

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di- μ -azido- $\kappa^4 N^1$: $N^{1'}$ -bis({1-[(*E*)-phenyl-(pyridin-2-yl- κN)methylidene]thiosemicarbazidato- $\kappa^2 N^1$,S}copper(II))

Roji J. Kunnath,^a M. R. Prathapachandra Kurup^a and Seik Weng Ng^{b,c}*

^aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 14 August 2012; accepted 14 August 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.134; data-to-parameter ratio = 18.3.

In the title compound, $[Cu_2(C_{13}H_{11}N_4S)_2(N_3)_2]$, the Cu^{II} cation is N,N',S-chelated by the deprotonated Schiff base ligand and is coordinated by the azide anion, while an N atom from an adjacent azide anion bridges the Cu^{II} cation at the apical position with a longer Cu-N distance of 2.533 (3) Å, completing the distorted N₄S square-pyramidal coordination geometry. A pair of azide anions bridge the two Cu^{II} cations, forming a centrosymmetric binuclear molecule. In the crystal, the binuclear molecules are linked by an N-H···N hydrogen bond into a ribbon running along the *a* axis.

Related literature

For the structure of the parent Schiff base, see: Casas et al. (2003).

13614 measured reflections

 $R_{\rm int} = 0.075$

3747 independent reflections

2973 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$[Cu_2(C_{13}H_{11}N_4S)_2(N_3)_2]$	V = 1496.5 (3) Å ³
$M_r = 721.78$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 11.2462 (12) Å	$\mu = 1.61 \text{ mm}^{-1}$
b = 7.2344 (10) Å	T = 295 K
c = 18.519 (2) Å	$0.35 \times 0.30 \times 0.25 \text{ mm}$
$\beta = 96.653 \ (5)^{\circ}$	

Data collection

Bruker Kappa APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.604, \ T_{\max} = 0.690$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.134$	independent and constrained
S = 1.04	refinement
3747 reflections	$\Delta \rho_{\rm max} = 0.54 \text{ e} \text{ Å}^{-3}$
205 parameters	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$
2 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H1\cdots N2^{i}$	0.87 (1)	2.22 (1)	3.075 (3)	168 (4)
Symmetry code: (i) -	$x_{1} - y + 1_{1} - z + 1_{2}$	1.		

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

RJK thanks the University Grants Commission (India) for a Junior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/ MOHE/SC/12) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5611).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Casas, J. S., Castellano, E. E., Ellena, J., Tasende, M. S. G., Sánchez, A., Sordo,
- J. & Vidarte, M. J. (2003). Inorg. Chem. 42, 2584-2595. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, m1195 [doi:10.1107/S1600536812035751]

Di- μ -azido- $\kappa^4 N^1$: N^1 '-bis({1-[(*E*)-phenyl(pyridin-2-yl- κN)methylidene]thio-semicarbazidato- $\kappa^2 N^1$,*S*}copper(II))

Roji J. Kunnath, M. R. Prathapachandra Kurup and Seik Weng Ng

Comment

2-Benzoylpyridine thiosemicarbazone (Casas *et al.*, 2003) is a Schiff base that is capable of N,N',S-chelation to metal ions. The Cu^{II} atom in [Cu(N₃)(C₁₃H₁₁N₄S)]₂ (Scheme I) is N,N',S-chelated by the deprotonated Schiff base, and it exists in a square pyramidal environment (Fig. 1). Two molecules are disposed about a center-of-inversion and the distance between the copper atom and their apical nitrogen atom of the other azide is 2.533 (3) Å. Adjacent inversion-related pairs of molecules are linked by an N–H···N hydrogen bond to form a ribbon running along the *a*-axis (Table 1).

Experimental

The Schiff base ligand by heating 2-benzoylpyridine (0.183 g,1 mmol) and thiosemicarbazide (0.091 g,1 mmol) for 3 h. Copper acetate hydrate (0.199 g,1 mmol) and sodium azide (0.065 g,1 mmol) was added and the solution heated for another 2 h. Dark green colored crystals were obtained from the cool solution.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino H-atoms were located in a difference Fouier and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors tied by a factor of 1.2 times.

Omitted owing interference from the beam stop was (1 0 0).

Computing details

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT* (Bruker, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $[Cu(N_3)(C_{13}H_{11}N_4S)]_2$ at the 570% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

$\text{Di}-\mu$ -azido- $\kappa^4 N^1$: N^1 '-bis({1-[(*E*)-phenyl(pyridin- 2-yl- κN)methylidene]thiosemicarbazidato- $\kappa^2 N^1$,*S*}copper(II))

Crystal data

[Cu₂(C₁₃H₁₁N₄S)₂(N₃)₂] $M_r = 721.78$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.2462 (12) Å b = 7.2344 (10) Å c = 18.519 (2) Å $\beta = 96.653$ (5)° V = 1496.5 (3) Å³ Z = 2

Data collection

Bruker Kappa APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.604, T_{max} = 0.690$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.134$ S = 1.043747 reflections 205 parameters 2 restraints Primary atom site location: structure-invariant direct methods F(000) = 732 $D_x = 1.602 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4663 reflections $\theta = 3.0-28.3^{\circ}$ $\mu = 1.61 \text{ mm}^{-1}$ T = 295 KPrism, dark green $0.35 \times 0.30 \times 0.25 \text{ mm}$

13614 measured reflections 3747 independent reflections 2973 reflections with $I > 2\sigma(I)$ $R_{int} = 0.075$ $\theta_{max} = 28.4^\circ, \ \theta_{min} = 2.2^\circ$ $h = -14 \rightarrow 15$ $k = -9 \rightarrow 9$ $l = -24 \rightarrow 24$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0694P)^2 + 0.1161P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.54$ e Å⁻³ $\Delta\rho_{min} = -0.66$ e Å⁻³

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.40816 (2)	0.66511 (5)	0.521018 (15)	0.03737 (14)	
S1	0.31362 (6)	0.55753 (11)	0.61376 (3)	0.0469 (2)	
N1	0.24572 (17)	0.7151 (3)	0.47503 (10)	0.0345 (4)	
N2	0.14750 (19)	0.6402 (3)	0.50005 (12)	0.0408 (5)	
N3	0.0841 (2)	0.4802 (5)	0.59265 (14)	0.0617 (8)	
H1	0.023 (2)	0.456 (6)	0.5610 (15)	0.074*	
H2	0.101 (3)	0.422 (5)	0.6343 (12)	0.074*	
N4	0.44641 (18)	0.8236 (3)	0.43679 (11)	0.0377 (5)	
N5	0.5749 (2)	0.6199 (4)	0.55657 (12)	0.0468 (6)	
N6	0.6113 (2)	0.5803 (4)	0.61823 (13)	0.0487 (6)	
N7	0.6497 (3)	0.5408 (5)	0.67545 (14)	0.0721 (9)	
C1	0.1174 (2)	0.8573 (3)	0.37564 (12)	0.0340 (5)	
C2	0.0861 (3)	0.7823 (4)	0.30754 (14)	0.0454 (6)	
H2A	0.1412	0.7109	0.2861	0.054*	
C3	-0.0264 (3)	0.8127 (5)	0.27110 (15)	0.0506 (7)	
Н3	-0.0470	0.7627	0.2251	0.061*	
C4	-0.1078 (2)	0.9171 (5)	0.30306 (16)	0.0506 (7)	
H4	-0.1848	0.9339	0.2796	0.061*	
C5	-0.0752 (3)	0.9963 (5)	0.36967 (17)	0.0556 (8)	
H5	-0.1294	1.0707	0.3906	0.067*	
C6	0.0364 (2)	0.9669 (4)	0.40563 (14)	0.0456 (6)	
H6	0.0576	1.0216	0.4507	0.055*	
C7	0.2345 (2)	0.8130 (3)	0.41657 (12)	0.0335 (5)	
C8	0.1738 (2)	0.5609 (4)	0.56389 (13)	0.0414 (6)	
C9	0.3482 (2)	0.8757 (4)	0.39278 (13)	0.0349 (5)	
C10	0.3555 (2)	0.9761 (4)	0.33033 (14)	0.0438 (6)	
H10	0.2866	1.0115	0.3010	0.053*	
C11	0.4675 (3)	1.0232 (5)	0.31207 (16)	0.0510 (7)	
H11	0.4750	1.0910	0.2702	0.061*	
C12	0.5668 (3)	0.9688 (5)	0.35637 (17)	0.0546 (7)	
H12	0.6428	0.9978	0.3446	0.065*	
C13	0.5534 (2)	0.8708 (4)	0.41863 (16)	0.0460 (6)	
H13	0.6214	0.8364	0.4490	0.055*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.03127 (19)	0.0431 (2)	0.0358 (2)	0.00031 (11)	-0.00433 (13)	0.00303 (12)
S1	0.0438 (4)	0.0589 (5)	0.0356 (3)	-0.0033 (3)	-0.0049 (3)	0.0100 (3)
N1	0.0312 (9)	0.0386 (12)	0.0328 (9)	-0.0013 (8)	-0.0002 (7)	0.0049 (8)
N2	0.0332 (10)	0.0478 (14)	0.0404 (11)	-0.0046 (9)	-0.0003 (8)	0.0132 (9)
N3	0.0541 (15)	0.079 (2)	0.0504 (14)	-0.0192 (14)	-0.0032 (11)	0.0287 (14)
N4	0.0325 (10)	0.0390 (13)	0.0410 (11)	-0.0018 (8)	0.0018 (8)	-0.0002 (8)
N5	0.0366 (11)	0.0595 (16)	0.0412 (12)	0.0036 (11)	-0.0092 (9)	0.0006 (11)
N6	0.0408 (11)	0.0518 (16)	0.0499 (13)	0.0046 (10)	-0.0099 (10)	-0.0094 (11)
N7	0.081 (2)	0.083 (2)	0.0462 (14)	0.0153 (16)	-0.0196 (13)	-0.0044 (14)
C1	0.0341 (11)	0.0368 (14)	0.0308 (11)	-0.0008 (9)	0.0026 (9)	0.0077 (9)

C2	0.0456 (14)	0.0489 (17)	0.0402(13)	0.0035 (12)	-0.0013(10)	-0.0058(12)
C3	0.0508 (16)	0.061 (2)	0.0370 (13)	-0.0032(13)	-0.0064(11)	0.0039 (12)
C4	0.0367 (13)	0.060 (2)	0.0527 (15)	0.0040 (12)	-0.0052 (11)	0.0219 (14)
C5	0.0421 (14)	0.065 (2)	0.0608 (17)	0.0200 (14)	0.0120 (12)	0.0086 (15)
C6	0.0455 (14)	0.0547 (18)	0.0368 (12)	0.0050 (12)	0.0057 (10)	0.0012 (11)
C7	0.0319 (11)	0.0343 (14)	0.0337 (11)	0.0022 (9)	0.0012 (9)	0.0002 (9)
C8	0.0409 (13)	0.0449 (17)	0.0370 (12)	-0.0025 (11)	-0.0006 (10)	0.0075 (10)
C9	0.0348 (11)	0.0332 (13)	0.0369 (11)	-0.0001 (10)	0.0050 (9)	-0.0004 (9)
C10	0.0446 (14)	0.0453 (17)	0.0418 (13)	-0.0020 (11)	0.0062 (11)	0.0050 (11)
C11	0.0551 (17)	0.0497 (18)	0.0508 (15)	-0.0051 (13)	0.0171 (13)	0.0057 (13)
C12	0.0425 (14)	0.055 (2)	0.0695 (19)	-0.0090 (13)	0.0208 (13)	-0.0018 (15)
C13	0.0336 (12)	0.0482 (17)	0.0557 (16)	-0.0032 (11)	0.0034 (11)	-0.0029 (12)

Geometric parameters (Å, °)

Cu1—N5	1.942 (2)	C2—C3	1.381 (4)
Cu1—N1	1.9578 (19)	C2—H2A	0.9300
Cu1—N4	2.022 (2)	C3—C4	1.373 (4)
Cu1—S1	2.2603 (8)	C3—H3	0.9300
Cu1—N5 ⁱ	2.533 (3)	C4—C5	1.371 (5)
S1—C8	1.729 (3)	C4—H4	0.9300
N1—C7	1.287 (3)	C5—C6	1.368 (4)
N1—N2	1.359 (3)	С5—Н5	0.9300
N2—C8	1.316 (3)	C6—H6	0.9300
N3—C8	1.329 (4)	С7—С9	1.472 (3)
N3—H1	0.872 (10)	C9—C10	1.376 (3)
N3—H2	0.879 (10)	C10—C11	1.384 (4)
N4—C13	1.331 (3)	C10—H10	0.9300
N4—C9	1.348 (3)	C11—C12	1.364 (4)
N5—N6	1.202 (3)	C11—H11	0.9300
N6—N7	1.134 (3)	C12—C13	1.377 (4)
C1—C6	1.372 (4)	C12—H12	0.9300
C1—C2	1.380 (4)	C13—H13	0.9300
C1—C7	1.477 (3)		
N5—Cu1—N1	173 91 (9)	С2—С3—Н3	120.1
N5 - Cu1 - N4	94 22 (9)	$C_{2} = C_{3} = C_{3}$	119.7 (2)
N1 - Cu1 - N4	80.26 (8)	C5 - C4 - H4	120.1
N5-Cu1-S1	101.84(7)	C3 - C4 - H4	120.1
N1 - Cu1 - S1	84 08 (6)	C6 - C5 - C4	120.5 (3)
N4— $Cu1$ — $S1$	16044(7)	C6—C5—H5	119 7
$N5-Cu1-N5^{i}$	85 54 (9)	C4 - C5 - H5	119.7
$N1-Cu1-N5^{i}$	91.79 (8)	C5-C6-C1	120.5 (3)
$N4$ — $Cu1$ — $N5^i$	89.28 (8)	C5—C6—H6	119.8
$S1-Cu1-N5^{i}$	102.92 (6)	C1—C6—H6	119.8
C8—S1—Cu1	93.90 (9)	N1—C7—C9	114.7 (2)
C7—N1—N2	120.1 (2)	N1—C7—C1	123.1 (2)
C7—N1—Cu1	117.58 (17)	C9—C7—C1	122.3 (2)
N2—N1—Cu1	122.15 (15)	N2—C8—N3	116.7 (2)
C8—N2—N1	111.9 (2)	N2-C8-S1	125.6 (2)
	× /		× /

C8—N3—H1	114 (2)	N3—C8—S1	117.71 (19)
C8—N3—H2	118 (3)	N4C9C10	122.1 (2)
H1—N3—H2	124 (4)	N4C9C7	114.3 (2)
C13—N4—C9	118.5 (2)	C10—C9—C7	123.6 (2)
C13—N4—Cu1	128.30 (19)	C9—C10—C11	118.7 (3)
C9—N4—Cu1	113.11 (16)	C9—C10—H10	120.7
N6—N5—Cu1	124.8 (2)	C11—C10—H10	120.7
N7—N6—N5	177.3 (3)	C12—C11—C10	119.1 (3)
C6—C1—C2	119.1 (2)	C12—C11—H11	120.4
C6—C1—C7	120.8 (2)	C10-C11-H11	120.4
C2—C1—C7	120.1 (2)	C11—C12—C13	119.4 (3)
C1—C2—C3	120.4 (3)	C11—C12—H12	120.3
C1—C2—H2A	119.8	C13—C12—H12	120.3
C3—C2—H2A	119.8	N4—C13—C12	122.2 (3)
C4—C3—C2	119.8 (3)	N4—C13—H13	118.9
С4—С3—Н3	120.1	С12—С13—Н13	118.9
	1_011		1100
N5—Cu1—S1—C8	-167.21(13)	C2—C1—C6—C5	2.2 (4)
N1—Cu1—S1—C8	11.35 (12)	C7—C1—C6—C5	-175.2(3)
N4—Cu1—S1—C8	48.2 (2)	N2—N1—C7—C9	-176.1(2)
$N5^{i}$ —Cu1—S1—C8	-79.13 (11)	Cu1—N1—C7—C9	-0.5(3)
N4—Cu1—N1—C7	1.37 (19)	N2-N1-C7-C1	3.0 (4)
S1—Cu1—N1—C7	169.6 (2)	Cu1—N1—C7—C1	178.59 (18)
$N5^{i}$ Cu1 N1 C7	-87.6(2)	C6-C1-C7-N1	65 7 (4)
N4—Cu1—N1—N2	176.9 (2)	C_{2} C_{1} C_{7} N_{1}	-111.7(3)
S1—Cu1—N1—N2	-14.88(19)	C6-C1-C7-C9	-115.3(3)
$N5^{i}$ —Cu1—N1—N2	87.9 (2)	C_{2} C_{1} C_{7} C_{9}	67.3 (3)
C7—N1—N2—C8	-173.5(2)	N1 - N2 - C8 - N3	-178.8(3)
Cu1 - N1 - N2 - C8	11.1 (3)	N1 - N2 - C8 - S1	2.6 (4)
N5—Cu1—N4—C13	-0.4(2)	Cu1—S1—C8—N2	-11.5(3)
N1—Cu1—N4—C13	-177.8(3)	Cu1—S1—C8—N3	170.0 (3)
S1—Cu1—N4—C13	144.9 (2)	C_{13} N4 C_{2} C10	-0.3(4)
N5 ⁱ —Cu1—N4—C13	-85.9 (2)	Cu1—N4—C9—C10	-176.6(2)
N5—Cu1—N4—C9	175.44 (18)	C13—N4—C9—C7	178.6 (2)
N1—Cu1—N4—C9	-1.97 (17)	Cu1—N4—C9—C7	2.2 (3)
S1—Cu1—N4—C9	-39.2 (3)	N1—C7—C9—N4	-1.2(3)
$N5^{i}$ —Cu1—N4—C9	89.97 (18)	C1—C7—C9—N4	179.7 (2)
N4—Cu1—N5—N6	155.8 (3)	N1—C7—C9—C10	177.6 (3)
S1-Cu1-N5-N6	-13.0(3)	C1—C7—C9—C10	-1.5(4)
$N5^{i}$ Cu1 N5 N6	-1153(3)	N4-C9-C10-C11	0.6(4)
C6-C1-C2-C3	-20(4)	C7-C9-C10-C11	-1781(3)
C7-C1-C2-C3	1755(3)	C9-C10-C11-C12	0.0(5)
C1 - C2 - C3 - C4	-0.5(5)	C10-C11-C12-C13	-0.9(5)
$C_{2} - C_{3} - C_{4} - C_{5}$	26(5)	C9-N4-C13-C12	-0.7(4)
C_{3} C_{4} C_{5} C_{6}	-23(5)	C_{11} N4 C_{13} C_{12}	1750(2)
C4-C5-C6-C1	-0.1(5)	$C_{11} = C_{12} = C_{13} = C_{12}$	1,3.5(2)
	0.1 (0)	011 - 012 - 013 - 114	1.5 (5)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N3—H1…N2 ⁱⁱ	0.87 (1)	2.22 (1)	3.075 (3)	168 (4)

Symmetry code: (ii) -x, -y+1, -z+1.