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Abstract
1.	 Length	and	depth	of	fish	larvae	are	part	of	the	fundamental	measurements	in	
many	marine	ecology	studies	involving	early	fish	life	history.	Until	now,	obtain-
ing	 these	measurements	 has	 required	 intensive	manual	 labor	 and	 the	 risk	 of	
inter-		and	intra-	observer	variability.

2.	 We	developed	an	open-	source	software	solution	to	semi-	automate	the	meas-
urement	process	and	thereby	reduce	both	time	consumption	and	technical	vari-
ability.	Using	contrast-	based	edge	detection,	the	software	segments	images	of	
a	fish	larva	into	“larva”	and	“background.”	Length	and	depth	are	extracted	from	
the	“larva”	segmentation	while	taking	curvature	of	the	larva	into	consideration.	
The	graphical	user	interface	optimizes	workflow	and	ease	of	usage,	thereby	re-
ducing	time	consumption	for	both	training	and	analysis.	The	software	allows	for	
visual	verification	of	all	measurements.

3.	 A	comparison	of	measurement	methods	on	a	set	of	 larva	images	showed	that	
this	 software	 reduces	measurement	 time	 by	 66%–	78%	 relative	 to	 commonly	
used	software.

4.	 Using	 this	 software	 instead	 of	 the	 commonly	 used	manual	 approach	 has	 the	
potential	to	save	researchers	from	many	hours	of	monotonous	work.	No	adjust-
ment	was	necessary	 for	89%	of	 the	 images	regarding	 length	 (70%	for	depth).	
Hence,	 the	 only	workload	 on	most	 images	was	 the	 visual	 inspection.	 As	 the	
visual	 inspection	and	manual	dimension	extraction	works	 in	 the	same	way	as	
currently	used	software,	we	expect	no	loss	in	accuracy.
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1  |  INTRODUC TION

Larval	 growth	 rate	 is	 a	 fundamentally	 important	 life	 history	 trait	
directly	 linked	to	fish	population	productivity	and	persistence.	For	
many	 fish	 populations,	 fast-	growing	 larvae	 have	 higher	 survival	
rates,	 largely	 by	 reducing	 larval	 stage	 duration	 in	 which	 they	 are	
exposed	 to	higher	predation	 risk	 (Houde,	2008).	Also,	 larger	body	
sizes	are	associated	with	increased	feeding	and	swimming	capacity	
of	 larvae,	 allowing	 them	 to	 search	 larger	water	 volumes,	 increase	
encounter	rates	with	prey,	feed	on	larger	organisms,	and	have	bet-
ter	escape	responses	from	predators	(Hale,	1996;	Miller	et	al.,	1988;	
Munk	&	Kiorboe,	1985;	Peck	et	al.,	2012).	Therefore,	body	length	is	
an	essential	measurement	in	studies	of	larval	fish	ecology	(Bils	et	al.,	
2017),	 development	 (Fuiman	 et	 al.,	 1998),	 physiology	 (Illing	 et	 al.,	
2016;	Petereit	et	al.,	2008),	evolution	 (Oomen	&	Hutchings,	2015,	
2016;	Oomen	et	al.,	2021),	reproductive	biology	(Roney	et	al.,	2018),	
and	aquaculture	(Blanco	et	al.,	2017).	Besides	length,	body	depth	is	
also	valuable,	as	it	can	be	used	as	a	proxy	for	muscle	development	
(i.e.,	myomere	height)	and	potential	starvation	resistance	 (Moyano	
et	al.,	2016;	Peña	et	al.,	2021).

Body	 size	 measurements	 of	 larval	 fish	 are	 generally	 taken	 on	
individuals	using	a	camera	attached	to	a	stereomicroscope.	On	the	
generated	 images,	 body	 length	 and	 depth	 are	measured	manually	
using	 a	 dedicated	 software,	 either	 open-	source	 (e.g.,	 ImageJ)	 or	
proprietary	 (e.g.,	Leica	Application	Suite).	Body	 length	 is	generally	
estimated	as	notochord	 length	 (tip	of	 the	 snout	 to	 the	end	of	 the	
notochord)	during	the	preflexion	stage	and	as	standard	length	(tip	of	
the	snout	to	the	posterior	extremity	of	the	hypural	plate)	afterwards	
(Kahn	et	al.,	2004).	Body	depth	is	generally	measured	as	maximum	
depth	at	the	head,	at	the	anus,	or	at	the	caudal	peduncle.	Even	with	
the	aid	of	dedicated	software,	these	manual	measurements	are	time	
consuming	because	 a	 typical	 laboratory	 study	 can	generate	 thou-
sands	of	images	(e.g.,	4489	by	Roney	et	al.	(2018)).	This	manual	work	
also	has	high	potential	for	introducing	intra-		and	inter-	observer	vari-
ability,	potentially	leading	to	increased	measurement	errors.

Here,	we	introduce	a	novel,	open-	source	application,	FishSizer,	
to	semi-	automate	measurements	of	larval	fish	length	and	myomere	
depth.	FishSizer	addresses	 the	 two	major	problems	of	 the	manual	
method	used	to	estimate	body	size	in	larval	fish	by	considerably	re-
ducing	the	amount	of	manual	work	and	potentially	decreasing	tech-
nical	variability.	Although	this	application	was	developed	specifically	
for	use	with	fish	 larvae,	 it	should	be	useful	 for	older	 life	stages	of	
fish	 (and	possibly	other	animals)	 for	which	satisfactory	 images	are	
available.

2  |  COMPUTATIONAL BACKGROUND

2.1  |  Overall method

All	 coding	 was	 done	 in	 Matlab	 2020a	 (The	MathWorks	 Inc.)	 and	
compiled	 into	 a	 single	 file	 for	 installation	 on	 computers	 without	
Matlab.	 Determination	 of	 length	 and	 depth	 of	 fish	 larvae	 from	

images	is	based	on	A	sequence	of	two	procedures:	(1)	producing	a	
mask	(a	binary	image	the	same	size	as	the	original	image)	segmented	
into	“larva”	and	“background”	and	(2)	determining	length	and	depth	
based	on	this	“larva”	segmentation.

2.2  |  Segmentation

For	morphometrics	assessments,	pictures	of	anesthetized	individual	
larvae	laying	on	a	microscope	slide	are	taken	under	a	stereomicro-
scope.	During	a	single	session,	a	user	may	typically	 take	hundreds	
of	pictures	of	 individual	 larvae,	so	the	zoom	level	 is	typically	fixed	
in	order	to	reduce	the	manipulation	time.	This	procedure	results	in	
the	background	being	mostly	uniform	(i.e.,	low	in	contrast)	with	the	
exception	of	lines	arising	from	scratches	on	the	glass	slide	and	water	
drops.	Due	to	this	low-	contrast	background,	segmentation	is	based	
on	edge	detection.	Edge	detection	 is	 a	method	of	establishing	 re-
gions	where	the	contrast	between	neighboring	pixels	in	an	image	is	
above	a	certain	preset	threshold.	Edge	detection	has	the	advantage	
of	being	applicable	across	species	and/or	stage	of	the	larvae	being	
measured.	More	advanced	methods,	 such	as	deep	 learning,	will	 in	
most	 cases	 need	 retraining	 of	 the	 network	 to	 correctly	 segment	
species	not	previously	encountered	by	the	network	(Kvæstad	et	al.,	
2022).	Deep	learning	has	the	additional	drawback	of	having	higher	
hardware	demands	compared	to	this	less	computationally	intensive	
approach	 (LeCun,	 2019).	 In	 order	 to	 determine	 a	 robust	 edge	 de-
tection	threshold	across	a	wide	range	of	images,	we	determine	the	
maximum	contrast	present	in	the	image	and	set	the	threshold	as	a	
customizable	fraction	of	this	value.	Many	images	used	for	larval	fish	
length	measurements	contain	scale	bars	or	other	high-	contrast	ob-
jects.	To	avoid	basing	the	contrast	threshold	on	these	artifacts,	this	
software	offers	the	option	of	establishing	a	region	of	interest	(ROI)	
within	which	the	segmentation	is	contained.

Running	the	edge	detection	algorithm	on	an	image	creates	a	bi-
nary	mask	with	pixel	values	of	1	at	edges	and	0	at	other	 locations	
(see	Figure	1	for	the	segmentation	process	illustrated).	The	aim	is	to	
have	a	complete	outline	of	the	larva	and	subsequentially	fill	 in	this	
outline.	In	practice,	the	detected	outline	can	be	incomplete,	leaving	
small	gaps	and	resulting	in	faulty	segmentation.	We	therefore	dilate	
all	detected	edge	pixels	by	a	customizable	factor	(default	=	3),	which	
can	 result	 in	 exaggerated	edges.	These	artifacts	 are	 compensated	
for	using	image	erosion,	a	process	of	setting	all	pixel	values	within	
a	morphological	structuring	element	(in	this	case	a	diamond)	to	the	
minimum	values	within	said	element.	After	erosion,	all	areas	within	
the	mask	that	are	surrounded	by	edges	are	then	filled	in.	The	larva	
must	be	completely	visible	in	the	image	and	not	touching	any	edge	
of	 the	 image.	All	areas	connected	to	an	 image	border	are	 ignored.	
This	is	done	because	there	often	are	drops	of	water	across	the	pic-
ture,	creating	a	high-	contrast	line	from	one	point	on	the	edge	of	the	
image	to	another	(first	image	example	in	the	manual	shows	a	typical	
situation).	The	largest	segment	is	selected	as	the	larva	and	remaining	
segments	are	collectively	labeled	as	background.	For	visual	verifica-
tion	of	the	segmentation,	the	original	image	with	the	corresponding	
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semi-	transparent	mask	overlaid	is	shown	in	the	graphical	user	inter-
face	(Figure	2,	top	left	window).	For	further	analysis,	we	extract	ori-
entation	for	an	ellipse	that	best	represents	this	region.

In	order	to	minimize	the	need	to	adjust	parameter	settings,	and	
make	the	software	as	user	friendly	as	possible,	we	aimed	to	make	the	
segmentation	as	robust	as	possible.	We	found	that	a	Gaussian	image	
filter	with	a	standard	deviation	of	four	pixels	followed	by	an	image	
sharpening	algorithm	with	the	same	standard	deviation	significantly	
improved	segmentation	 (e.g.,	Figure	3).	When	applying	a	Gaussian	
image	filter,	the	value	of	each	pixel	is	influenced	by	the	value	of	all	
neighboring	pixels.	Hence,	small	regions	in	the	outline	with	low	con-
trast	can	have	increased	contrast	after	the	procedure	and,	therefore,	
a	better	chance	of	complete	edge	detection.

2.3  |  Length and depth measurement

Length	and	depth	estimation	is	done	using	the	segmentation	mask.	
The	first	step	is	to	rotate	the	mask	using	the	orientation	of	the	major	
axis	of	 the	ellipse	 fitted	 to	 the	 larva	outline.	This	 rotation	 is	done	

using	the	imrotate.m	function	in	MATLAB.	By	default,	imrotate	uses	
nearest-	neighbor	 interpolation,	 setting	 the	 values	 of	 pixels	 in	 the	
final	image	that	are	outside	the	rotated	image	to	0.	Alignment	with	
the	horizontal	(X)	axis	allows	the	use	of	a	polynomial	regression	for	
length	 estimation.	 It	 also	 allows	depth	 estimation	based	 solely	 on	
the	Y	component	at	a	customizable	 location	 relative	 to	 the	 length	
(X	axis).	The	next	step	is	to	establish	which	end	is	the	head	end	by	
dividing	the	 larva	 into	two	halves	of	equal	 length	and	determining	
which	end	contains	more	pixels	 in	 the	 segmented	mask.	This	pro-
cedure	assumes	that	the	anterior	half	of	the	larva	is	larger	than	the	
posterior	half.

Length	 estimation	 is	 based	 on	 a	 polynomial	 regression	 line	
through	the	larva	segmentation	that	best	describes	the	curvature	
of	the	larva.	As	larval	fish	are	often	curved,	we	use	second-	order	
or	greater	polynomial	regression.	Presence	of	a	large	yolk	sac	af-
fects	the	regression,	such	that	a	larva	with	straight	notochord	and	
large	yolk	 sac	will	 yield	 a	 curved	 regression	 that	does	not	 accu-
rately	represent	the	larva's	length.	To	avoid	this,	we	base	the	order	
of	 the	 regression	on	 the	curvature	of	 the	 tail	 alone.	The	greater	
the	curvature,	the	higher	the	order	of	the	polynomial	regression.	

F I G U R E  1 Segmentation	process	
illustrated.	(a)	Original	image;	(b)	Edge	
detection	on	Gaussian	filtered	image;	(c)	
Dilation	of	all	edges	followed	by	erosion;	
(d)	Filling	in	all	enclosed	areas;	(e)	Keeping	
only	areas,	removing	lines;	(f)	Keep	only	
largest	area	and	extraction	orientation	
(segmentation	superimposed	on	original	
image	for	comparison)

(a)

(c)

(b)

(d)

(e) (f)
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A	 lower-	order	 regression	on	a	 larva	predicted	 to	be	 straight	will	
result	 in	a	straighter	regression	and	hence	a	more	precise	length	
estimation.	 Therefore,	 a	 second-	order	 polynomial	 regression	 is	
computed	for	the	tail	part	of	the	 larva	and,	since	the	 larva	 is	ro-
tated	to	be	horizontal,	both	coefficients	of	this	regression	indicate	
the	amount	of	curvature	of	the	entire	larva.	If	the	absolute	value	
of	the	second-	degree	coefficient	is	>0.1	or	the	absolute	value	of	
the	 first-	degree	 coefficient	 is	>0.5,	 a	 third-	order	 polynomial	 re-
gression	 is	 used	 for	 the	 entire	 larva.	Otherwise,	 a	 second-	order	
polynomial	regression	is	used.

Depth	 is	determined	at	 a	 customizable	 location	 relative	 to	 the	
length	of	the	larva	(X	axis	in	Figure	2,	window	2).	Because	the	seg-
mented	larvae	are	rotated	to	be	horizontal,	a	good	approximation	of	
the	depth	is	the	difference	between	the	maximum	and	minimum	Y	
values	at	the	user-	defined	X	location.	To	make	depth	determination	
less	dependent	on	precise	point-	to-	point	segmentation,	depth	is	not	
calculated	at	a	single	point	but	rather	as	the	median	of	all	depths	cal-
culated	at	the	user-	defined	location	±5%	of	the	length	of	the	larva.	
For	visual	verification,	length	and	depth	estimation	lines	are	shown	
in	the	main	graphical	user	interface	(Figure	2	window	2).

3  |  PROGR AM DESCRIPTION

3.1  |  Main GUI window description

The	interface	of	this	software	is	split	 into	two	main	graphical	user	
interfaces:	 the	main	GUI	and	 the	 loading	GUI.	The	main	graphical	
user	interface	contains	four	windows	and	five	button	panels	as	seen	
in	Figure	2.	Top	left	window	shows	the	original	image	overlaid	with	a	
semi-	transparent	larva	segmentation	mask	for	visual	confirmation	of	

correct	segmentation.	Top	right	window	shows	the	rotated	segmen-
tation	mask	with	length	and	depth	estimation	lines	overlaid,	allow-
ing	for	verification	of	correct	placement	of	the	two	measurements.	
Bottom	left	window	displays	the	length	estimates	for	all	images	(rep-
resented	as	circles),	to	facilitate	outlier	detection.	The	active	image	
shown	in	windows	1	and	2	is	color-	coded	red.	The	software	allows	
for	manual	estimation	of	length	and	depth	if	the	automated	estima-
tion	is	unsatisfactory.	If	manual	estimation	is	used,	the	marker	rep-
resenting	the	image	is	changed	from	a	circle	to	a	diamond.	Bottom	
right	window	shows	the	depth	estimation	for	all	images	and	uses	the	
same	marker	symbolism	as	window	3.

3.2  |  Main GUI button description

Buttons	 in	 the	 GUI	 are	 grouped	 according	 to	 function	 (Figure	 2).	
Icons	 for	 zooming	 top	 left	window	are	 in	 the	 top	 left	 corner.	 The	
magnifying	glass	with	a	“+”	symbol	zooms	in.	The	magnifying	glass	
with	a	“−“	symbol	zooms	out.	The	notepad	with	crosshairs	displays	
values	for	the	selected	pixel.	The	“hand”	symbol	moves	the	zoomed	
image.	The	button	for	opening	the	loading	GUI	is	located	above	the	
top	left	window,	as	are	settings	for	segmentation.	See	section	3.1.2	
and	the	FishSizer	manual	for	details.

Above	the	top	right	window	are	three	displays	corresponding	to	
(1)	the	filename	of	the	active	image,	(2)	the	depth	estimate,	and	(3)	
the	length	estimate.	The	values	are	displayed	in	millimeters	(mm)	if	a	
calibration	has	been	performed	(see	section	3.3).

Below	the	top	left	window	are	buttons	for	manual	measurements.	
To	the	left	are	buttons	for	excluding	the	active	image	from	a	dataset	if	
its	quality	is	insufficient:	one	for	excluding	the	image	and	one	for	re-
versing	the	action.	“Manual	length”	and	“Manual	depth”	buttons	allow	

F I G U R E  2 Graphical	user	interface	(1)	Panel	associated	with	loading	and	segmentation	settings.	(2)	Information	about	the	active	image.	(3)	
Top	left	window	displaying	original	image	in	black	and	white	with	segmentation	mask	overlayed	in	blue.	(4)	Top	right	window	displaying	zoomed	
in	larva	segmentation	with	length	and	depth	estimation	locations	marked.	(5)	Bottom	left	window	giving	overview	of	length	estimations	for	
all	images	for	easy	outlier	detection.	(6)	Bottom	right	window	giving	overview	of	depth	estimation	for	all	images	for	easy	outlier	detection.	(7)	
Manual	measurement	panel.	(8)	Slider	for	navigating	between	images.	(9)	Export	data	button	for	extracting	data	into	CSV	file

1 2

3 4

5 6

87 9
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the	user	to	manually	draw	lines	in	top	left	window	to	measure	length	
and	depth.	To	the	right	of	these	two	buttons	is	a	panel	for	setting	the	
number	of	line	segments	needed	to	make	the	measurement.	The	de-
fault	for	measuring	length	is	2,	as	most	larvae	are	slightly	curved	and	
hence	a	line	consisting	of	two	segments	will	give	a	more	accurate	es-
timate	of	the	length	than	one	straight	line.	If	the	number	of	segments	
is	set	greater	than	needed	for	a	particular	larva,	pressing	“enter”	after	
marking	fewer	segments	will	complete	the	measurement.	The	default	
number	of	segments	for	manually	measuring	depth	is	1,	which	usually	
is	sufficient.	To	the	right	are	buttons	for	cancelling	the	manual	length	
or	depth	estimations	and	reverting	to	the	automated	estimations.

Below	the	top	right	window	are	controls	for	navigating	the	image	
files	and	exporting	data	to	a	comma-	delimited	file	(.csv).	To	the	left	
is	 a	 slider	 for	 selecting	 images	 from	 the	 loaded	 dataset.	 For	 opti-
mized	workflow,	hotkey	functions	are	associated	with	this.	Pressing	

“a”	selects	the	image	prior	to	the	active	image,	pressing	“s”	selects	
the	image	after	the	active	image.	To	the	right	is	the	export	data	but-
ton.	Data	 can	be	 exported	both	with	 and	without	 calibration	 into	
millimeters	(mm).	The	“export	data”	button	is	yellow	if	data	have	not	
been	calibrated	(measurement	reported	in	units	of	pixels)	and	green	
if	calibration	into	millimeters	(mm)	has	been	applied	to	the	dataset.

3.2.1  |  Loading	GUI	description

This	GUI	 provides	 the	 options	 to	 (1)	 load	 a	 test	 image	 for	 testing	
and	adjusting	the	segmentation	settings,	and	(2)	establish	a	region	of	
interest	(Figure	4).	“Load	test	image”	opens	a	dialog	box	allowing	the	
user	to	select	a	typical	 image	from	the	dataset.	The	settings	panel	
below	 the	 “Load	 test”	 button	 contains	 three	buttons:	 “Threshold”	

F I G U R E  3   Example	of	difference	in	segmentation	with	and	without	Gaussian	image	filtering.	(a)	Original	image.	Red	square	marks	area	
shown	in	(b)	and	(c).	(b)	Zoomed	image	of	edge	detection	without	Gaussian	image	filtering	(after	dilation).	Red	arrows	point	to	gaps	in	the	
outline	of	the	larva;	(c)	zoomed	in	image	of	edge	detection	with	Gaussian	image	filtering	(after	dilation).	Outline	of	the	larva	is	uninterrupted;	
(d)	resulting	segmentation	without	Gaussian	image	filtering.	As	the	outline	of	larvae	was	incomplete,	the	software	failed	to	segment	the	larva	
but	instead	segmented	the	text	box	in	the	upper	left	corner.	(e)	Resulting	segmentation	from	using	Gaussian	image	filtering.	As	there	were	
no	gaps	in	the	outline	of	the	larva,	segmentation	was	correct

Edge detec�on without Gaussian filtering Edge detec�on with Gaussian filtering

Original image(a)

(c)(b)

(d) (e)
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sets	the	fraction	of	maximum	contrast	 (see	section	2.2).	 “Dilation”	
sets	the	number	of	dilations	applied	to	each	edge-	detected	pixel	(see	
section	 2.2).”	Depth	 offset”	 determines	 the	 location	 of	 the	 depth	
measurement	in	percentage	of	total	larval	length	from	the	head.	If	
set	to	50,	depth	is	measured	at	the	midpoint	of	the	larva	along	the	X	
axis	in	window	2	of	the	main	GUI.

The	ROI	panel	 contains	 three	buttons	 for:	 (1)	 setting	 a	 rect-
angular	 ROI,	 (2)	 setting	 a	 circular	 ROI,	 and	 (3)	 cancelling	 a	 set	
ROI.	 The	 “Test	 settings”	 button	 processes	 the	 test	 image	 using	
the	current	setting	for	segmentation	and	ROI	and	displays	the	re-
sult	 for	 visual	 inspection.	 A	 calibration	 panel	 below	 the	 central	
image	panel	contains	two	buttons	for:	(1)	creating	a	new	calibra-
tion	 file,	 and	 (2)	 retrieving	 a	 previously	 created	 calibration	 file.	
These	calibration	files	change	the	dimensions	from	pixels	to	mil-
limeter.	 Pressing	 the	Create	Calibration	 button	 opens	 up	 a	 new	
GUI	for	marking	a	known	distance	on	an	image	that	contains	a	vis-
ible	scale	(see	the	manual	for	details).	The	Retrieve	buttons	allow	

for	 loading	 calibration	 files	 previously	 created	 via	 the	 Create	
Calibration	button.

3.3  |  Workflow

A	typical	workflow	with	a	set	of	images	is	first	to	confirm	or	change	
the	segmentation	settings	on	the	 loading	GUI.	 It	 is	recommended	
to	load	a	test	image	and	try	settings	before	loading	the	entire	data-
set.	By	visually	inspecting	segmentation	on	images	of	Atlantic	cod	
(Gadus morhua),	Atlantic	bluefin	tuna	(Thunnus thynnus),	Pufferfish	
(Tetraodontidae	 spp.),	 European	 plaice	 (Pleuronectes platessa),	
Southern	 flounder	 (Paralichthys lethostigma),	 and	 Atlantic	 herring	
(Clupea harengus)	generated	by	different	users,	we	found	a	default	
values	of	0.55	 for	 threshold	 and	3	 for	dilation	 to	be	 appropriate.	
Lowering	 the	 threshold	 can	be	helpful	 if	 not	 enough	of	 the	 larva	
is	segmented	and	the	background	contains	little	contrast.	Optimal	

Column number Name Description

1 FileName Name	of	image	file

2 Length_px Length	in	pixels.	If	no	manual	measurement	
was	done,	automated	estimation	is	used

3 LengthAutomated_px Automated	length	estimation	in	pixels

4 Depth_px Depth	in	pixels.	If	no	manual	measurement	
was	done,	automated	estimation	is	used

5 DepthAutomated_px Automated	depth	estimation	in	pixels

6 Length_mm Length	in	mm.	If	no	manual	length	was	done,	
automated	is	used

7 LengthAutomated_mm Automated	length	estimation	in	mm

8 Depth_mm Depth	in	mm.	If	no	manual	measurement	was	
done,	automated	estimation	is	used

9 DepthAutomated_mm Automated	depth	estimation	in	mm

Red	columns	are	present	only	when	data	calibration	has	been	performed.

TA B L E  1 Data	in	exported	file

F I G U R E  4 Loading	GUI.	(1)	Load	test	
image.	(2)	Set	segmentation	settings	
and	location	for	depth	measurement.	
(3)	Set	rectangular	or	circular	ROI	for	
segmentation.	(4)	Test	settings	and	
ROI.	(5)	Calibrate	pixel	measurements	
into	millimeters.	(6)	Load	dataset	using	
settings	displayed	in	Panel	2.	(7)	Window	
displaying	effect	of	settings	on	test	image

1

2

3

4 5 6

7
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depth	location	depends	on	the	species	of	fish	being	researched.	For	
Atlantic	cod	(Gadus morhua)	and	Atlantic	bluefin	tuna	(Thunnus thyn-
nus),	 the	default	of	50	achieved	good	results,	meaning	that	depth	
was	measured	at	the	midpoint	of	the	length	of	the	larva.	Calibration	
of	pixel-	based	measurements	 into	millimeters	 is	done	via	the	cali-
bration	panel,	either	by	retrieving	a	previously	created	calibration	
file	 or	 by	 creating	 a	 new	 one	 (see	manual	 for	 details).	 After	 cali-
bration,	the	“Load	dataset”	button	is	green	to	reflect	that	calibra-
tion	has	been	done.	After	visual	validation	of	correct	segmentation	
settings,	 images	 are	 loaded	with	 the	 “Load	 images”	 button,	 after	
which	a	progress	bar	appears.	When	the	progress	bar	disappears,	
the	slider	below	window	2	in	the	main	GUI,	as	well	as	hotkeys	“a”	
and	“s”,	can	be	used	to	navigate	the	dataset.	 If	automatic	estima-
tion	is	satisfactory,	no	additional	work	is	needed,	and	the	user	can	
move	to	the	next	image.	If	the	automatic	estimation	is	unsatisfac-
tory,	manual	length	and	depth	extraction	is	done	in	the	same	way	
as	ImageJ.	The	“Export	data”	button	is	green	if	calibration	has	been	
performed	and	pressing	the	button	will	produce	a	comma-	delimited	
file	with	five	(without	calibration)	or	nine	(with	calibration)	columns	
containing	data	as	described	in	Table	1.

4  |  PERFORMANCE E VALUATION

Performance	 of	 this	 software	 depends	 heavily	 on	 the	 quality	 of	
the	images	used.	We	tested	it	on	a	set	of	101	haphazardly	chosen	
tuna	 larva	 images.	Here,	 the	 software	 estimated	 the	 length	 cor-
rectly	(±5%	of	total	larva	length)	in	89%	and	depth	in	70%	of	the	
images.	A	comparison	of	the	length	and	depth	values	extracted	via	
the	 semi-	automated	method	of	 FishSizer	with	 the	manual	meas-
urements	from	ImageJ	showed	strong	agreement	throughout	the	

range	of	sizes	measured	(Figure	5).	A	paired	t	test	(α =	.05)	showed	
no	difference	in	the	measurements	(length:	p =	.49,	depth	p =	.27).	
Time	savings	were	calculated	compared	to	ImageJ	(Schneider	et	al.,	
2012),	a	commonly	used	software	for	this	task.	Two	independent	
observers	went	through	the	test	dataset	and	extracted	length	and	
depth	 in	 FishSizer,	 including	 visually	 verifying	 all	measurements.	
Compared	 to	 extracting	 the	 same	measurements	 from	 the	 same	
dataset	in	ImageJ,	a	time	saving	of	66	and	78%	was	observed	for	
observer	 1	 (R1)	 and	 2	 (R2),	 respectively.	 Intra-	observer	 variabil-
ity	 is	 expected	 to	 be	 lower	 using	 FishSizer	 compared	 to	 ImageJ	
as	the	threshold	for	accepting	automatic	parameter	extraction	will	
remain	 fairly	constant	 for	each	observer.	For	manually	extracted	
parameters	 in	FishSizer,	variability	 is	expected	to	be	the	same	as	
ImageJ,	as	the	process	for	manual	extraction	 is	 the	same	 in	both	
software	packages.

To	examine	 inter-	observer	variability	compared	 to	 ImageJ,	we	
analyzed	 data	 from	 two	 observers	 to	 compare	 percentage-	wise	
differences	in	length	and	depth	measurements	across	101	haphaz-
ardly	 chosen	 tuna	 larva	 images	 (Figure	6).	 For	 length	we	 found	a	
deviation	between	the	two	observers	of	2.69%±3.35%	(mean±std)	
for	FishSizer	compared	to	3.13%	±	4.54%	for	ImageJ.	For	depth	we	
found	a	mean	of	15.6%	±	14.6%	for	FishSizer	and	19.8%	±	34.0%	
for	 ImageJ.	 Therefore,	 there	were	 a	 small	 but	 not	 significant	 dif-
ference	between	the	two	software	packages	for	both	parameters.	
For	 visual	 representation	 of	 the	 variability	 using	 a	 Bland–	Altman	
graph,	see	Figure	6.	One	 important	aspect	of	variability	 is	human	
error.	In	FishSizer,	all	handling	of	parameters	and	data	output	is	au-
tomatic	and	linked	to	the	image	file	name.	Therefore,	FishSizer	has	
less	potential	to	introduce	human	errors	than	other	programs	which	
can	 require	manual	data	 curation	 (e.g.,	 using	copy/paste),	 such	as	
ImageJ.

F I G U R E  5 Length	(a)	and	depth	(b)	from	101	haphazardly	selected	images	of	tuna	larvae	representing	various	developmental	stages	
measured	in	imageJ	versus	FishSizer.	For	both	dimensions,	a	paired	t	test	shows	no	difference	in	the	measurements	on	a	5%	significance	
level	(Length:	p =	.49;	depth	p =	.27)

(a) (b)
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5  |  CONCLUSION AND FUTURE 
DIREC TIONS

The	 partial	 automation	 of	 obtaining	 larval	 morphological	 meas-
urements	 in	 this	 software	 saves	 a	 considerable	 amount	 of	 time	
compared	to	the	manual	procedure	used	so	far.	Even	when	all	meas-
urements	obtained	via	our	software	were	manually	verified	and	cor-
rected,	we	experienced	a	time	saving	of	66%–	78%.

When	tested	across	a	range	of	species,	we	found	the	software	
to	 achieve	 good	 segmentation	 for	 a	 wide	 range	 of	 species	 like	
Atlantic	cod,	Atlantic	bluefin	tuna,	Pufferfish,	European	plaice,	and	
Southern	 flounder	 using	 a	 rectangular	 ROI,	 and	 Atlantic	 herring	
using	a	circular	ROI.	(Figure	7).	As	the	parameter	extraction	relies	
heavily	 on	 segmentation,	we	 expect	 that	 the	 accuracy	 for	 these	
and	similar	species	will	be	the	same	as	seen	for	the	tuna	statisti-
cally	investigated	here.	Unfortunately,	as	the	software	is	based	on	

F I G U R E  6 Bland–	Altman	plot	for	inter-	observer	variability	for	101	haphazardly	chosen	tuna	larva	images.	Y	axes	show	percentage	
deviation	between	two	observers,	R1	and	R2.	X	axes	show	mean	of	the	two	observations.	(a)	Plot	for	length	and	(b)	Plot	for	depth

(a) (b)
R1

-
)

%( )2R,1R(nae
m/2R

mean(R1,R2) (mm)

F I G U R E  7 Examples	of	correct	segmentation	across	species	and	stages.	(a)	Atlantic	cod	(Gadus morhua),	(b)	Atlantic	bluefin	tuna	(Thunnus 
thynnus),	(c)	Pufferfish	(Tetraodontidae	spp.),	(d)	European	plaice	(Pleuronectes platessa),	and	(e)	Southern	flounder	(Paralichthys lethostigma)	
using	a	rectangular	ROI,	and	(f)	Atlantic	herring	(Clupea harengus)	using	a	circular	ROI

(a) (b) (c)

(d) (e) (f)
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contrast	detection,	we	found	the	quality	of	images	to	be	essential.	
High-	contrast	artefacts	in	direct	contact	with	the	larva	can	hinder	
correct	 segmentation	 and	 thereby	 correct	 parameter	 extraction	
(Figure	8).

A	 logical	 future	 direction	 for	 this	 software	will	 be	 to	 include	
deep	 learning.	 This	 current	 version	 of	 FishSizer	 can	 help	 create	
large	 datasets	 of	 segmented	 larva	 images	 to	 be	 used	 as	 ground	
truth	for	training	neural	networks.	Deep	learning	will	not	only	fa-
cilitate	analysis	of	images	with	more	than	one	larva,	a	sought	after	
feature	for	this	kind	of	software,	but	it	will	also	open	the	door	to	
automatic	species	and/or	stage	identification	of	 larval	fish,	which	
is	far	behind	other	pelagic	marine	organisms	such	as	plankton	(Guo	
et	al.,	2021).
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