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A B S T R A C T   

ATP is a ubiquitous intracellular molecule critical for cellular bioenergetics. ATP is released in response to 
mechanical stimulation through vesicular release, small tears in cellular plasma membranes, or when cells are 
destroyed by traumatic forces. Extracellular ATP is degraded by ecto-ATPases to form ADP and eventually 
adenosine. ATP, ADP, and adenosine signal through purinergic receptors, including seven P2X ATP-gated cation 
channels, seven G-protein coupled P2Y receptors responsive to ATP and ADP, and four P1 receptors stimulated 
by adenosine. The goal of this review is to build a conceptual model of the role of different components of this 
complex system in coordinating cellular responses that are appropriate to the degree of mechanical stimulation, 
cell proximity to the location of mechanical injury, and time from the event. We propose that route and amount 
of ATP release depend on the scale of mechanical forces, ranging from vesicular release of small ATP boluses 
upon membrane deformation, to leakage of ATP through resealable plasma membrane tears, to spillage of 
cellular content due to destructive forces. Correspondingly, different P2 receptors responsive to ATP will be 
activated according to their affinity at the site of mechanical stimulation. ATP is a small molecule that readily 
diffuses through the environment, bringing the signal to the surrounding cells. ATP is also degraded to ADP 
which can stimulate a distinct set of P2 receptors. We propose that depending on the magnitude of mechanical 
forces and distance from the site of their application, ATP/ADP profiles will be different, allowing the relay of 
information about tissue level injury and proximity. Lastly, ADP is degraded to adenosine acting via its P1 re
ceptors. The presence of large amounts of adenosine without ATP, indicates that an active source of ATP release 
is no longer present, initiating the transition to the recovery phase. This model consolidates the knowledge 
regarding the individual components of the purinergic system into a conceptual framework of choreographed 
responses to physical forces.   

1. Introduction 

The human body constantly interacts with the physical world. Forces 
imposed externally, such as gravity and activity-generated, and forces 
imposed internally (due to blood flow, ventilation, etc.) are critical to 
the development, maintenance, and adaptation of various tissues in the 
body. Bone is known for its adaptive responses to mechanical loads 

(Willie et al., 2020). Reduced forces, such as in microgravity (Stavni
chuk et al., 2020) and immobilized patients (Jo and Shin, 2015), are 
associated with bone loss, whereas activity-related impact forces are 
conversely associated with bone gain (Kohrt et al., 2009). While daily 
physical activity is critical for healthy bones (Burr et al., 1996; Fritton 
et al., 2000), in extreme physical activity, such as in elite sports, bone 
strains can reach levels resulting in irreversible deformations and failure 
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(Lynch and Fischbach, 2014; Reilly and Burstein, 1975). Eventually, 
external forces will reach magnitudes resulting in traumatic bone frac
ture; however, different individuals demonstrate significant variability 
in their susceptibility to fracture (Mikolajewicz et al., 2020). These 
forces can be modeled in in vitro experiments by applying pressure, fluid 
shear stress (FSS), strain and compression to study the responses of in
dividual cells (Michael Delaine-Smith et al., 2015). Thus, bone tissue 
experiences a wide range of physical forces and can adapt accordingly to 
these different mechanical environments. 

The architecture and mineral-collagen composition of the bone 
effectively transfers mechanical loads through the skeletal structure, so 
that mechanical perturbations are perceived by bone cells that mediate 
the adaptive response. Bone is a highly cellular organ, which is main
tained throughout our adult lives by three main cell types: osteoclasts, 
cells that specialize in bone resorption; osteoblasts, cells that actively 
produce extracellular matrix that later mineralizes; and osteocytes, cells 
that are embedded in bone matrix and are considered the main 
mechanosensors and coordinators of bone adaptation (Willie et al., 
2020). Together, these cells orchestrate the growth, modeling, and 
remodeling of bone, adapting the mineralized structure to systemic 
signals and mechanical stimuli. 

Following mechanical stimulation, there is a temporal cascade of 
signaling events that ultimately manifests in cell- and tissue-level ad
aptations. Within seconds, fluid shears and substrate strains distort the 
extracellular matrix, integrin/focal adhesion complexes reorganize the 
cytoskeleton, and mechanosensitive channels are activated as the 
membrane yields to applied forces (Robling and Turner, 2009). Tran
sient intracellular free calcium ([Ca2+]i) elevations are among the 
earliest detectable events after cells are mechanically stimulated (Chen 
et al., 2000; Hung et al., 1995; Robling and Turner, 2009). [Ca2+]i sig
nals exhibit various features such as transient or sustained signatures 
and single or multiple oscillatory peaks, which are believed to encode 
information (Semyanov, 2019; Tian et al., 2020). On a similar timescale 
as the calcium response, seconds following mechanical stimulation, 
adenosine triphosphate (ATP) release is detected (Mikolajewicz et al., 
2018a; Robling and Turner, 2009). Within minutes, nitric oxide (NO) is 
released into the extracellular space from osteoblasts and osteocytes 
(Mullender et al., 2004), acting as a bone anabolic agent in low to 
moderate concentrations (Kapur et al., 2003; Wimalawansa, 2010) and 
similarly prostaglandins (PG), lipid autocrine and paracrine mediators, 
are produced (Blackwell et al., 2010). Among these early mediators 
orchestrating bone adaptation to the mechanical stimulus, this review 
focuses on the mechanotransductive role of extracellular ATP, one of the 
earliest signals generated upon mechanical stimulation of bone cells. 

Extracellular ATP is known to stimulate multiple receptors of the 
purinergic receptor family (Illes et al., 2021; Jacobson et al., 2020; von 
Kügelgen, 2021) and to undergo enzymatic degradation that leads to 
generation of metabolites, such as adenosine diphosphate (ADP) and 
adenosine (Zimmermann et al., 2012), which are also ligands for 
different subsets of purinergic receptors (Fredholm, 2007; Illes et al., 
2021; Jacobson et al., 2020; von Kügelgen, 2021). Here we build a 
conceptual model of how this complex system acts to convey the in
formation regarding the degree, proximity to, and time from the event of 
mechanical force application. 

2. ATP release is proportional to the amount of cellular damage 

Mechanical forces applied to bone result in the release of ATP into 
the extracellular environment (Mikolajewicz et al., 2018a). Osteoblasts 
have been demonstrated to release ATP in response to fluid shear stress 
(Genetos et al., 2005; Li et al., 2005; Li et al., 2013; Mikolajewicz et al., 
2018b; Pines et al., 2003; Wang et al., 2013; Xing et al., 2011), osmotic 
pressure (Pines et al., 2003; Romanello et al., 2005) and ultrasonic 
stimulation (Alvarenga et al., 2010; Hayton et al., 2005; Manaka et al., 
2015). Osteocytes also release ATP in response to fluid shear (Genetos 
et al., 2007) and mechanical injury (Kringelbach et al., 2015). ATP 

release from mechanically-stimulated osteoclasts was implicated in 
mechanotransduction (Jørgensen et al., 2002) and similarly, macro
phages have been shown to release ATP in response to osmotic pressure 
(Burow et al., 2015). The amount of ATP released depends on the degree 
of membrane deformation and/or damage experienced by cells. This 
includes small boluses of ATP release during normal activity, micro- 
damage induced ATP release from physical activity that prompts 
repair and bone adaptation, and overload-induced tissue damage and 
cell death that results in spillage of cellular contents, including ATP, that 
serves as a danger signal (Fig. 1). 

Low-level mechanical stimulation is known to stimulate ATP release 
from bone cells. Osteoblasts (Brandao-Burch et al., 2012; Buckley et al., 
2003; Genetos et al., 2005; Orriss et al., 2009; Romanello et al., 2001), 
osteocytes (Kringelbach et al., 2015) and osteoclasts (Brandao-Burch 
et al., 2012), were demonstrated in vitro to constitutively release low 
amounts of ATP, 1–25 amol/cell, to the extracellular environment 
(Table 1). For osteoblasts, the degree of ATP release was shown to 
depend on their proliferative and differentiation state (Brandao-Burch 
et al., 2012). ATP release from osteoblasts was shown to occur mainly 
through exocytosis of ATP-containing vesicles (Brandao-Burch et al., 
2012; Genetos et al., 2005; Orriss et al., 2009; Romanello et al., 2005). In 
osteocytes, vesicular release in addition to hemichannels (i.e., pannex
ins, connexins) has been implicated in ATP release (Kringelbach et al., 
2015; Seref-Ferlengez et al., 2016). When low-level physical forces, such 
as gentle perturbation of the media, are applied to osteoblastic cells, ATP 
release increases (Genetos et al., 2005; Kringelbach et al., 2015; Orriss 
et al., 2009; Romanello et al., 2005; Romanello et al., 2001). In several 
studies, the lack of membrane damage upon such stimulations was 
experimentally confirmed (Genetos et al., 2005; Romanello et al., 2001). 
Calcium-dependent vesicular release was strongly implicated in ATP 
release in these conditions (Genetos et al., 2005; Kringelbach et al., 
2015; Orriss et al., 2009; Romanello et al., 2005). Thus, at low level of 
mechanical stimulation, bone cells release ATP mainly through vesicular 
exocytosis, in amounts proportional to the level of mechanical 
stimulation. 

Physical forces that are large but not structurally damaging to the 
bone, such as those experienced during strenuous exercise, were shown 
to lead to micro-damage of the cells in the form of membrane tears, also 
called plasma membrane disruptions (PMD) (Mikolajewicz et al., 2018b; 
Terasaki et al., 1997; Yu et al., 2018). These PMDs do not lead to cell 
death and are repairable via Ca2+/PLC/PKC-dependent vesicular 
exocytosis which occurs within 60s of stimulus (Lopez-Ayon et al., 2014; 
Mikolajewicz et al., 2018b; Terasaki et al., 1997; Yu et al., 2018). ATP is 
spilled through the PMDs in amounts proportional to the damage 
(Mikolajewicz et al., 2018b; Rumney et al., 2012), however, cell repair, 
via vesicular exocytosis and membrane tension forces, limits the spillage 
of ATP, so that overall ATP release depends both on the degree of 
damage and the cell capacity for repair (Hagan et al., 2020; Mikolaje
wicz et al., 2019; Mikolajewicz et al., 2018b). The amounts of ATP 
released through PMDs were estimated to lead to a dose-dependent 
release of 21 ± 11 to 422 ± 97 amol ATP/cell, approaching 1/3 of 
total ATP content in the cell (Mikolajewicz et al., 2018b). Thus, at in
termediate ranges of force, ATP released is proportional to the stimulus 
applied but inversely proportional to the cell capacity for repair. 

Physical forces beyond the load-bearing capacity of the skeleton can 
occur in traumatic situations, or in high-intensity environments, as seen 
in athletes and military personnel. These forces result in tissue damage 
and bone fractures, which are associated with cellular destruction and 
spillage of cellular contents into the extracellular environment. ATP is 
present in the cell in mM concentrations (Ataullakhanov and Vitvitsky, 
2002), therefore large amounts of ATP are released into the surrounding 
tissues, proportional to the number of irreversibly damaged cells. 
(Kringelbach et al., 2014). The amount of ATP release due to high forces 
can be estimated to be between 50 and 500 amol ATP/cell (Table 1) to 
complete release of ATP content – 2.6–9.5 fmol ATP/cell (Mikolajewicz 
et al., 2018a). Extracellular ATP has been implicated in fracture healing 
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(Hayton et al., 2005; Leung et al., 1989; Manaka et al., 2015). ATP in 
large amounts also serves as a danger signal, or danger-associated mo
lecular pattern (DAMP) molecule, to the neighboring cells (Burnstock 
and Verkhratsky, 2012), resulting in pain and inflammation (Inoue, 
2022). Thus, high levels of extracellular ATP reflect the damaging ca
pacity of physical forces. 

Overall, ATP release through different mechanisms engaged at 
different levels of mechanical stimulation allows to establish a signal 
that is proportionally and strongly increasing with an increase in the 
stimulus. Importantly, ATP release exhibits large increases in amplitude 
when significant physiologically damaging thresholds are reached, such 
as when force increases in size to damage a cell membrane and when it 
further increases to irreversibly destroy the cells. 

3. ATP diffusion and transformation to ADP indicates the 
proximity to the damaging event 

When ATP is released from mechanically-stimulated or damaged 
cells, the contents of vesicles in case of vesicular release, or cytoplasm in 
case of membrane injury are also released into the extracellular envi
ronment. Generally, the intracellular ATP concentration is 10 times 
higher than that of ADP, and 100 times higher than the concentrations of 
AMP or adenosine (Ataullakhanov and Vitvitsky, 2002). Therefore, 
initially ATP is the most abundant extracellular mediator that diffuses 
through the environment delivering information about the mechanical 
event to neighboring cells that did not directly experience the me
chanical forces. As ATP diffuses, it is gradually degraded by 

ectonucleotidases, resulting in the simultaneous reduction of ATP- 
mediated signaling and production of other bio-active purines, mainly 
ADP and adenosine. Thus, spatiotemporal distance from the site of 
mechanical stimulation coincides with changes in the composition of 
signaling mediators (Fig. 2). We propose that the combination of ATP 
and ADP-mediated signals communicate information about force prox
imity and magnitude to neighboring cells. 

The fate of extracellular ATP is determined by the type and activity of 
the ATP degrading enzymes. In osteoblast cultures, the half-life of ATP 
has been measured to be between 5 and 20 min (Mikolajewicz et al., 
2019; Orriss et al., 2009; Wang et al., 2013). The key families of enzymes 
that degrade ATP include ecto-nucleoside triphosphate diphosphohy
drolases (NTPDases) that convert ATP to ADP and ADP to AMP; ecto- 
nucleotide pyrophosphatase/phosphodiesterases (NPPs) that convert 
ATP to AMP, and ecto-5′-nucleotidase (eN) that degrades AMP to 
adenosine (Giuliani et al., 2020; Zimmermann et al., 2012) (Table 2). 
Two other enzymes that degrade nucleotides are alkaline phosphatase 
(ALP) and tartrate-resistant acid phosphatase (TRAP), highly expressed 
by osteoblasts and osteoclasts, respectively (Zimmermann et al., 2012). 
Several studies have examined the expression of purine nucleotide- 
degrading enzymes on bone cells. Osteoblasts express NTPDase 1–6 
(Orriss et al., 2015; Yegutkin, 2008), NPP1–3 (Orriss et al., 2015; 
Vaingankar et al., 2004), and eN (Orriss et al., 2015; Takedachi et al., 
2012), as well as ALP that was strongly implicated in ATP degradation 
(Mikolajewicz et al., 2019). Osteoclasts express NTPDase 1 and 3 (Haj
jawi et al., 2014; Shih et al., 2019), NPP1 and 3 (Hajjawi et al., 2014), 
and eN (Shih et al., 2019). In osteocytes, few studies have examined 
ATP-degrading enzymes, however, osteocytes do degrade extracellular 
ATP and other nucleotides (Gibson and Fullmer, 1966), and express at 
least NPP1 (Hajjawi et al., 2014) and TRAP (Dallas et al., 2013; Solberg 
et al., 2014). Overall, the profile of nucleotides will depend on the af
finity and efficacy of the specific nucleotidases present on cells neigh
boring the site experiencing mechanical forces. The cell composition at 
different sites can be complex and is not limited to bone cells, but also 
can include other tissues, such as bone marrow and vasculature. More 
studies are needed to characterize the extracellular metabolism of pu
rine nucleotides and ligand availability for P2 receptor signaling in the 
complex in situ environment. 

ATP released in response to mechanical stimulation diffuses through 
the extracellular environment (Jørgensen et al., 2002; Mikolajewicz 
et al., 2019; Mikolajewicz et al., 2018b). The distance covered by ATP 
will depend on the amount released, and thus the severity and extent of 
the mechanical stimulus. In addition, diffusion distance also depends on 
the geometry of the injury (Mikolajewicz et al., 2019) and the con
straints of the environment, as diffusion through bone tissue is slower 
than through fluids of the lacuna-canalicular network, bone marrow, or 
vasculature (Fernández-Seara et al., 2002). As ATP is actively degraded, 
ADP, AMP and adenosine are gradually generated and diffuse through 
the environment with their characteristic diffusion coefficients, thereby 
achieving faster diffusion due to lower molecular weight. Overall, cells 
that are near the site of mechanical stimulation will mainly receive ATP 
as the mechanotransductive signal (Fig. 2). If the magnitude of stimu
lation is low, ATP diffusion will quickly dissipate the signal, and ADP 

Fig. 1. ATP release reflects the cell 
damaging capacity of physical forces. 
During normal use, low forces acting on 
bone result in vesicular release of ATP. With 
increase in forces during loading, such as 
exercise, bone cells undergo micro-damage 
in the form of reversible plasma membrane 
tears and spill intracellular ATP. In this case, 
amount of released ATP also depends on the 
cell ability to repair, which limits the 
spillage. Overload to the skeleton leading to 

tissue damage, results in the release of total cellular ATP content in amounts proportional to the number of destroyed cells.   

Table 1 
Estimated ATP release from bone cells. Given are examples of studies 
measuring ATP release from mechanically-stimulated bone cells, in which suf
ficient information was given to recalculate the values to the common scale.  

Study Cells Stimulus Cell 
damage 

ATP release 
(mol/cell) 

Unstimulated release 
(Romanello et al., 

2001) 
Osteoblast None No 4.2E-18 

(Genetos et al., 2005) Osteoblast None No 2.5E-17 
(Romanello et al., 

2005) 
Osteoblast None n/d 1.0E-18 

Low stimulation 
(Genetos et al., 2005) Osteoblast LFF no 2.3E-16 
(Wang et al., 2013) Osteoblast TFF No 3.2E-17 
(Romanello et al., 

2005) 
Osteoblast Hypotonic n/d 4.9E-18 

(Kringelbach et al., 
2015) 

Osteocyte LFF low n/d 1.7E-18 

(Mikolajewicz et al., 
2018b) 

Osteoblast TFF low Low 2.1E-17 

High stimulation 
(Kringelbach et al., 

2015) 
Osteocyte LFF high n/d 5.1E-17 

(Mikolajewicz et al., 
2018b) 

Osteoblast TFF high High 4.2E-16 

(Mikolajewicz et al., 
2018b) 

Osteoblast Poke Yes 7.0E-17  
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produced from ATP degradation will not be sufficiently high to stimulate 
an ADP-dependent P2 response, as ATP is an order of magnitude more 
potent in inducing cellular responses compared to ADP (Mikolajewicz 
et al., 2019). However, in cases of injury (Fig. 2), ATP diffusion and 
degradation will produce enough ADP to contribute to downstream 
signaling in neighboring cells at intermediate distances from the site of 
severe injury. 

Thus, ATP and its degradation products provide spatiotemporal in
formation about the degree of injury and the proximity of the receiver 
cell to the site of injury. In addition, the cellular composition of the 
environment through which purines diffuse has the potential to alter the 
signal arriving at distant neighbors, such as neurons and immune cells. 

4. P2 receptors form a complex signal integration network 

When ATP and ADP reach the receiver cell, they act on the purinergic 
P2 receptor family. There are 7 ligand-gated P2X receptors (P2X1–7) and 
8 G-protein coupled P2Y receptors (P2Y1,2,4,6,11–14). While P2X re
ceptors are sensitive to ATP only, P2Y receptors exhibit a range of 
subtype-specific sensitivities to different purines and pyrimidines, 

including ATP, ADP, UTP, UDP, and UDP-glucose (Illes et al., 2021; 
Jacobson et al., 2020; von Kügelgen, 2021). P2Y receptors are further 
divided into two subgroups based on their sequence alignment and 
pharmacology. P2Y1-like receptors comprising P2Y1, P2Y2, P2Y4, P2Y6, 
and P2Y11, couple to Gq resulting in the activation of phospholipase C 
(PLC) (Jacobson, 2013). The P2Y11 receptor also couples to Gs, resulting 
in activation of cAMP. P2Y12-like receptors that include P2Y12, P2Y13, 
and P2Y14 couple to Gi, leading to inhibition of cAMP (Jacobson, 2013). 
Bone cells have been shown to express all 15 P2 receptors by osteoblasts 
and osteoclasts of different origins and/or at different stages of their 
differentiation (Orriss et al., 2010; Reyes et al., 2011). 

The affinity for ATP varies widely among purinergic receptors, 
covering eight orders of magnitude of ATP concentrations (Grol et al., 
2013; Xing et al., 2016). Of interest, most P2 receptors are tuned to 
exhibit maximal sensitivity to changes in [ATP] over a concentration 
range of 10 nM – 100 μM [ATP], after which there is a single low-affinity 
receptor P2X7 that is sensitive to changes in ATP in the mM range 
(Fig. 3). Importantly, many P2 receptors interact, either by directly 
forming heterodimers (Brown et al., 2002; Nakata et al., 2005; Palygin 
et al., 2010), or indirectly through downstream signaling (Mikolajewicz 

Fig. 2. Proximity and strength of mechanical stimulus is encoded by variable purine compositions due to ATP diffusion and degradation. ATP released 
during mechanical stimulation diffuses into the environment, where it is degraded by ectonucleotidases into ADP and adenosine, which in turn continue to diffuse 
and undergo degradation. Depending on the distance from the source and on the magnitude of mechanical stimulation, receiver cells, including immediately 
neighboring and distant bone cells, as well as mesenchymal stem cells (MSCs), neurons and immune cells, will receive different combination of purinergic mediators. 

Table 2 
Expression of ectonucleotidases degrading ATP and ADP in bone cells. The list of ectonucleotidases is based on (Zimmermann et al., 2012). Symbols indicate the 
following: +++: highly expressed; ++ moderately expressed; + expressed; - not expressed; ↓ (down arrow) expressed then decreased.  

Family name Protein name Substrates Osteoblasts Osteoclasts Osteocytes 

Ecto-nucleoside triphosphate 
diphosphohydrolase 

NTPDase1 
(CD39) 

ATP, ADP þ (Orriss et al., 2015) + (Hajjawi et al., 2014; Shih et al., 
2019) 

+ (Hajjawi et al., 2014) 

NTPDase2 ATP, less 
ADP 

+ (Orriss et al., 2015) − (Hajjawi et al., 2014)  

NTPDase3 ATP, ADP + (Orriss et al., 2015) + (Hajjawi et al., 2014)  
NTPDase4 Less ATP, 

ADP 
+++ (Orriss et al., 2015;  
Yegutkin, 2008)   

NTPDase5 ADP +++ (Orriss et al., 2015;  
Yegutkin, 2008)   

Ecto-5′-nucleotidase eN (CD73) AMP ++ (Orriss et al., 2015;  
Takedachi et al., 2012) 

++ (Shih et al., 2019) ++ (Gibson and Fullmer, 
1966) 

Ecto-nucleotide pyrophosphatase/ 
phosphodiesterase 

NPP1 ATP, ADP +++ (Orriss et al., 2015;  
Vaingankar et al., 2004) 

+ (Hajjawi et al., 2014)  

NPP2 ATP, ADP + (Orriss et al., 2015) − (Hajjawi et al., 2014)  
NPP3 ATP, ADP ++ (Orriss et al., 2015) +↓ (Hajjawi et al., 2014)  

Alkaline phosphatase TNAP ATP, ADP, 
AMP 

++ (Orriss et al., 2015)   

TRAP TRAP ATP, ADP ++ (Solberg et al., 2014) +++ (Kaunitz and Yamaguchi, 
2008; Oddie et al., 2000) 

++ (Dallas et al., 2013;  
Solberg et al., 2014)  
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et al., 2021). One of the most prominent P2 downstream signals is a 
transient elevation of [Ca2+]i, which has a complex [ATP] dependence 
(Grol et al., 2013; Mikolajewicz et al., 2021). The amplitude of [Ca2+]i 
elevation has a non-monotonic dependence on [ATP], which was 
attributed to the interactions between high affinity and intermediate or 
low-affinity receptors (Mikolajewicz et al., 2021; Xing et al., 2016). In 
addition, the duration of [Ca2+]i elevation exhibits a sigmoidal [ATP] 
dependence, due to P2X7 activation (Grol et al., 2013; Xing et al., 2016). 
Consequently, there are two ranges of [ATP] where P2 stimulation re
sults in pronounced increases in the cumulative amount of [Ca2+]i 
during the signaling event (i.e., the area under the calcium response): 
first at low [ATP], which can be considered a sensitivity threshold, and 
second at high [ATP] corresponding to tissue damage – an injury 
threshold (Grol et al., 2013; Xing et al., 2016). Moreover, P2-mediated 
responses to intermediate 0.1–10 μM [ATP] exhibit highly oscillatory 
dynamics, that changes with an increase in [ATP] (Mikolajewicz et al., 
2021). Cyclic AMP (cAMP) is another prominent secondary messenger 
downstream of P2Y receptors, however, it has been less studied in the 
context of bone cell mechanotransduction. Thus, different P2 receptors 
interact to form complex concentration dependencies that i) are sensi
tive to a wide range of [ATP] and ii) modulate the downstream signaling 
signature and response. 

Given that P2 receptors function in a complex network rather than 
individually, it is difficult to decipher specific roles and identify distinct 
attributes of each P2 receptor (Table 3). Moreover, almost every mouse 
model harboring a P2 receptor knockout demonstrates an altered bone 
phenotype (Orriss et al., 2011a). We have mapped the findings from 
knockout studies to specific aspects of osteoblast and osteoclast function 
(Fig. 3). Overall, it is evident that ATP is stimulatory for both osteoclast 
and osteoblast formation and function but is not strongly implicated in 
bone cell survival. When individual receptors are deleted, such as P2Y2 

(Orriss et al., 2017; Orriss et al., 2007), the phenotype of bone gain is 
commonly observed, suggesting that osteoclast regulation by ATP is 
critical for mechanotransductive bone adaptation. This highlights the 
importance of studies of osteoclast regulation by mechanical forces. 
While osteoclasts are generally not considered to be the main targets/ 
responders to loading, these cells are recognized as drivers of bone loss 
in response to unloading. Of interest, ADP receptors, P2Y1, P2Y12, and 
P2Y13, have been more strongly implicated in bone formation, compared 
to ATP receptors, even though these receptors were shown to be 
important for both osteoclasts and osteoblasts (Biver et al., 2013; Orriss 
et al., 2011b; Su et al., 2012; Wang et al., 2012; Wang et al., 2014). P2Y1 
knockout (Orriss et al., 2011b) and P2Y13 (Wang et al., 2012) resulted in 
bone loss, and in some studies, a similar phenotype was observed after 
treating mice with P2Y12-targeting drug clopidogrel (Syberg et al., 
2012); however, conflicting results were seen in other studies, likely due 
to the combination of osteoclast- and osteoblast-mediated changes 
(Mediero et al., 2016; Su et al., 2012). Nevertheless, these findings 
suggest that ADP-sensitive P2 receptors, all having EC50 in the inter
mediate range of ATP/ADP values (Fig. 3), play a role in bone adapta
tion. Finally, the low-affinity ATP receptor P2X7 has an important role in 
bone repair and has been referred to as the repair receptor (Jørgensen, 
2018). Mice deficient in P2X7 had a significant delay in callus remod
eling following osteotomy (Li et al., 2009). In humans, a study con
ducted on military personnel and elite athletes showed that loss of 
function single nucleotide polymorphism (SNP) in P2X7 was associated 
with stress fractures, while gain of function SNP in P2X7 was associated 
with reduced fracture occurrence (Varley et al., 2016). P2X7 also plays a 
critical role in inflammation where it promotes pro-inflammatory fac
tors, such as IL-6 and TNF (Di Virgilio et al., 2017), and in pain re
sponses, where it acts as a positive mediator of pain (Hansen et al., 2011; 
Hughes et al., 2007). 

Fig. 3. Complex signals generated by purinergic receptors. A) Concentration dependence curves for ATP-sensitive P2X and P2Y receptors (top, reproduced with 
modifications with permission from Xing et al. (2016)), ADP-sensitive P2Y receptors (middle, plotted based on data from (Dsouza and Komarova, 2021; Ennion et al., 
2004; Léon et al., 1997)) and adenosine sensitive P1 receptors (bottom, plotted based on data from (Fredholm, 2007)). Shaded areas represent approximate ranges of 
ATP (top) and ADP (middle) concentrations released during different levels of mechanical stimulation. B) Venn diagram depicting the role of purinergic receptors in 
osteoblast (top) and osteoclast (bottom) formation, activity and survival identified in knock-out studies (Biver et al., 2013; Chessell et al., 2005; Gartland et al., 2003; 
Ke et al., 2003; Kim et al., 2017; Orriss et al., 2011a; Su et al., 2012; Wang et al., 2012; Wang et al., 2014). C) Examples of complex signaling features generated by P2 
receptors. (Top) Area under the curve of calcium responses of osteoblasts to increasing concentration of ATP (Reproduced with permission: Grol et al. (2013) 
(Bottom) ATP and ADP dose dependence of the amplitude of osteoblast calcium responses. Inserts: prevalent patterns of calcium responses (adapted with permission 
from Mikolajewicz et al. (2019) and Mikolajewicz et al. (2021)). 
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Overall, we suggest that P2 receptors present on an individual cell 
interact at multiple levels to generate a concerted signal that integrates 
the information regarding ATP- and ADP- concentrations in the 
environment. 

5. Termination of ATP-induced signals by adenosine 

Extracellularly, adenosine is primarily formed as a result of ecto-5′- 
nucleotidase (eN) action on adenine nucleotides (Colgan et al., 2006; 
Fredholm, 2014; Strazzulla and Cronstein, 2016), and secondarily to 
reactions catalyzed by NTPDase1, NPP-1 and ALP (Strazzulla and 
Cronstein, 2016). Adenosine is also produced intracellularly from AMP 
by soluble cytosolic 5′ nucleotidase (Cyto-5′NT) or used by adenosine 
kinase (ADK) to form AMP (Fredholm, 2014), which then is involved in 
energy metabolism (Ataullakhanov and Vitvitsky, 2002). In addition, 
adenosine participates in homocysteine metabolism, where it can be 
produced together with L-homocysteine from S-adenosyl-L-homocyste
ine (SAH) by SAH hydrolase (Lee et al., 2001). Adenosine is degraded to 
inosine by adenosine deaminases (ADA) both intracellularly and extra
cellularly. Adenosine, as well as inosine, can be directly released from or 
taken up by the cells through equilibrative nucleoside transporters 
(ENTs), which strive to achieve equal intra-and extra-cellular nucleoside 
concentrations (Strazzulla and Cronstein, 2016; Young et al., 2008). 
Thus, adenosine in the extracellular environment can reflect both the 
degradation of extracellular purines as well as the state of cellular 

Table 3 
Roles of purinergic receptors in bone cells. Given are examples of demon
strated roles of purinergic receptors in the differentiation, function and survival 
of osteoblasts and osteoclasts, as well as the bone phenotype in knockout ani
mals where available.  

Type Agonists Osteoclasts Osteoblasts Knockout 
phenotype 

X1 ATP  ↓ mineralization ( 
Orriss et al., 
2012)  

X2 ATP ↑ resorption ( 
Morrison et al., 
1998) 

Transiently 
expressed during 
differentiation ( 
Orriss et al., 
2006)  

X3 ATP  Expressed (Orriss 
et al., 2012;  
Zippel et al., 
2012)  

X4 ATP ↑ resorption ( 
Naemsch et al., 
1999) 

↑ mature 
osteoblasts (Orriss 
et al., 2012)  

X5 ATP ↑ maturation/ 
fusion (Kim et al., 
2017) 

↑ proliferation ( 
Nakamura et al., 
2000; Orriss 
et al., 2006), ↑ 
response to PDGF, 
IGF-1 (Kim et al., 
2017) 

Protected from 
inflammation 
related bone loss 
(Kim et al., 
2017) 

X6 ATP  Adipogenic 
lineage 
commitment ( 
Zippel et al., 
2012)  

X7 ATP ↑ maturation/ 
fusion (Agrawal 
et al., 2010), ↑↓ 
resorption ( 
Gartland et al., 
2003; Hazama 
et al., 2009;  
Wang et al., 2018) 
↑↓ survival ( 
Miyazaki et al., 
2012; Penolazzi 
et al., 2005) 

↑ differentiation ( 
Noronha-Matos 
et al., 2014; Sun 
et al., 2013), ↑↓ 
mineralization ( 
Noronha-Matos 
et al., 2014;  
Orriss et al., 2012; 
Panupinthu et al., 
2007; Sun et al., 
2013), ↑↓ survival 
(Adinolfi et al., 
2012; Young 
et al., 2018) 

Pfizer model (Ke 
et al., 2003): ↓ 
BMD, ↑ 
trabecular 
resorption, ↓ 
periosteal 
formation 
GSK model ( 
Chessell et al., 
2005; Gartland 
et al., 2003): 
↑ cortical 
thickness, 

Y1 ADP >
ATP 

↑ formation, ↑ 
resorption ( 
Hoebertz et al., 
2001) 

↑ proliferation ( 
Alvarenga et al., 
2010; Rodrigues- 
Ribeiro et al., 
2015), ↑ response 
to systemic 
factors (Bowler 
et al., 1999;  
Buckley et al., 
2001) 

↓ BMD, ↓ 
trabecular 
number (Orriss 
et al., 2011a) 

Y2 ATP =
UTP 

↑ resorption ( 
Orriss et al., 
2017) 

↑ proliferation ( 
Katz et al., 2011), 
↑ Runx2 (Costessi 
et al., 2005), ↓ 
mineralization ( 
Hoebertz et al., 
2002) 

↑ BMD (Orriss 
et al., 2011b;  
Orriss et al., 
2017) 

Y4 UTP >
ATP 

No effect ( 
Jørgensen et al., 
2002) 

Interaction with 
P2Y2 (Orriss 
et al., 2006)  

Y6 UDP> >

ATP 
↑ formation, ↑ 
resorption (Orriss 
et al., 2011a), ↑ 
survival (Korcok 
et al., 2005) 

↑ proliferation ( 
Alvarenga et al., 
2010), ↑↓ 
differentiation ( 
Ayala-Peña et al., 
2013; Orriss 
et al., 2006) 

↑ BMD (Orriss 
et al., 2011a) 

Y11 ATP  Adipogenic 
lineage   

Table 3 (continued ) 

Type Agonists Osteoclasts Osteoblasts Knockout 
phenotype 

commitment ( 
Zippel et al., 
2012) 

Y12 ADP> >

ATP 
↑ adhesion, ↑ 
resorption (Su 
et al., 2012) 

↑ proliferation ( 
Syberg et al., 
2012) ↑↓ 
differentiation ( 
Mediero et al., 
2016; Syberg 
et al., 2012) 
↑ survival (Syberg 
et al., 2012) 

Protected from 
bone loss related 
to arthritis, 
tumor growth 
and ovariectomy 
(Su et al., 2012) 

Y13 ADP >
ATP 

↑ formation, ↓ 
RANKL/OPG by 
osteoblasts (Wang 
et al., 2012) 

Lineage 
commitment ( 
Biver et al., 2013), 
↑ differentiation ( 
Biver et al., 2013;  
Wang et al., 2012; 
Wang et al., 2013) 

Age-dependent ↓ 
bone turnover ( 
Biver et al., 
2013; Wang 
et al., 2012;  
Wang et al., 
2014) ↑ 
osteogenic 
response to 
loading (Wang 
et al., 2014) 

A1 Adenosine ↑ differentiation ( 
He and Cronstein, 
2012; He et al., 
2013; Kara, Chitu, 
et al., 2010) 

May favor MSC- 
adipocyte 
differentiation ( 
Gharibi et al., 
2012) 

↑ BMD (Kara, 
Doty, et al., 
2010) 

A2A Adenosine ↓ differentiation ( 
Mediero et al., 
2012b) 

↑ viability ( 
Vincenzi et al., 
2013), ↑ 
proliferation ( 
Katebi et al., 
2009)  

A2B  Adenosine  ↓ differentiation ( 
He and Cronstein, 
2012) 

↑ differentiation ( 
Takedachi et al., 
2012; Trincavelli 
et al., 2014) 

↓ BMD (Carroll 
et al., 2012), ↓ 
Tb.N, ↓ bone 
formation rate ( 
Corciulo et al., 
2016) 

A3 Adenosine ↓ differentiation ( 
Rath-Wolfson 
et al., 2006) 

↑ proliferation ( 
Costa et al., 2011)   
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metabolism (Fig. 4A). 
At resting state extracellular adenosine levels are generally in the 

nanomolar range with reports ranging from 1.4 to 2000 nM in human 
plasma (Ramakers et al., 2008), with a similarly wide range 0.8–2100 
nM in the intracerebral extracellular space (Ballarin et al., 1991; Fred
holm, 2014; van der Mierden et al., 2018). Measuring endogenous 
adenosine concentrations can be technically difficult (Lofgren et al., 
2018; Ramakers et al., 2008), and it was suggested that true physio
logical levels are likely at the lower side of the measured spectrum, at 
10–30 nM (Lofgren et al., 2018). In pathological states following tissue 
damage adenosine was shown to rise well above 1 μM (10–1000-fold 
from basal levels under hypoxia) (Fredholm, 2014; Yegutkin, 2021). The 
characteristics of adenosine-processing enzymes suggest that at physi
ological concentrations adenosine is mostly used in cellular metabolism 
since ADK requires low concentrations of adenosine (Michaelis constant 
(Km) for ADK is ~40 nM (Spychala et al., 1996)). However, when 
adenosine levels increase, another adenosine processing enzyme, ADA 
becomes strongly involved, since it is activated at higher concentration 
of adenosine (Km for ADA is more than 40 μM (Spychala, 2000; Yegut
kin, 2021), at least three orders of magnitude higher than that for ADK). 
Though local variations in adenosine levels were extensively studied in 
the brain and cardiovascular system, much less is known about the bone 
microenvironment. 

Adenosine activates a family of G protein-coupled receptors known 
as P1 receptors or adenosine receptors (AR) (Ralevic and Burnstock, 
1998). Four P1 receptors are currently recognized, A1, A2A, A2B, and A3. 
A1 and A3 act by inhibiting cyclic AMP (cAMP) production and 
decreasing protein kinase A activity, whereas both A2 receptors stimu
late cAMP (Eisenstein et al., 2020; Sheth et al., 2014). Similar to P2 
receptors, P1 receptors cover a significant range of concentrations. A1 
and A3 are activated by adenosine at low concentrations – 0.18 - 0.53 μM 
(Fredholm, 2007; Fredholm et al., 2001). A2A has a slightly lower af
finity and is activated by 0.56–0.95 μM adenosine, while A2B is only 
activated at very high adenosine levels, 16.2–64.1 μM adenosine 
(Fredholm, 2007; Fredholm et al., 2001). In bone, all four ARs were 
found to be expressed on mature osteoclast and osteoblasts as well as 
their precursors (Ham and Evans, 2012; Mediero and Cronstein, 2013; 
Strazzulla and Cronstein, 2016). A1 was reported to strongly stimulate 

osteoclastogenesis (He et al., 2013; Kara et al., 2010a; Kara et al., 
2010b), while its role in osteoblast formation is less clear, even though it 
was shown to promote the osteogenic commitment of mesenchymal 
stem cells (D'Alimonte et al., 2013). A3 was reported to inhibit osteo
clastogenesis (Rath-Wolfson et al., 2006) and stimulate osteoblast dif
ferentiation (Costa et al., 2011; Evans et al., 2006). A2A was shown to 
inhibit osteoclast differentiation and function (Mediero et al., 2012a; 
Mediero et al., 2012b), and to promote bone regeneration (Mediero 
et al., 2015). This receptor is also well established in vasculature as a 
modulator of vascular tone and blood flow (Khayat and Nayeem, 2017; 
Tabrizchi and Bedi, 2001), therefore its angiogenic properties can also 
promote bone formation and help in the early stages of fracture healing 
(Wang et al., 2021). The low-affinity A2B receptor has been implicated as 
the strong promoter of osteoblast differentiation (Carroll et al., 2012; 
Trincavelli et al., 2014). AR knockout animal models have been studied 
in A1 and A2B, where opposite phenotypes, bone gain and bone loss 
respectively, were found (Fig. 3). Thus, the adenosine receptors have a 
dynamic range of functions within the bone microenvironment and have 
diverse roles in bone homeostasis. 

It is somewhat difficult to conceptualize the action of AR on bone 
cells. A1, A2A, and A3 receptors are activated in the same range of 
adenosine concentrations but produce distinct and contrary signals. A1 
and A3 inhibit cAMP production, but A2A stimulates cAMP. Although A1 
and A3 both inhibit cAMP, A1 stimulates while A3 inhibits osteoclast 
differentiation. One potential explanation could be in the context of 
adenosine stimulation. Adenosine increases in the extracellular envi
ronment can occur due to two distinct processes – degradation of 
extracellular ATP or changes in cellular metabolism. Furthermore, in the 
context of cellular metabolism, adenosine levels can rise due to prob
lems with bioenergetics or due to alterations in homocysteine meta
bolism, both of which are regulated independently. Thus, it is possible 
that these P1 receptors respond to adenosine in a context-dependent 
manner, allowing for cells to distinguish between mechano
transductive and bioenergetic mechanisms of adenosine elevation. For 
example, if adenosine increases due to the degradation of extracellular 
ATP, then activation of P1 receptors will be accompanied by activation 
of P2 receptors. In contrast, if adenosine increases intracellularly due to 
deficiency in bioenergetics, then simultaneously other changes in the 

Fig. 4. Adenosine signaling may differentiate between different mechanical and metabolic stressors. A) Extracellular adenosine can be produced through 
degradation of extracellular ATP, or through release of intracellular adenosine that is formed in the pathways of energy metabolism or homocysteine metabolism. 
ADK; Adenosine kinase, ADA; Adenosine deaminase, Cyto 5′-NT; cytosolic 5′ nucleotidase, eN; Ecto-5′-nucleotidase, SAH; S-adenosyl-homocysteine. B) Adenosine 
profile as well as the presence of other metabolites reflect distinct states. Top: illustrated in the case of ongoing injury characterized by continuous presence of both 
ATP and adenosine. Middle: in the case of resolved injury, ATP signal stops, while adenosine produced from previously present ATP remains to signal the start of 
resolution phase. Bottom: the profile of adenosine released due to metabolic stresses likely has lower but more persistent profile compared to bolus production 
following mechanical stimulation. 
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microenvironment will occur, such as changes in pH, oxygen, glucose, or 
lactate (Ataullakhanov and Vitvitsky, 2002; Tiedemann et al., 2020). 
Homocysteine regulation will be similarly linked to unique alterations in 
the respective metabolites. In this regard, adenosine receptors are 
known for the complexity of the regulatory layers, including the for
mation of homo-and heterodimers with other receptors; allosteric 
regulation, as well as biased agonism (Vecchio et al., 2018). A2A receptor 
was recently shown to be strongly regulated by cations (Ye et al., 2018), 
and P1 and P2 receptors were shown to exhibit functional crosstalk 
(Morales et al., 2000). In the context of injury, adenosine was suggested 
to act as a termination signal with anti-inflammatory and pain-relieving 
capacities in some cases, while serving as a pro-inflammatory mediator 
in others (Antonioli et al., 2019; Blackburn et al., 2009; Jung et al., 
2022). It is possible that these differences are related to the presence of 
ATP- and ADP-mediated signals: While the injury is ongoing, the 
simultaneous presence of ATP and adenosine are indicative of a serious 
and continuous problem that has lasted for a sufficient time for adeno
sine accumulation. In contrast, when the injury is terminated and ATP is 
no longer released in the environment, ADP and then adenosine become 
the last injury-related signals in the environment, and therefore signal 
the beginning of the resolution of inflammation, pain, and active 
healing. 

6. Conclusions 

We present a conceptual model of concerted action of purinergic 
receptors providing information to the receiver cells regarding the de
gree of and proximity to the site experiencing physical forces. We sug
gest that ATP released in response to a variety of physical forces is 
proportional to their cell-damaging capacity. We propose that 
mechanically-stimulated ATP release acts as a signal to the neighboring 
non-wounded cells. The amplitude of ATP allows cells to distinguish 
between small non-damaging forces and large detrimental forces. The 
total amount of ATP release reflects the magnitude of the force, while 
the stimulated cell's ability to repair limits further ATP release. The 
presence of an ADP component in the signal suggests proximity to the 
site where the large forces were applied, which is a positive signal to 
stimulate mechanoadaptation. Adenosine may indicate a serious 
ongoing issue when it occurs together with ATP, or it can serve as a 
termination signal if ATP is no longer present. Importantly, the prop
erties of P2 and P1 receptors indicate that responses are not dichoto
mous, but rather graded, so that the information conveyed is complex 
and nuanced. The difficulty with interpreting knockout studies confirms 
that this system should be approached holistically, rather than as a sum 
of components. While we focused on the role of ATP-mediated signals in 
bone, this purinergic system is prevalent across a variety of cellular 
systems such as the brain, skeletal muscle, bladder, liver, and lungs, as 
well as other organs where mechanical forces are important in the 
regulation and maintenance of tissue health. The conceptual model 
presented in this manuscript consolidates the knowledge regarding the 
individual components of the purinergic system into a conceptual 
framework of choreographed responses to physical forces, intended to 
inform novel hypotheses for future studies. 
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Léon, C., Hechler, B., Vial, C., Leray, C., Cazenave, J.P., Gachet, C., 1997. The P2Y1 
receptor is an ADP receptor antagonized by ATP and expressed in platelets and 
megakaryoblastic cells. Feb 10 FEBS Lett. 403 (1), 26–30. https://doi.org/10.1016/ 
s0014-5793(97)00022-7. 

Leung, K.S., Sher, A.H., Lam, T.S., Leung, P.C., 1989. Energy metabolism in fracture 
healing. Measurement of adenosine triphosphate in callus to monitor progress. Aug 
J. Bone Joint Surg. Br. 71 (4), 657–660. https://doi.org/10.1302/0301- 
620x.71b4.2768316. 

Li, J., Liu, D., Ke, H.Z., Duncan, R.L., Turner, C.H., 2005. The P2X7 nucleotide receptor 
mediates skeletal mechanotransduction. Dec 30 J. Biol. Chem. 280 (52), 
42952–42959. https://doi.org/10.1074/jbc.M506415200. 

Li, J., Meyer, R., Duncan, R.L., Turner, C.H., 2009. P2X7 nucleotide receptor plays an 
important role in callus remodeling during fracture repair. May Calcif. Tissue Int. 84 
(5), 405–412. https://doi.org/10.1007/s00223-009-9237-7. 

Li, Y., Luo, Y., Huang, K., Xing, J., Xie, Z., Lin, M., Yang, L., Wang, Y., 2013. The 
responses of osteoblasts to fluid shear stress depend on substrate chemistries. Nov 1 
Arch. Biochem. Biophys. 539 (1), 38–50. https://doi.org/10.1016/j. 
abb.2013.09.005. 

Lofgren, L., Pehrsson, S., Hagglund, G., Tjellstrom, H., Nylander, S., 2018. Accurate 
measurement of endogenous adenosine in human blood. PLoS One 13 (10), 
e0205707. https://doi.org/10.1371/journal.pone.0205707. 

Lopez-Ayon, G.M., Liu, H.Y., Xing, S., Maria, O.M., LeDue, J.M., Bourque, H., Grutter, P., 
Komarova, S.V., 2014. Local membrane deformation and micro-injury lead to 
qualitatively different responses in osteoblasts. F1000Res 3, 162. https://doi.org/ 
10.12688/f1000research.4448.1. 

Lynch, M.E., Fischbach, C., 2014. Biomechanical forces in the skeleton and their 
relevance to bone metastasis: biology and engineering considerations. Dec 15 Adv. 
Drug Deliv. Rev. 79–80, 119–134. https://doi.org/10.1016/j.addr.2014.08.009. 

Manaka, S., Tanabe, N., Kariya, T., Naito, M., Takayama, T., Nagao, M., Liu, D., Ito, K., 
Maeno, M., Suzuki, N., Miyazaki, M., 2015. Low-intensity pulsed ultrasound-induced 
ATP increases bone formation via the P2X7 receptor in osteoblast-like MC3T3-E1 
cells. Jan 30 FEBS Lett. 589 (3), 310–318. https://doi.org/10.1016/j. 
febslet.2014.12.013. 

Mediero, A., Cronstein, B.N., 2013. Adenosine and bone metabolism. Jun Trends 
Endocrinol. Metab. 24 (6), 290–300. https://doi.org/10.1016/j.tem.2013.02.001. 

Mediero, A., Frenkel, S.R., Wilder, T., He, W., Mazumder, A., Cronstein, B.N., 2012. 
Adenosine A2A receptor activation prevents wear particle-induced osteolysis. May 
23 Sci. Transl. Med. 4 (135), 135ra165. https://doi.org/10.1126/ 
scitranslmed.3003393. 

Mediero, A., Kara, F.M., Wilder, T., Cronstein, B.N., 2012. Adenosine A(2A) receptor 
ligation inhibits osteoclast formation. Feb Am. J. Pathol. 180 (2), 775–786. https:// 
doi.org/10.1016/j.ajpath.2011.10.017. 

Mediero, A., Wilder, T., Perez-Aso, M., Cronstein, B.N., 2015. Direct or indirect 
stimulation of adenosine A2A receptors enhances bone regeneration as well as bone 
morphogenetic protein-2. Apr FASEB J. 29 (4), 1577–1590. https://doi.org/ 
10.1096/fj.14-265066. 

Mediero, A., Wilder, T., Reddy, V.S., Cheng, Q., Tovar, N., Coelho, P.G., Witek, L., 
Whatling, C., Cronstein, B.N., 2016. Ticagrelor regulates osteoblast and osteoclast 
function and promotes bone formation in vivo via an adenosine-dependent 
mechanism. Nov FASEB J. 30 (11), 3887–3900. https://doi.org/10.1096/ 
fj.201600616R. 

Michael Delaine-Smith, R., Javaheri, B., Helen Edwards, J., Vazquez, M., Rumney, R.M., 
2015. Preclinical models for in vitro mechanical loading of bone-derived cells. 
Bonekey Rep. 4, 728. https://doi.org/10.1038/bonekey.2015.97. 

van der Mierden, S., Savelyev, S.A., IntHout, J., de Vries, R.B.M., Leenaars, C.H.C., 2018. 
Intracerebral microdialysis of adenosine and adenosine monophosphate - a 
systematic review and meta-regression analysis of baseline concentrations. Oct 
J. Neurochem. 147 (1), 58–70. https://doi.org/10.1111/jnc.14552. 

Mikolajewicz, N., Mohammed, A., Morris, M., Komarova, S.V., 2018. Mechanically 
stimulated ATP release from mammalian cells: systematic review and meta-analysis. 
Nov 21 J. Cell Sci. 131 (22). https://doi.org/10.1242/jcs.223354. 

Mikolajewicz, N., Zimmermann, E.A., Willie, B.M., Komarova, S.V., 2018. Mechanically 
stimulated ATP release from murine bone cells is regulated by a balance of injury 
and repair. Oct 16 elife 7. https://doi.org/10.7554/eLife.37812. 

Mikolajewicz, N., Sehayek, S., Wiseman, P.W., Komarova, S.V., 2019. Transmission of 
mechanical information by purinergic signaling. May 21 Biophys. J. 116 (10), 
2009–2022. https://doi.org/10.1016/j.bpj.2019.04.012. 

Mikolajewicz, N., Bishop, N., Burghardt, A.J., Folkestad, L., Hall, A., Kozloff, K.M., 
Lukey, P.T., Molloy-Bland, M., Morin, S.N., Offiah, A.C., Shapiro, J., van 
Rietbergen, B., Wager, K., Willie, B.M., Komarova, S.V., Glorieux, F.H., 2020. HR- 
pQCT measures of bone microarchitecture predict fracture: systematic review and 
meta-analysis. Mar J. Bone Miner. Res. 35 (3), 446–459. https://doi.org/10.1002/ 
jbmr.3901. 

Mikolajewicz, N., Smith, D., Komarova, S.V., Khadra, A., 2021. High-affinity P2Y2 and 
low-affinity P2X7 receptor interaction modulates ATP-mediated calcium signaling in 
murine osteoblasts. Jun PLoS Comput. Biol. 17 (6), e1008872. https://doi.org/ 
10.1371/journal.pcbi.1008872. 

Miyazaki, T., Iwasawa, M., Nakashima, T., Mori, S., Shigemoto, K., Nakamura, H., 
Katagiri, H., Takayanagi, H., Tanaka, S., 2012. Intracellular and extracellular ATP 
coordinately regulate the inverse correlation between osteoclast survival and bone 
resorption. Nov 2 J. Biol. Chem. 287 (45), 37808–37823. https://doi.org/10.1074/ 
jbc.M112.385369. 

Morales, B., Barrera, N., Uribe, P., Mora, C., Villalon, M., 2000. Functional cross talk 
after activation of P2 and P1 receptors in oviductal ciliated cells. Sep Am. J. Physiol. 
Cell Physiol. 279 (3), C658–C669. https://doi.org/10.1152/ajpcell.2000.279.3. 
C658. 

Morrison, M.S., Turin, L., King, B.F., Burnstock, G., Arnett, T.R., 1998. ATP is a potent 
stimulator of the activation and formation of rodent osteoclasts. Sep 1 J. Physiol. 511 
(Pt 2), 495–500. https://doi.org/10.1111/j.1469-7793.1998.495bh.x. 

Mullender, M., El Haj, A.J., Yang, Y., van Duin, M.A., Burger, E.H., Klein-Nulend, J., 
2004. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. 
Jan Med. Biol. Eng. Comput. 42 (1), 14–21. https://doi.org/10.1007/bf02351006. 

Naemsch, L.N., Weidema, A.F., Sims, S.M., Underhill, T.M., Dixon, S.J., 1999. P2X(4) 
purinoceptors mediate an ATP-activated, non-selective cation current in rabbit 
osteoclasts. Dec J. Cell Sci. 112 (Pt 23), 4425–4435. https://doi.org/10.1242/ 
jcs.112.23.4425. 

Nakamura, E., Uezono, Y., Narusawa, K., Shibuya, I., Oishi, Y., Tanaka, M., 
Yanagihara, N., Nakamura, T., Izumi, F., 2000. ATP activates DNA synthesis by 
acting on P2X receptors in human osteoblast-like MG-63 cells. Aug Am. J. Physiol. 
Cell Physiol. 279 (2), C510–C519. https://doi.org/10.1152/ajpcell.2000.279.2. 
C510. 

Nakata, H., Yoshioka, K., Kamiya, T., Tsuga, H., Oyanagi, K., 2005. Functions of 
heteromeric association between adenosine and P2Y receptors. J. Mol. Neurosci. 26 
(2–3), 233–238. https://doi.org/10.1385/jmn:26:2-3:233. 
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