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Abstract: Non-alcoholic fatty liver disease (NAFLD) has been linked to altered gut microbiome;
however, evidence from large population-based studies is limited. We compared gut microbiome
profiles of 188 male and 233 female NAFLD cases with 571 male and 567 female controls from two
longitudinal studies of urban Chinese adults. History of NAFLD was assessed during surveys
administered in 2004–2017. Microbiota were assessed using 16S rRNA sequencing of stool samples
collected in 2015–2018. Associations of NAFLD with microbiome diversity and composition were
evaluated by generalized linear or logistic regression models. Compared with controls, male cases had
lower microbial α-diversity, higher abundance of genera Dialister and Streptococcus and Bifidobacterium
species, lower abundance of genus Phascolarctobacterium, and lower prevalence of taxa including
order RF39 (all p < 0.05). In contrast, female cases had higher α-diversity, higher abundance of genus
Butyricimonas and a family of order Clostridiales, lower abundance of Dialister and Bifidobacterium
species, and higher prevalence of RF39. Significant NAFLD–sex interactions were found for α-
diversity and above taxa (all false discovery rate < 0.1). In conclusion, we observed sex-specific gut
microbiome features related to history of NAFLD. Further studies are needed to validate our findings
and evaluate the health effects of NAFLD-related gut microbiota.

Keywords: non-alcoholic fatty liver disease; gut microbiota; prospective cohort study; Asian population

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disease,
defined as ≥5% hepatic steatosis, not caused by excessive alcohol consumption or other
secondary conditions such as viral hepatitis or hereditary liver diseases [1]. The estimated
global prevalence of NAFLD was 25%, which varied significantly across countries from
4% to 41% [2]. In China, the prevalence of NAFLD has doubled in the past 20 years with
a nationwide prevalence of 29% estimated in 2019; meanwhile, the prevalence was 33%
in males and 22% in females [3]. The pathophysiology of NAFLD is complex; however,
the gut–liver axis, i.e., the bidirectional relationship of the gut and its microbiota with the
liver, has attracted increasing attention [4,5]. Gut microbiota can be involved in NAFLD
development and progression through several mechanisms, including changing intestine
permeability, changing energy harvest from diet, affecting lipogenesis and choline and bile
acid metabolism, producing ethanol in the intestine, and linking to inflammation [4,6,7].
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Recent animal models and human studies have linked gut dysbiosis with NAFLD [4,6].
Experiments using gut microbiota transplantation to germ-free mice showed that gut
microbiota determine the development of NAFLD independent of obesity [8]. In addition,
inflammasome-mediated gut dysbiosis was shown to be involved in NAFLD progression to
non-alcoholic steatohepatitis (NASH) [9]. In human studies, as summarized by Safari and
Gerard [4], several case-control studies have shown altered abundance of fiber-fermenting
and inflammation-modulating bacteria, including Dorea, Lactobacillus, and Ruminococcus, in
NAFLD patients compared with healthy controls. Increased abundance of genus Bacteroides
and decreased Prevotella levels have been found in NASH compared with NAFLD patients,
and Ruminococcus abundance increased in patients in fibrosis stage F ≥ 2 [10]. Furthermore,
a random forest model comprising predominantly gut bacterial features showed a strong
diagnostic precision to detect advanced fibrosis in NAFLD patients [11,12]. However, most
previous studies had a small sample size or inadequately controlled potential confounding
factors such as diet and lifestyles, and findings regarding individual taxa associations
remain limited and inconsistent [4,6,13].

In the present study, we used resources from two large prospective cohorts of middle-
aged to older urban Chinese adults and compared gut microbial diversity and taxonomic
composition among over 1500 adults with or without a history of NAFLD. Such compar-
isons may help better understand the gut–liver axis and identify potentially important
gut bacteria that may play a role in NAFLD development and progression, and thus offer
innovative options for prevention and treatment of this leading liver disease.

2. Materials and Methods
2.1. Study Population

Participants of this study were selected from two population-based cohort studies,
the Shanghai Women’s Health Study (SWHS) and Shanghai Men’s Health Study (SMHS).
The designs and methods of the SWHS and SMHS have been described in detail else-
where [14,15]. Briefly, the SWHS recruited 74,941 women aged 40–70 years between 1996
and 2000 from urban communities in Shanghai, China, with a response rate of 92.7% [14].
The SMHS recruited 61,480 men aged 40–70 years between 2002 and 2006 from the same
communities, with a response rate of 74.0% [15]. In-person interviews were conducted
at baseline to collect sociodemographic data, disease history, diet/lifestyles, and anthro-
pometrics; biospecimens were also collected, including blood, urine, and/or oral rinse
samples. Participants were followed-up through in-person surveys every 2–4 years (re-
sponse rates > 92%) with supplemental annual record linkages to Shanghai Vital Statistics
and Shanghai Cancer Registry (completion rates > 99%) to collect information on the occur-
rence of cancer and other chronic diseases including liver diseases, as well as to update
information on diet, lifestyle, and anthropometrics. Informed consent was obtained from
all study participants. A participant inclusion/exclusion flow chart for the present study is
shown in Supplementary Figure S1 and described in detail below.

2.2. NAFLD Assessment

Information on fatty liver diagnosis and ultrasound examination was collected during
follow-up surveys conducted between 2004 and 2017 (the 3rd to 5th in-person visits of the
SWHS and the 2nd and 3rd visits of the SMHS). In each survey, participants were asked
whether they had been diagnosed with fatty liver disease by a physician (if yes, the time of
diagnosis) and whether there was an abdominal ultrasound. Given that NAFLD is usually
asymptomatic, to reduce potential misclassification of NAFLD status, we limited their
analysis to participants who had an abdominal ultrasound and answered the fatty liver
question. Meanwhile, we only included participants who had no history of viral hepatitis
and zero to moderate alcohol consumption (≤1 drink/day for women and ≤2 drinks/day
for men; 1 drink = 14 g ethanol), using data from baseline and follow-up surveys.
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2.3. Stool Sample Collection and 16S rRNA Gene Sequencing

Stool sample collections were carried out in both cohort studies between 2015 and
2018 (the 5th visit of the SWHS and the 3rd visit of the SMHS). Stool samples were collected
from a total of 10,655 participants (5526 women and 5129 men) using the 95% ethanol
method, as described in detail in our previous publication [16]. At the time of stool
collection, participants were also asked for the date and time of stool collection, antibiotic
and medication uses in the past 7 days and 6 months, and whether they had diarrhea in
the last 7 days. Stool samples were shipped to the laboratory within 24 h after collection
and stored at −80 ◦C.

Stool sample DNA of 3358 study participants was isolated using QIAGEN’s DNeasy
PowerSoil kit (Germantown, MD, USA). Sequencing libraries were prepared using NEXTflex
16S V4 Amplicon-Seq Kit (Bioo Scientific 4201-05, Austin, TX, USA). The 16S rRNA gene
sequencing was performed at pair-end 250 bp using Illumina HiSeq System. For each
96-well plate, one negative control sample (distilled water) was included. The protocols for
sequencing data processing and quality controls were published elsewhere [17]. Briefly,
raw sequencing data were trimmed and filtered to remove bases and low-quality reads
by using Sickle. BayesHammer was utilized to correct sequencing errors and PANDAseq
to stitch paired-end reads. Clean reads were then clustered into Operational Taxonomic
Units (OTUs) at 97% sequence identity using the closed reference OTU picking strategy,
with Greengenes [18] as reference, via the taxonomy classification function “mothur” [19]
implemented in Quantitative Insights into Microbial Ecology (QIIME) v1.9.1 [20].

As described previously, we obtained 16S rRNA sequencing data from 3194 partici-
pants after quality control procedures [16]. Among them, 2358 participants had information
on NAFLD history and abdominal ultrasound. For the current study, we further excluded
participants who used antibiotics or had diarrhea in the past 7 days before stool collection
(n = 81) and who were ever diagnosed with or self-reported probably gut microbiome-
impacting diseases, including any cancer (n = 46), diabetes (n = 183), stroke (n = 366), or
coronary heart disease (n = 234) at baseline or during follow-up. A total of 1559 adults,
including 759 men and 800 women, were included in the final analysis.

2.4. Statistical Analysis

The analyses were conducted in men and women separately and in a combined
dataset adjusting for sex. The sequencing reads per sample ranged between 17,013 and
244,929, with a mean of 134,520. We rarefied the OTU table using the minimal sequenc-
ing depth and estimated observed bacterial numbers and α-diversity indices, including
Chao1, Shannon, and phylogenetic diversity (PD_whole_tree). A linear regression model
was used to evaluate the differences in α-diversity between NAFLD cases and controls.
Association between NAFLD and genus level Bray-Curtis β-diversity was evaluated using
permutational multivariate analysis of variance (PERMANOVA) with the adonis2 function
in R package vegan [21].

The presence of individual taxa was defined as their relative abundance ≥0.00588% in
a sample (i.e., ≥1 read when there were 17,013 reads, the minimum sequencing depth of
our samples). Common taxa were defined if present in (carrier frequency) >50% of control
participants; rare taxa were defined if present in 10–50% of control participants; taxa
present in <10% of control participants were excluded from analyses. For common taxa,
sequencing counts for each taxon were normalized using centered log-ratio transformation
after adding 1 as a pseudo-count [22,23]. General linear regression models were used to
evaluate associations of NAFLD with each taxon. Logistic regression was used to evaluate
associations between NAFLD and the presence (yes/no) of rare taxa. Potential confounders
were adjusted for in two models: the basic model included age at stool collection, sex
(for combined analysis), the season of stool collection, education, income, and sequencing
batch; the full model further included body mass index (BMI), waist-to-hip ratio (WHR),
smoking status, alcohol drinking status, physical activity, total energy intake, dietary fat
intake, bowel movement frequency, history of hypertension, and history of dyslipidemia.
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Associations from the full model were presented as the main results. Sequencing depth
was included as an additional covariate for analyses with rare taxa prevalence. Covariates
were updated using data from follow-up surveys conducted between 2012 and 2017, except
for education and income, which were assessed only at baseline.

Stratified analyses were conducted by age (< or ≥65 years at stool collection), over-
weight (BMI < or ≥24 kg/m2, according to recommendation for Chinese adults [24]),
WHR (men: < or ≥0.9; women: < or ≥0.8), healthy diet score (< or ≥24.5 [median]),
history of dyslipidemia, history of hypertension, and time between self-reported NAFLD
diagnosis and stool collection (< or ≥9.5 years [median]; or <5, 5–15, or ≥15 years). An
interaction term of NAFLD with a stratified variable was added to the regression model.
The Benjamini-Hochberg false discovery rate (FDR) was applied to account for multiple
comparisons at each taxonomic level. Significance was defined at an FDR < 0.1 at each
taxonomic level. All analyses were carried out using QIIME [20], SAS Enterprise Guide 7.1
(SAS Institute Inc., Cary, NC, USA), or R version 3.6.3.

3. Results
3.1. Characteristics of the Study Subjects

The current study included 188 men and 233 women with NAFLD and 571 men and
567 women without NAFLD. Compared with non-NAFLD controls, participants with
NAFLD had higher BMI (mean: 25.8 vs. 23.9 among men; 26.1 vs. 23.5 among women),
WHR (mean: 0.92 vs. 0.89 among men; 0.83 vs. 0.81 among women), and prevalence of
dyslipidemia (19.2% vs. 6.0% among men; 44.6% vs. 14.6% among women) (Table 1; all
p < 0.001). Meanwhile, female cases had a higher income level, lower dietary fat intake,
and higher prevalence of hypertension. Otherwise, participants with or without a history
of NAFLD did not differ by age (mean: 68 years at stool collection; range: 51–89 years),
education level, smoking status, alcohol drinking status, overall diet quality, total energy
intake, and bowel movement frequency.

3.2. Associations of NAFLD History with Gut Microbiome Alpha and Beta Diversity

As shown in Figure 1 and Supplementary Table S1, men with a NAFLD history had
slightly decreased microbiome α-diversity (including PD_whole_tree, Shannon index,
Chao1, and observed OTUs) than men without a history of NAFLD, whereas women
with NAFLD showed slightly increased α-diversity than women without NAFLD (all
p < 0.05 compared with controls). A potential effect modification by sex on the NAFLD
and α-diversity association was suggested (all p < 0.02 for interactions). The genus-level
Bray-Curtis dissimilarities between NAFLD cases and controls were not significant in
either sex; NAFLD status explained 0.23% and 0.09% Bray-Curtis variance among men and
women, respectively.

3.3. Associations of NAFLD History with Individual Gut Microbial Taxa

Similar to the α-diversity results, we observed significant sex-specific associations
between NAFLD history and individual taxa (Table 2). We examined 145 common taxa
(5 phyla, 10 classes, 12 orders, 20 families, 38 genera, and 60 species). Among men, NAFLD
was associated with increased abundance of genera Dialister (median relative abundance:
0.0554% in cases vs. 0.0214% in controls; p = 0.001) and Streptococcus (0.1144% vs. 0.0787%;
p = 0.01), two Bifidobacterium species (both p = 0.03 for B. adolescentis and B. Other), and
an unclassified Dialister species, while a decreased abundance of genus Phascolarctobac-
terium (0.9446% vs. 1.672%; p = 0.01). Among women, NAFLD was associated with
increased abundance of genus Butyricimonas (0.1061% vs. 0.0463%; p = 0.003) and an unclas-
sified species within it, an unclassified family and genus of order Clostridiales (0.0127% vs.
0.0052%; p = 0.003), and an Oscillospira species (0.0275% vs. 0.0146%; p = 0.009). Significant
interactions between NAFLD history and sex were observed for all these associations (all
FDR < 0.1 for interactions). In the combined dataset with additional adjustment for sex,
the abundance of an unclassified Streptococcus species was higher, while the abundance
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of an unclassified Blautia species was lower in NAFLD cases than controls (all p < 0.05,
Supplementary Table S2).

Table 1. Selected characteristics of participants from the Shanghai Men’s and Women’s Health Study.

Characteristics

Shanghai Men’s Health Study Shanghai Women’s Health Study

Controls
(n = 571)

NAFLD
(n = 188) p a Controls

(n = 567)
NAFLD
(n = 233) p a

Age at stool sample collection (years, mean (SD)) 67.9 (9.4) 66.7 (8.2) 0.189 69.9 (8.8) 69.7 (7.4) 0.750
Recent body mass index (kg/m2, mean (SD)) 23.9 (3.2) 25.8 (3.1) <0.001 23.5 (3.6) 26.1 (3.6) <0.001

Recent waist-to-hip ratio (mean (SD)) 0.89 (0.06) 0.92 (0.05) <0.001 0.81 (0.05) 0.83 (0.05) <0.001
Education (%) 0.280 0.171

Elementary school or less 5.6 4.3 17.8 12.0
Middle school 29.6 36.7 41.5 41.6

High school graduate 37.7 32.4 28.0 30.5
Some college and higher 27.1 26.6 12.7 15.9

High income (%) 8.8 10.6 0.096 15.9 22.3 0.020
Smoking

Never smoker (%) 39.9 35.6 0.248 99.1 99.6 0.500
Former smoker (%) 13.0 17.6

0.9 0.4Current smoker (%) 47.1 46.8
Pack-year among smokers (mean (SD)) 24.2 (14.9) 23.8 (15.4) 0.815 - - -

Alcohol drinking
Ever alcohol drinking (%) 34.7 29.8 0.218 4.4 7.3 0.096

Alcohol consumption (g/day, mean (SD)) b 2.28 (1.82) 2.65 (2.32) 0.188 0.13 (0.54) 0.07 (0.13) 0.110
Stool sample collection season (%) 0.602 0.273

Spring 10 13.3 10.4 15
Summer 6.8 6.9 7.4 8.2
Autumn 36.4 36.7 41.1 39.9
Winter 46.8 43.1 41.1 36.9

Leisure-time physical activity (yes, %) 55.7 53.2 0.550 61.9 56.2 0.136
Healthy diet score (mean (SD)) 25.1 (5.1) 25.2 (5.5) 0.655 24.1 (5.0) 23.9 (5.0) 0.651

Total energy intake (kcal/day, mean (SD)) 1968 (488) 1954 (460) 0.994 1508 (307) 1550 (338) 0.079
Fiber intake (g/day, mean (SD)) 12.3 (3.6) 12.1 (3.5) 0.508 10.0 (2.7) 10.1 (2.4) 0.362
Fat intake (g/day, mean (SD)) 33.9 (10.0) 34.3 (10.4) 0.986 28.5 (7.1) 27.3 (7.1) 0.006

History of hypertension (yes, %) 13.8 18.1 0.156 18.7 26.6 0.013
History of dyslipidemia (yes, %) 6.0 19.2 <0.001 14.6 44.6 <0.001

Bowel movement (times/week, mean (SD)) 7.7 (3.6) 7.8 (3.6) 0.926 7.3 (3.7) 7.7 (4.0) 0.071
a Wilcoxon rank sum tests for continuous variables and chi-square test for categorical variables. b Among alcohol drinkers. NAFLD,
non-alcoholic fatty liver disease; SD, standard deviation.

Among 152 rare taxa (5 phyla, 7 classes, 8 orders, 23 families, 44 genera, and 65 species),
18 showed significant opposite associations with NAFLD between men and women
(Table 3, all NAFLD–sex interaction FDR < 0.1). NAFLD was generally associated with
decreased taxa prevalence in men and increased prevalence in women, including unclassi-
fied genus and species of a proposed family (Mogibacteriaceae) (in men: carriage frequency:
32.4% in cases vs. 45.9% in controls; p ≤ 0.005), a species under family Rikenellaceae (41% vs.
50.3% in men; 49.8% vs. 43.7% in women; both p < 0.05), an unclassified genus and species
of family Peptococcaceae (10.6% vs. 20.3%; both p = 0.04 in men), an unclassified genus and
species of family Christensenellaceae (36.1% vs. 31.9%; both p = 0.008 in women), and order
RF39 and an unclassified genus and species within it (16.5% vs. 25.9% in men; 27% vs.
21.5% in women; all p < 0.05). In the combined dataset, species Coprococcus eutactus and
genus Megasphaera were more prevalent in NAFLD cases than controls (Supplementary
Table S3). A higher prevalence of Megasphaera in NAFLD cases than controls was observed
among all participants (30.2% vs. 22.4%; p = 5.7 × 10−4, FDR = 0.047) and in both men
(31.4% vs. 24.6%; p = 0.017) and women (29.2% vs. 21.2%; p = 0.006).
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Figure 1. Gut microbiome α-diversity indexes (PD_whole_tree_distance and Shannon) between
non-alcoholic fatty liver disease and healthy controls among males from the Shanghai Men’s Health
Study (SMHS) and females from the Shanghai Women’s Health Study (SWHS). General linear
regression was conducted, adjusting for age at stool collection, the season of stool collection, body
mass index, waist-to-hip ratio, education, income, smoking status, alcohol drinking status, physical
activity, total energy intake, fat intake, bowel movement frequency, history of hypertension, history
of dyslipidemia, and sequencing batch. Abbreviation: PD, phylogenetic diversity.
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Table 2. Sex-dependent association of non-alcoholic fatty liver disease and common bacterial taxa a.

SMHS SWHS

p for
Interaction
with Sex d

Non-NAFLD
(n = 571) NAFLD (n = 188) Non-NAFLD

(n = 567) NAFLD (n = 233)

Taxon b Median RA
(%)

Median
RA (%) Beta (se) c p c Median RA

(%)
Median
RA (%) Beta (se) c p c

p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales;
f_Bifidobacteriaceae;g_Bifidobacterium;Other 0.0075 0.0106 0.369 (0.171) 0.031 0.0089 0.0068 −0.439 (0.163) 0.007 0.002

p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales;
f_Bifidobacteriaceae;g_Bifidobacterium;s_adolescentis 0.0441 0.0585 0.474 (0.218) 0.03 0.0635 0.0506 −0.399 (0.207) 0.055 0.008

p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;
f_[Odoribacteraceae];g_Butyricimonas 0.0906 0.032 −0.238 (0.221) 0.28 0.0463 0.1061 0.632 (0.214) 0.003 0.007

p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;
f_[Odoribacteraceae];g_Butyricimonas;s_unclassified 0.0906 0.032 −0.23 (0.217) 0.291 0.0463 0.1061 0.639 (0.212) 0.003 0.005

p_Firmicutes;c_Bacilli;o_Lactobacillales;
f_Streptococcaceae;g_Streptococcus 0.0787 0.1144 0.363 (0.148) 0.015 0.1027 0.0804 −0.104 (0.139) 0.454 0.012

p_Firmicutes;c_Clostridia;o_Clostridiales; f_unclassified 0.0113 0.0043 −0.277 (0.231) 0.231 0.0052 0.0127 0.674 (0.225) 0.003 0.002
p_Firmicutes;c_Clostridia;o_Clostridiales;
f_unclassified;g_unclassified 0.0113 0.0043 −0.239 (0.228) 0.294 0.0052 0.0127 0.66 (0.222) 0.003 0.002

p_Firmicutes;c_Clostridia;o_Clostridiales;
f_unclassified;g_unclassified;s_unclassified 0.0113 0.0043 −0.23 (0.228) 0.313 0.0052 0.0127 0.667 (0.222) 0.003 0.002

p_Firmicutes;c_Clostridia;o_Clostridiales;
f_Ruminococcaceae;g_Oscillospira;Other 0.0425 0.0093 −0.307 (0.195) 0.115 0.0146 0.0275 0.477 (0.183) 0.009 0.005

p_Firmicutes;c_Clostridia;o_Clostridiales;
f_Veillonellaceae;g_Dialister 0.0214 0.0554 0.788 (0.241) 0.001 0.0467 0.0305 −0.487 (0.241) 0.044 2.4 × 10−4

p_Firmicutes;c_Clostridia;o_Clostridiales;
f_Veillonellaceae;g_Dialister;s_unclassified 0.0214 0.0554 0.796 (0.243) 0.001 0.0467 0.0305 −0.481 (0.245) 0.05 3.3 × 10−4

p_Firmicutes;c_Clostridia;o_Clostridiales;
f_Veillonellaceae;g_Phascolarctobacterium 1.672 0.9446 −0.555 (0.217) 0.011 1.4603 1.6876 0.376 (0.238) 0.116 0.007

p_Firmicutes;c_Clostridia;o_Clostridiales;
f_Veillonellaceae;g_Phascolarctobacterium;s_unclassified 1.672 0.9446 −0.546 (0.216) 0.012 1.4603 1.6876 0.382 (0.238) 0.108 0.006

a The common taxa were defined as those with relative abundance ≥0.00588% and present in (carrier frequency) >50% of control participants. b p_, c_, o_, f_, g_, and s_ indicate taxonomic levels of phylum, class,
order, family, genus, and species, respectively. c For each sample, centered log-ratio transformation was used to normalize taxa counts at each taxonomic level after adding a pseudo-count of 1. Beta, se and p
values were calculated from general linear regression with NAFLD controls as reference, adjusted for age at stool sampling, the season of sample collection, body mass index, waist-to-hip ratio, education,
income, smoking status, alcohol drinking status, physical activity, total energy intake, fat intake, bowel movement frequency, history of hypertension, history of dyslipidemia, and sequencing batch. d False
discovery rate < 0.1 at each taxonomic level. NAFLD, non-alcoholic fatty liver disease; RA, relative abundance; se, standard error; SMHS, Shanghai Men’s Health Study; SWHS, Shanghai Women’s Health Study.
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Table 3. Sex-dependent associations of non-alcoholic fatty liver disease and rare bacterial taxa a.

SMHS SWHS

p for
Interaction
with Sex d

Non-NAFLD
(n = 571) NAFLD (n = 188) Non-NAFLD

(n = 567) NAFLD (n = 233)

Taxon b Carrier
Frequency (%)

Carrier
Frequency (%) Beta (se) c p c Carrier

Frequency (%)
Carrier

Frequency (%) Beta (se) c p c

p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;
f_[Paraprevotellaceae] 50.8 42 −0.314 (0.189) 0.097 39.3 47.6 0.384 (0.182) 0.035 0.008

p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales; f_Rikenellaceae;
f\_\_Rikenellaceae_unclassified 50.3 41 −0.421 (0.187) 0.024 43.7 49.8 0.400 (0.182) 0.028 0.005

p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales; f_Rikenellaceae;
f\_\_Rikenellaceae_unclassified;Other 50.3 41 −0.421 (0.187) 0.024 43.7 49.8 0.400 (0.182) 0.028 0.005

p_Firmicutes;c_Clostridia;o_Clostridiales; f_[Mogibacteriaceae] 51.3 37.8 −0.551 (0.191) 0.004 48.7 49.8 0.285 (0.186) 0.125 0.002
p_Firmicutes;c_Clostridia;o_Clostridiales;
f_[Mogibacteriaceae];g_unclassified 45.9 32.4 −0.551 (0.197) 0.005 42.7 44.2 0.344 (0.186) 0.064 0.001

p_Firmicutes;c_Clostridia;o_Clostridiales;
f_[Mogibacteriaceae];g_unclassified;s_unclassified 45.9 32.4 −0.551 (0.197) 0.005 42.7 44.2 0.344 (0.186) 0.064 0.001

p_Firmicutes;c_Clostridia;o_Clostridiales; f_Christensenellaceae 35.2 26.6 −0.312 (0.207) 0.132 34.4 36.9 0.422 (0.193) 0.029 0.007
p_Firmicutes;c_Clostridia;o_Clostridiales;
f_Christensenellaceae;g_unclassified 32.7 25.5 −0.300 (0.210) 0.154 31.9 36.1 0.516 (0.196) 0.008 0.005

p_Firmicutes;c_Clostridia;o_Clostridiales;
f_Christensenellaceae;g_unclassified;s_unclassified 32.7 25.5 −0.300 (0.210) 0.154 31.9 36.1 0.516 (0.196) 0.008 0.005

p_Firmicutes;c_Clostridia;o_Clostridiales; f_Peptococcaceae 24.9 16 −0.481 (0.240) 0.045 24 25.3 0.256 (0.212) 0.227 0.011
p_Firmicutes;c_Clostridia;o_Clostridiales;
f_Peptococcaceae;g_unclassified 20.3 10.6 −0.572 (0.278) 0.040 19.6 21.5 0.352 (0.226) 0.120 0.002

p_Firmicutes;c_Clostridia;o_Clostridiales;
f_Peptococcaceae;g_unclassified;s_unclassified 20.3 10.6 −0.572 (0.278) 0.040 19.6 21.5 0.352 (0.226) 0.120 0.002

p_Tenericutes 28.2 20.2 −0.323 (0.224) 0.149 24 27.5 0.327 (0.207) 0.115 0.004
p_Tenericutes;c_Mollicutes 26.6 17 −0.517 (0.234) 0.027 21.5 27 0.417 (0.211) 0.049 3.6 × 10−4

p_Tenericutes;c_Mollicutes;o_RF39 25.9 16.5 −0.516 (0.237) 0.029 21.5 27 0.417 (0.211) 0.049 3.8 × 10−4

p_Tenericutes;c_Mollicutes;o_RF39; f_unclassified 25.9 16.5 −0.516 (0.237) 0.029 21.5 27 0.417 (0.211) 0.049 3.8 × 10−4

p_Tenericutes;c_Mollicutes;o_RF39; f_unclassified;g_unclassified 25.9 16.5 −0.516 (0.237) 0.029 21.5 27 0.417 (0.211) 0.049 3.8 × 10−4

p_Tenericutes;c_Mollicutes;o_RF39;
f_unclassified;g_unclassified;s_unclassified 25.9 16.5 −0.516 (0.237) 0.029 21.5 27 0.417 (0.211) 0.049 3.8 × 10−4

a The rare taxa were defined as those with relative abundance ≥0.00588% and present in (carrier frequency) 10–50% of control participants. b p_, c_, o_, f_, g_, and s_ indicate taxonomic levels of phylum, class,
order, family, genus, and species, respectively. c Logistic regression model for NAFLD association with rare taxa, adjusted for age at stool sampling, the season of sample collection, body mass index, waist-to-hip
ratio, education, income, smoking status, alcohol drinking status, physical activity, total energy intake, fat intake, bowel movement frequency, history of hypertension, history of dyslipidemia, sequencing batch,
and sequencing depth. d False discovery rate (FDR) < 0.1 at each taxonomic level. NAFLD, non-alcoholic fatty liver disease; RA, relative abundance; se, standard error; SMHS, Shanghai Men’s Health Study;
SWHS, Shanghai Women’s Health Study.
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We evaluated further the sex-specific NAFLD–microbiome associations by age, BMI,
WHR, healthy diet score, and history of hypertension (Supplementary Table S4). In men, we
found significantly increased abundance of Bifidobacterium species in those <65 years with
NAFLD (median relative abundance: 0.0893% vs. 0.0384% for B. adolescentis, p = 3.6 × 10−4;
0.0196% vs. 0.0073% for B. Other, p≤ 1.6× 10−4) but not in those 65 years or older (0.0308%
vs. 0.0475% for B. adolescentis, p = 0.575; 0.0046% vs. 0.0080% for B. Other, p = 0.441;
p ≤ 4.9 × 10−4 for NAFLD–age interaction); significantly higher frequency of Blautia pro-
ducta in male NAFLD cases with WHR< 0.9 (41% vs. 21.6%, p = 0.003) while slightly lower
in cases with WHR ≥ 0.9 (18.9% vs. 27.8%, p = 0.151; p ≤ 2.2 × 10−4 for NAFLD–WHR
interaction), and significantly lower prevalence of order RF39 in NAFLD cases without
a history of hypertension (14.3% vs. 28%, p = 0.003) but increased prevalence of this
order in 34 male NAFLD cases with hypertension (26.5% vs. 12.7%, p = 0.105; p = 0.005
for NAFLD– hypertension interaction). We did not find significant differences in the
sex-specific NAFLD–microbiome associations by history of dyslipidemia or time interval
between NAFLD diagnosis and stool collection (all FDR > 0.1 for NAFLD–dyslipidemia
interaction or NAFLD–time interaction). In addition, most of the associations from the
full model were similar to those from the basic model, which included age, sex, education,
income, sample collection season, and sequencing batch.

4. Discussion

In this study of 1559 predominantly elderly urban Chinese adults, we found that
NAFLD was associated with gut microbiome α-diversity and several taxa differently in
men and women, suggesting the importance of considering sex/gender in research of
the gut–liver axis. Among men, NAFLD was associated with decreased microbial α-
diversity, increased abundance of genera Dialister and Streptococcus and Bifidobacterium
species, reduced abundance of genus Phascolarctobacterium, and reduced prevalence of
order RF39 and unclassified genus/species of families (Mogibacteriaceae), Rikenellaceae, and
Peptococcaceae. In contrast, among women, NAFLD was associated with increased microbial
α-diversity and altered abundance and prevalence of above taxa, generally in the opposite
direction. We also found that age, BMI, WHR, diet quality, and history of hypertension
may modify NAFLD association with specific taxa in men or women.

Increasing evidence supports sex differences in the gut microbiome and potential
sex-dependent associations of gut microbiota with health outcomes [25–29]. In the present
study, we observed significant associations of NAFLD with microbial α-diversity and
individual taxa varied by sex, but no significant sex differences in those microbial features
(i.e., similar diversity and abundance/prevalence between men and women among NAFLD
cases or controls). The underlying mechanisms for such findings are not clear, although sex
differences in the gut microbiome, hormone, BMI, and lifestyles have been shown [27]. The
observed sex-specific associations might be due to older age at stool collection in women
than in men [30–32], and much fewer smokers and alcohol drinkers, high prevalence
of morbidities such as hypertension and dyslipidemia, or changes in diet and lifestyles
after disease diagnosis among women than men; however, all those covariates had been
adjusted for in our main models. Future studies are needed to examine the sex-specific gut
microbiome associations with NAFLD and investigate underlying biological mechanisms.

Previous studies have shown altered gut microbiota in NAFLD cases compared with
controls; however, most of these studies comprised only ~20–50 NAFLD cases and con-
trols and included limited dietary, lifestyle, and clinical factors [10–12,33–44]. Still, a few
NAFLD–microbiome associations have been suggested [4,6,13]. In line with previous stud-
ies [12,36,38–40,42], we observed increased abundance of genus Streptococcus in NAFLD
cases among men and in the combined dataset (p = 0.015 and 0.022, respectively). In addi-
tion to NAFLD, several Streptococcus species have been associated with inflammatory bowel
disease [45–47], suggesting a pro-inflammatory role of Streptococcus in gut–liver axis-related
diseases. Previous studies have also linked NAFLD with increased abundance of genus
Escherichia, another pro-inflammatory bacterium that may produce ethanol [36,38,40,44],
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and decreased abundance of genera Ruminococcus and Coprococcus under order Clostridiales,
which are fiber-fermenting, SCFA-generating bacteria [4], but significant associations were
not observed for those genera among men or women. Nevertheless, we found Blautia, also
a fiber-fermenting, SCFA-generating genus under order Clostridiales, showing a decreased
abundance in NAFLD cases among total participants. Meanwhile, consistent with prior
work showing a reduced abundance of genus Bifidobacterium in NASH patients, we ob-
served reduced abundance of Bifidobacterium in female NAFLD cases (median RA: 0.25%
vs. 0.34%, p = 0.039) (Table 2). Further studies are warranted to evaluate the relationships
of gut inflammation and bacterial production of ethanol and SCFAs with NAFLD.

In addition, we found a significantly increased abundance of genus Dialister in male
NAFLD cases but decreased level in female cases. Dialister is a genus of Firmicutes, which
was found to increase among liver cirrhosis patients [48,49]. Genus Phascolarctobacterium
has been associated with age and weight loss in NAFLD patients [50]. Its abundance has
also shown sex-difference in metabolic syndrome patients, i.e., higher in female than in
male patients [51]. We observed a reduced Phascolarctobacterium abundance among male
NAFLD cases but an increased abundance among female NAFLD cases. Among rare taxa
that showed sex-dependent associations with NAFLD, order RF39 has been positively as-
sociated with healthy diets [16,52] and negatively associated with BMI, blood triglycerides,
and frailty among older adults [52–56], suggesting its potential health benefits.

This study has several strengths. First, this is the largest population-based study
to date identifying gut microbiome features related to history of NAFLD in an Asian
population. Second, information is available on a wide range of medical, sociodemographic,
and lifestyle factors, allowing us to exclude participants with a history of other diseases
(e.g., diabetes, cardiovascular disease, and hepatitis) and adjust for various covariates
to minimize potential confounding. Third, for the first time, we found potential sex-
dependent gut microbial features related to NAFLD, although further studies are needed
to validate such findings. Several limitations should also be acknowledged. First, there
may be misclassification of NAFLD status, which may attenuate the observed associations.
Second, despite comprehensive covariate adjustments, the impact of residual confounding
due to poorly measured or unmeasured variables such as other underlying diseases and
medication uses cannot be overlooked [57–59]. At the same time, some variables included
in the full model may be confounders and were also involved in the causal pathways
between NAFLD and gut microbiota (e.g., WHR and history of dyslipidemia). However, a
minimal adjustment model yielded similar results to the full model. Third, stool samples
were collected 2.2 to 35.3 years (median 9.5 years) after the first NAFLD diagnosis, while
we did not know how the disease may have progressed during this time. However, we did
not find significant effect modifications by time period: the NAFLD–time interaction was
not significant; the sex-specific associations presented in all tables generally remained when
we limited NAFLD cases to those diagnosed <15 years before stool collection (336 cases),
and association directions were consistent when limited to diagnosed <5 years (n = 68) or
≥15 years (n = 85) before stool collection. Fourth, stool samples were stored at −80 ◦C
for up to three years before sequencing. Although recent studies showed that long-term
storage at −80 ◦C (i.e., up to five years) has limited effects on 16S rRNA sequencing results
of human fecal samples [60,61], we do not know how the sample storage may have affected
our results, particularly for rare or low-abundance taxa. Finally, due to the bidirectional
relation between gut microbiota and NAFLD [62], how the observed microbiota alterations
may affect NAFLD development or progression is unclear and needs to be clarified in
future studies.

In summary, in a large cohort of older, urban Chinese adults, we found significant sex-
specific associations of NAFLD history with gut microbiome α-diversity and composition.
Further studies are needed to validate these findings and investigate whether those gut
microbial changes may play a role in the development or progression of NAFLD.
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