point rating scale (1: mild deficit; 2: moderate deficit; 3: severe deficit). Children in the
control groups received a rating of 0 for both dimensions.

A group of children and adolescents (47) without any neurological problems or any other known
acute or chronic disease was used as a control group. Before inclusion of the children and adolescents,
we obtained written permission from their parents.

The demographic characteristics of participating children and adolescents are given in Table 1.
The design of our study was approved by the National Medical Ethics Committee (0120-201/2016-2
KME 78/03/16).



Antioxidants 2019, 8, 187 5 of 15

Table 1. Demographic characteristics of children in autism spectrum disorder (ASD) and control groups.

Characteristics ASD Control

N 139 47
Male 89% 48%

Mean age (in years) 10.0 9.1
Age range (in years) 2.1–18.1 2.5–20.8

Deficits in social communication
Mild 47% /

Moderate 47% /
Severe 6% /

Table 1. Cont.

Characteristics ASD Control

Deficits in behavioral flexibility
Mild 48% /

Moderate 43% /
Severe 9% /

2.2. Methods

We obtained a second-morning urine specimen from all participants. Urine samples were aliquoted
immediately after their collection and frozen to a temperature of −80 ◦C until they were analyzed.
Before analysis, urine was defrosted and centrifuged.

For the determination of three of the four biochemical parameters, we used commercial ELISA
lits: 8-OH-dG Check ELISA, HEL ELISA and the DT ELISA kit provided by the Japanese Institute for
the Control of Aging (JaICA, Japan). 8-izoprostane was determined using a kit from IBL International
(Hamburg, Germany). Urinary creatinine was obtained using the Roche reagent kit on a Roche Modular
P analyzer (Roche Diagnostics GmbH, Mannheim, Germany). All tests were performed following the
instructions of the kit provider.

3. Statistical and Machine Learning Analysis

All statistical analyses were done using the R+ language for statistical computing [40]. As part
of the descriptive statistical analysis, we described the expression of our four biochemical markers
normalized by urinary creatinine levels (8-OH-dG, 8-isoprostane, dityrosine, HEL) by calculating their
median and inter-quartile range in our ASD in control groups, respectively. We then compared their
distribution across both groups using the non-parametric two-sample Wilcoxon test.

In the second step of our analyses, we used support vector machines (SVMs) to predict an ASD
diagnosis based on the expression of the four chosen biomarkers. We did this using the “caret” R+

package [41]. We examined the predictive power of three types of SVMs, with each type using either a
linear, radial or polynomial (up to 3rd-degree polynomial) kernel function. We optimized the model
hyper-parameters on a random subset of our data. This random subset of data represented the training
data for the SVMs. It included 70 children and adolescents from the ASD group (90% male, average
age = 9.7 years, age range = 2.1 to 17.8 years) and 24 from the control group (45.8% male, average
age = 9.4 years, age range = 2.5 to 20.8 years). In order to tune our SVMs to the training data, we used
the optimism bootstrap estimator (1000 samples per SVM) with the default grid search settings and
accounted for the unequal numbers of participants across our research groups by using the synthetic
minority over-sampling technique (SMOTE) [42].

We evaluated the predictive performance of our SVMs in the context of the training data by
looking at the achieved balanced accuracy (combined estimate of true positives and true negatives)
and the Cohen’s Kappa coefficient. In addition, we estimated the explained variance (R2) based on the
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Spearman rho correlation coefficient and performed significance testing for the estimated correlation
coefficient [43]. To ascertain the importance of individual variables, we also looked the variable
importance metric (VI), which ranges from 0 to 100 [44]. Finally, we depicted the predictive accuracy
of the SVMs using ROC curves and estimating the 95% confidence interval for the area under the
curve (AUC). We then repeated these analyses for SVM prediction accuracy using an independent
validation sample, which was composed of 69 children and adolescents from the ASD (88% male,
average age = 10.2 years, age range = 4.3 to 18.1 years) and 23 from the control group (52.2% male,
average age = 8.9 years, age range = 2.6 to 16.7 years), who were not among those whose data was
included in the training dataset. This provided a crucial test of the reproducibility of our results on
data not previously seen by our SVMs.

Finally, to further validate our findings, we examined the correlation between the predicted
probability of having an ASD diagnosis based on the SVM models and the ratings of deficits in the
domains of social communication and behavioral flexibility. These correlations were estimated by
calculating the Spearman correlation coefficient.

4. Results

Our univariate analyses indicated a somewhat higher variability of biomarker expression in
the ASD group. The only trend towards a difference in the overall levels of expression between the
ASD and control groups was seen for 8-OH-dG, with lower levels being more typical of children and
adolescents in the ASD group. The results are presented in Table 2.

Table 2. Urinary markers normalized by creatinine in the ASD and control groups. IQR: interquartile
range; Me: Median; W: Wilcoxon signed-rank test.

Marker
ASD Group (n = 139) Control Group (n = 47)

W p
Me IQR Range Me IQR Range

8-OH-dG 1.12 1.42 0.05–22.81 1.57 1.24 0.01–6.38 2716.00 0.085
8-isoprostane 143.72 525.42 2.86–8000 130.94 436.90 3.48–2026.96 3241.50 0.939

Dityrosine 268.04 338.61 0–6475.71 171.94 269.16 4.05–877.83 3722.00 0.179
Hexanoil-lysine 5.84 5.35 0.5–97.39 5.44 5.14 1.62–30.21 3291.00 0.940

Among all of the examined SVMs, only the SVM with a radial kernel function proved to accurately
predict an ASD diagnosis (see Table 3). This SVM predicted an ASD diagnosis with a balanced accuracy
of 73% and explained a significant amount of variance. It also proved to be the only SVM that was able
to predict an ASD diagnosis with any accuracy in the validation dataset.

Table 3. Performance evaluation of support vector machines (SVMs) for predicting ASD on training
and validation data.

SVM Kernel Function Balanced
Accuracy Kappa p R2 p AUC 95% CI for

AUC

Linear (training data) 50% 0.000 0.999 0.000 0.999 0.404 0.270–0.537
Radial (training data) 73% 0.455 0.823 0.208 0.001 0.799 0.691–0.908

Polynomial (training data) 57% 0.129 0.860 0.017 0.458 0.643 0.518–0.767

Linear (validation data) 50% 0.000 0.999 0.000 0.999 0.579 0.443–0.715
Radial (validation data) 60% 0.194 0.071 0.038 0.174 0.641 0.502–0.781

Polynomial (validation data) 55% 0.093 0.391 0.009 0.663 0.623 0.490–0.755

Despite their relatively poor predictive power in the context of the validation data, our results
offer some insight into the importance of individual biomarkers in predicting a diagnosis of ASD.
While investigating the standardized variable importance of each biomarker in the SMV with a radial
kernel, we found that the most important predictors were 8-OH-dG (VI = 100.00) and dityrosine
(VI = 73.94), followed by 8-isoprostane (VI = 16.20), and HEL (VI = 0.00). When using predictions from
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the SVM with the radial kernel function to plot the likelihood of receiving an ASD diagnosis in relation
to 8-OH-dG and dityrosine, we found that the control group was predicted to have an optimal level of
8-OH-dG expression at around 2.5 to 3.0 standardized units (see Figure 1). Our second-most important
predictor in the radial kernel SVM showed a somewhat different trend. Higher levels of dityrosine
expression tended to be associated with a higher likelihood of receiving an ASD diagnosis. Additional
information on the predicted probabilities of receiving a diagnosis based on the SVM with the radial
kernel function are presented in Figures A1 and A2 in Appendix A.
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Figure 1. Increase or reduction in probability of an ASD diagnosis (in %) based on support vector
machine (SVM) predictions from 8-hydroxy-2’-deoxyguanosine (8-OH-dG) and dityrosine. Predictions
shown for an SVM using a radial kernel.

When examining the association between the predicted probability of having an ASD diagnosis
and ratings of deficits in social interaction and behavioral flexibility within the training dataset, we
found several significant correlations for the SVM model with the radial kernel function. However, we
could not verify these correlations within the validation sample (Table 4).

Table 4. Rho correlations between SVMs’ predicted likelihood of ASD diagnosis and deficits in social
communication and behavioral flexibility based on training and validation data.

Symptom Domain Linear Radial Polynomial

rho p rho p rho p

Deficits in social
communication

Training data −0.128 0.337 0.418 0.001 0.187 0.223
Validation data −0.093 0.755 0.239 0.120 0.242 0.120

Deficits in behavioral flexibility
Training data −0.143 0.337 0.446 0.001 0.198 0.223

Validation data −0.061 0.755 0.234 0.120 0.207 0.144

5. Discussion

The results of our study indicate that, among the four biomarkers used, 8-OH-dG, a biomarker of
DNA damage due to oxidative stress and an individual’s DNA repair capacity [20,45], and dityrosine,
an oxidation damage marker and indicator of protein oxidation [29,44], proved to be the most influential
predictors of having an ASD diagnosis in the group of children and adolescents included in our study.
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The predictive accuracy of our SVM algorithm was not as high as that of the SVM algorithms published
in a previous study by Anwar et al. [37], and was also significantly reduced in an independent
validation dataset. Although far from having the potential of being a reliable diagnostic tool, our SVMs
did have some predictive accuracy in the validation data set and offered some interesting insights into
the role of oxidative stress in the etiology of ASD.

Our examination of the SVM predicted probabilities of having an ASD diagnosis across a range of
biomarker expression, which indicates a potentially interesting finding in relation to the measurement
and involvement of 8-OH-dG in ASD. The superior performance of the SVM using a radial kernel
function indicates that individuals with ASD might have levels of 8-OH-dG below or above an optimal
range [46,47], rather than simply levels that are higher than neurotypical individuals. This could
explain some the disparate findings of previous studies, among which some have found increased
levels of 8-OH-dG in individuals with ASD [12,48,49], while others have not [35,36,50]. In individuals
with ASD, such deviations from an optimal level of 8-OH-dG could be a reflection of a departure from
an appropriate range of ROS expression, which has been shown to be important in regulating neuronal
differentiation, migration [51,52], and synaptic pruning [53,54], which are all processes thought to
be involved in the etiology of ASD [55,56]. It could also be an indicator of the potential genetic
vulnerability of children with ASD to oxidative stress [12,57–59], environmental factors contributing to
it [12,60,61], as well as deficient mechanisms of DNA repair [62].

The second-most import predictor of diagnostic status in our radial kernel SVM was dityrosine.
This result is in line with a previous study that used an SVM algorithm with a linear kernel function to
classify children according to ASD status. The study by Anwar et al. [37] found dityrosine to be an
important predictor of ASD, and as in our study, ASD diagnosis was associated with higher levels of
dityrosine expression. This finding also fits well with other studies implicating tyrosine metabolism in
the etiology of ASD [63–65].

The remaining two biomarkers used in our study, hexanol-lysine and 8-isoprostane, did not have
high variable importance in our SVM that used a radial kernel function. This does not mean they have
no role in the study of oxidative stress in ASD, but merely that they did not provide much additional
information in the specific set context of our biomarkers and data. However, they have in other studies
been shown to have aberrant levels of expression in individuals with ASD [28,35,50].

We hope our study also adds to the current literature from a methodological standpoint. We feel
our use of an independent validation dataset somewhat guards against the potential overfitting of data
that can occur when using SVMs, especially those using a radial kernel function. We also hope that our
results illustrate the reduction in predictive accuracy when SVMs are employed on data which are not
part of the dataset used for SVM model tuning. In light of the public interest in such studies, it would
seem important to emphasize that fact to the general public, as pointed out by Buxbaum et al. [66].

In regard to our own study, we would also like to note some other limitations. Due to a discrepancy
in the number of individuals in the ASD and control groups, we had to employ SMOTE sampling
procedures [42] to control for the uneven number of participants across groups when tuning our SVM
models. If we had the resources, even more data for the control group would have been preferable,
making the numbers of participants in each of our research groups more comparable. The relatively
small number of participants in our study also limits our ability to generalize the results across the
diverse population of individuals with ASD. We therefore feel that the interpretation of our findings
would greatly be enhanced by the replication of our results on new data sets by other research groups.
We therefore provide the R+ code for the SVM calculations used in our study in Supplementary File S1,
hoping researchers might utilize the SVM algorithms and settings used in future studies.

We are aware that our groups are different in terms of gender representation. The parameters that
we have determined in urine are not subject to gender differences, and therefore this difference does
not introduce an additional bias. The concentrations and profiles of oxidative stress markers are not
significantly affected by gender, age, or body mass index (BMI) [67–72].
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When looking at the literature on oxidative stress in ASD from a wider methodological viewpoint,
we also feel that the field would benefit from a greater effort in obtaining larger datasets, beyond
those currently available. This would seem especially prudent if the field is intent on using machine
learning methods to gain greater insight into the etiology of ASD. A multi-center collaborative study
of oxidative stress in ASD, similar to those in the field of ASD neuroimaging [73,74], might represent
a way to gather data from hundreds of participants in order to make the predictions of machine
learning algorithms more reliable and informative. By including genetic and neuroimaging data, such
efforts could help deepen our understanding of the aberrant neurodevelopmental processes that the
biomarkers used in this study measure in individuals with ASD.

6. Conclusions

Support vector machines (SVMs) offer great promise for enhancing the methodological toolset
used in studying oxidative stress in ASD, if used and interpreted properly [74,75]. The ability of
SVMs to recognize nonlinear boundaries in the multi-dimensional space formed by measurements of
biochemical markers could be an advantage when trying to identify aberrant biochemical processes
in ASD. In our study, SVMs allowed us to improve our prediction of an ASD diagnosis based on the
utilized biomarkers and granted us greater insight into the measurement of biomarker expression. We
discovered that, in addition to identifying a pathological level of biomarker expression, it may also be
important to identify potential deviations for an optimal set-point of biomarker expression using SVMs.
We hope our work will encourage others to replicate the use of SVMs in this field of research, and we
look forward to this line of inquiry having an impact on the practice of ASD diagnosis and treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/8/6/187/s1,
Supplementary File S1: R+ syntax for SVMs with linear, radial and polynomial kernel functions.
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