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Abstract
1.	 Length and depth of fish larvae are part of the fundamental measurements in 
many marine ecology studies involving early fish life history. Until now, obtain-
ing these measurements has required intensive manual labor and the risk of 
inter- and intra-observer variability.

2.	 We developed an open-source software solution to semi-automate the meas-
urement process and thereby reduce both time consumption and technical vari-
ability. Using contrast-based edge detection, the software segments images of 
a fish larva into “larva” and “background.” Length and depth are extracted from 
the “larva” segmentation while taking curvature of the larva into consideration. 
The graphical user interface optimizes workflow and ease of usage, thereby re-
ducing time consumption for both training and analysis. The software allows for 
visual verification of all measurements.

3.	 A comparison of measurement methods on a set of larva images showed that 
this software reduces measurement time by 66%–78% relative to commonly 
used software.

4.	 Using this software instead of the commonly used manual approach has the 
potential to save researchers from many hours of monotonous work. No adjust-
ment was necessary for 89% of the images regarding length (70% for depth). 
Hence, the only workload on most images was the visual inspection. As the 
visual inspection and manual dimension extraction works in the same way as 
currently used software, we expect no loss in accuracy.
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1  |  INTRODUC TION

Larval growth rate is a fundamentally important life history trait 
directly linked to fish population productivity and persistence. For 
many fish populations, fast-growing larvae have higher survival 
rates, largely by reducing larval stage duration in which they are 
exposed to higher predation risk (Houde, 2008). Also, larger body 
sizes are associated with increased feeding and swimming capacity 
of larvae, allowing them to search larger water volumes, increase 
encounter rates with prey, feed on larger organisms, and have bet-
ter escape responses from predators (Hale, 1996; Miller et al., 1988; 
Munk & Kiorboe, 1985; Peck et al., 2012). Therefore, body length is 
an essential measurement in studies of larval fish ecology (Bils et al., 
2017), development (Fuiman et al., 1998), physiology (Illing et al., 
2016; Petereit et al., 2008), evolution (Oomen & Hutchings, 2015, 
2016; Oomen et al., 2021), reproductive biology (Roney et al., 2018), 
and aquaculture (Blanco et al., 2017). Besides length, body depth is 
also valuable, as it can be used as a proxy for muscle development 
(i.e., myomere height) and potential starvation resistance (Moyano 
et al., 2016; Peña et al., 2021).

Body size measurements of larval fish are generally taken on 
individuals using a camera attached to a stereomicroscope. On the 
generated images, body length and depth are measured manually 
using a dedicated software, either open-source (e.g., ImageJ) or 
proprietary (e.g., Leica Application Suite). Body length is generally 
estimated as notochord length (tip of the snout to the end of the 
notochord) during the preflexion stage and as standard length (tip of 
the snout to the posterior extremity of the hypural plate) afterwards 
(Kahn et al., 2004). Body depth is generally measured as maximum 
depth at the head, at the anus, or at the caudal peduncle. Even with 
the aid of dedicated software, these manual measurements are time 
consuming because a typical laboratory study can generate thou-
sands of images (e.g., 4489 by Roney et al. (2018)). This manual work 
also has high potential for introducing intra- and inter-observer vari-
ability, potentially leading to increased measurement errors.

Here, we introduce a novel, open-source application, FishSizer, 
to semi-automate measurements of larval fish length and myomere 
depth. FishSizer addresses the two major problems of the manual 
method used to estimate body size in larval fish by considerably re-
ducing the amount of manual work and potentially decreasing tech-
nical variability. Although this application was developed specifically 
for use with fish larvae, it should be useful for older life stages of 
fish (and possibly other animals) for which satisfactory images are 
available.

2  |  COMPUTATIONAL BACKGROUND

2.1  |  Overall method

All coding was done in Matlab 2020a (The MathWorks Inc.) and 
compiled into a single file for installation on computers without 
Matlab. Determination of length and depth of fish larvae from 

images is based on A sequence of two procedures: (1) producing a 
mask (a binary image the same size as the original image) segmented 
into “larva” and “background” and (2) determining length and depth 
based on this “larva” segmentation.

2.2  |  Segmentation

For morphometrics assessments, pictures of anesthetized individual 
larvae laying on a microscope slide are taken under a stereomicro-
scope. During a single session, a user may typically take hundreds 
of pictures of individual larvae, so the zoom level is typically fixed 
in order to reduce the manipulation time. This procedure results in 
the background being mostly uniform (i.e., low in contrast) with the 
exception of lines arising from scratches on the glass slide and water 
drops. Due to this low-contrast background, segmentation is based 
on edge detection. Edge detection is a method of establishing re-
gions where the contrast between neighboring pixels in an image is 
above a certain preset threshold. Edge detection has the advantage 
of being applicable across species and/or stage of the larvae being 
measured. More advanced methods, such as deep learning, will in 
most cases need retraining of the network to correctly segment 
species not previously encountered by the network (Kvæstad et al., 
2022). Deep learning has the additional drawback of having higher 
hardware demands compared to this less computationally intensive 
approach (LeCun, 2019). In order to determine a robust edge de-
tection threshold across a wide range of images, we determine the 
maximum contrast present in the image and set the threshold as a 
customizable fraction of this value. Many images used for larval fish 
length measurements contain scale bars or other high-contrast ob-
jects. To avoid basing the contrast threshold on these artifacts, this 
software offers the option of establishing a region of interest (ROI) 
within which the segmentation is contained.

Running the edge detection algorithm on an image creates a bi-
nary mask with pixel values of 1 at edges and 0 at other locations 
(see Figure 1 for the segmentation process illustrated). The aim is to 
have a complete outline of the larva and subsequentially fill in this 
outline. In practice, the detected outline can be incomplete, leaving 
small gaps and resulting in faulty segmentation. We therefore dilate 
all detected edge pixels by a customizable factor (default = 3), which 
can result in exaggerated edges. These artifacts are compensated 
for using image erosion, a process of setting all pixel values within 
a morphological structuring element (in this case a diamond) to the 
minimum values within said element. After erosion, all areas within 
the mask that are surrounded by edges are then filled in. The larva 
must be completely visible in the image and not touching any edge 
of the image. All areas connected to an image border are ignored. 
This is done because there often are drops of water across the pic-
ture, creating a high-contrast line from one point on the edge of the 
image to another (first image example in the manual shows a typical 
situation). The largest segment is selected as the larva and remaining 
segments are collectively labeled as background. For visual verifica-
tion of the segmentation, the original image with the corresponding 
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semi-transparent mask overlaid is shown in the graphical user inter-
face (Figure 2, top left window). For further analysis, we extract ori-
entation for an ellipse that best represents this region.

In order to minimize the need to adjust parameter settings, and 
make the software as user friendly as possible, we aimed to make the 
segmentation as robust as possible. We found that a Gaussian image 
filter with a standard deviation of four pixels followed by an image 
sharpening algorithm with the same standard deviation significantly 
improved segmentation (e.g., Figure 3). When applying a Gaussian 
image filter, the value of each pixel is influenced by the value of all 
neighboring pixels. Hence, small regions in the outline with low con-
trast can have increased contrast after the procedure and, therefore, 
a better chance of complete edge detection.

2.3  |  Length and depth measurement

Length and depth estimation is done using the segmentation mask. 
The first step is to rotate the mask using the orientation of the major 
axis of the ellipse fitted to the larva outline. This rotation is done 

using the imrotate.m function in MATLAB. By default, imrotate uses 
nearest-neighbor interpolation, setting the values of pixels in the 
final image that are outside the rotated image to 0. Alignment with 
the horizontal (X) axis allows the use of a polynomial regression for 
length estimation. It also allows depth estimation based solely on 
the Y component at a customizable location relative to the length 
(X axis). The next step is to establish which end is the head end by 
dividing the larva into two halves of equal length and determining 
which end contains more pixels in the segmented mask. This pro-
cedure assumes that the anterior half of the larva is larger than the 
posterior half.

Length estimation is based on a polynomial regression line 
through the larva segmentation that best describes the curvature 
of the larva. As larval fish are often curved, we use second-order 
or greater polynomial regression. Presence of a large yolk sac af-
fects the regression, such that a larva with straight notochord and 
large yolk sac will yield a curved regression that does not accu-
rately represent the larva's length. To avoid this, we base the order 
of the regression on the curvature of the tail alone. The greater 
the curvature, the higher the order of the polynomial regression. 

F I G U R E  1 Segmentation process 
illustrated. (a) Original image; (b) Edge 
detection on Gaussian filtered image; (c) 
Dilation of all edges followed by erosion; 
(d) Filling in all enclosed areas; (e) Keeping 
only areas, removing lines; (f) Keep only 
largest area and extraction orientation 
(segmentation superimposed on original 
image for comparison)

(a)

(c)

(b)

(d)

(e) (f)
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A lower-order regression on a larva predicted to be straight will 
result in a straighter regression and hence a more precise length 
estimation. Therefore, a second-order polynomial regression is 
computed for the tail part of the larva and, since the larva is ro-
tated to be horizontal, both coefficients of this regression indicate 
the amount of curvature of the entire larva. If the absolute value 
of the second-degree coefficient is >0.1 or the absolute value of 
the first-degree coefficient is >0.5, a third-order polynomial re-
gression is used for the entire larva. Otherwise, a second-order 
polynomial regression is used.

Depth is determined at a customizable location relative to the 
length of the larva (X axis in Figure 2, window 2). Because the seg-
mented larvae are rotated to be horizontal, a good approximation of 
the depth is the difference between the maximum and minimum Y 
values at the user-defined X location. To make depth determination 
less dependent on precise point-to-point segmentation, depth is not 
calculated at a single point but rather as the median of all depths cal-
culated at the user-defined location ±5% of the length of the larva. 
For visual verification, length and depth estimation lines are shown 
in the main graphical user interface (Figure 2 window 2).

3  |  PROGR AM DESCRIPTION

3.1  |  Main GUI window description

The interface of this software is split into two main graphical user 
interfaces: the main GUI and the loading GUI. The main graphical 
user interface contains four windows and five button panels as seen 
in Figure 2. Top left window shows the original image overlaid with a 
semi-transparent larva segmentation mask for visual confirmation of 

correct segmentation. Top right window shows the rotated segmen-
tation mask with length and depth estimation lines overlaid, allow-
ing for verification of correct placement of the two measurements. 
Bottom left window displays the length estimates for all images (rep-
resented as circles), to facilitate outlier detection. The active image 
shown in windows 1 and 2 is color-coded red. The software allows 
for manual estimation of length and depth if the automated estima-
tion is unsatisfactory. If manual estimation is used, the marker rep-
resenting the image is changed from a circle to a diamond. Bottom 
right window shows the depth estimation for all images and uses the 
same marker symbolism as window 3.

3.2  |  Main GUI button description

Buttons in the GUI are grouped according to function (Figure 2). 
Icons for zooming top left window are in the top left corner. The 
magnifying glass with a “+” symbol zooms in. The magnifying glass 
with a “−“ symbol zooms out. The notepad with crosshairs displays 
values for the selected pixel. The “hand” symbol moves the zoomed 
image. The button for opening the loading GUI is located above the 
top left window, as are settings for segmentation. See section 3.1.2 
and the FishSizer manual for details.

Above the top right window are three displays corresponding to 
(1) the filename of the active image, (2) the depth estimate, and (3) 
the length estimate. The values are displayed in millimeters (mm) if a 
calibration has been performed (see section 3.3).

Below the top left window are buttons for manual measurements. 
To the left are buttons for excluding the active image from a dataset if 
its quality is insufficient: one for excluding the image and one for re-
versing the action. “Manual length” and “Manual depth” buttons allow 

F I G U R E  2 Graphical user interface (1) Panel associated with loading and segmentation settings. (2) Information about the active image. (3) 
Top left window displaying original image in black and white with segmentation mask overlayed in blue. (4) Top right window displaying zoomed 
in larva segmentation with length and depth estimation locations marked. (5) Bottom left window giving overview of length estimations for 
all images for easy outlier detection. (6) Bottom right window giving overview of depth estimation for all images for easy outlier detection. (7) 
Manual measurement panel. (8) Slider for navigating between images. (9) Export data button for extracting data into CSV file

1 2

3 4

5 6

87 9
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the user to manually draw lines in top left window to measure length 
and depth. To the right of these two buttons is a panel for setting the 
number of line segments needed to make the measurement. The de-
fault for measuring length is 2, as most larvae are slightly curved and 
hence a line consisting of two segments will give a more accurate es-
timate of the length than one straight line. If the number of segments 
is set greater than needed for a particular larva, pressing “enter” after 
marking fewer segments will complete the measurement. The default 
number of segments for manually measuring depth is 1, which usually 
is sufficient. To the right are buttons for cancelling the manual length 
or depth estimations and reverting to the automated estimations.

Below the top right window are controls for navigating the image 
files and exporting data to a comma-delimited file (.csv). To the left 
is a slider for selecting images from the loaded dataset. For opti-
mized workflow, hotkey functions are associated with this. Pressing 

“a” selects the image prior to the active image, pressing “s” selects 
the image after the active image. To the right is the export data but-
ton. Data can be exported both with and without calibration into 
millimeters (mm). The “export data” button is yellow if data have not 
been calibrated (measurement reported in units of pixels) and green 
if calibration into millimeters (mm) has been applied to the dataset.

3.2.1  |  Loading GUI description

This GUI provides the options to (1) load a test image for testing 
and adjusting the segmentation settings, and (2) establish a region of 
interest (Figure 4). “Load test image” opens a dialog box allowing the 
user to select a typical image from the dataset. The settings panel 
below the “Load test” button contains three buttons: “Threshold” 

F I G U R E  3   Example of difference in segmentation with and without Gaussian image filtering. (a) Original image. Red square marks area 
shown in (b) and (c). (b) Zoomed image of edge detection without Gaussian image filtering (after dilation). Red arrows point to gaps in the 
outline of the larva; (c) zoomed in image of edge detection with Gaussian image filtering (after dilation). Outline of the larva is uninterrupted; 
(d) resulting segmentation without Gaussian image filtering. As the outline of larvae was incomplete, the software failed to segment the larva 
but instead segmented the text box in the upper left corner. (e) Resulting segmentation from using Gaussian image filtering. As there were 
no gaps in the outline of the larva, segmentation was correct

Edge detec�on without Gaussian filtering Edge detec�on with Gaussian filtering

Original image(a)

(c)(b)

(d) (e)
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sets the fraction of maximum contrast (see section 2.2). “Dilation” 
sets the number of dilations applied to each edge-detected pixel (see 
section 2.2).” Depth offset” determines the location of the depth 
measurement in percentage of total larval length from the head. If 
set to 50, depth is measured at the midpoint of the larva along the X 
axis in window 2 of the main GUI.

The ROI panel contains three buttons for: (1) setting a rect-
angular ROI, (2) setting a circular ROI, and (3) cancelling a set 
ROI. The “Test settings” button processes the test image using 
the current setting for segmentation and ROI and displays the re-
sult for visual inspection. A calibration panel below the central 
image panel contains two buttons for: (1) creating a new calibra-
tion file, and (2) retrieving a previously created calibration file. 
These calibration files change the dimensions from pixels to mil-
limeter. Pressing the Create Calibration button opens up a new 
GUI for marking a known distance on an image that contains a vis-
ible scale (see the manual for details). The Retrieve buttons allow 

for loading calibration files previously created via the Create 
Calibration button.

3.3  |  Workflow

A typical workflow with a set of images is first to confirm or change 
the segmentation settings on the loading GUI. It is recommended 
to load a test image and try settings before loading the entire data-
set. By visually inspecting segmentation on images of Atlantic cod 
(Gadus morhua), Atlantic bluefin tuna (Thunnus thynnus), Pufferfish 
(Tetraodontidae spp.), European plaice (Pleuronectes platessa), 
Southern flounder (Paralichthys lethostigma), and Atlantic herring 
(Clupea harengus) generated by different users, we found a default 
values of 0.55 for threshold and 3 for dilation to be appropriate. 
Lowering the threshold can be helpful if not enough of the larva 
is segmented and the background contains little contrast. Optimal 

Column number Name Description

1 FileName Name of image file

2 Length_px Length in pixels. If no manual measurement 
was done, automated estimation is used

3 LengthAutomated_px Automated length estimation in pixels

4 Depth_px Depth in pixels. If no manual measurement 
was done, automated estimation is used

5 DepthAutomated_px Automated depth estimation in pixels

6 Length_mm Length in mm. If no manual length was done, 
automated is used

7 LengthAutomated_mm Automated length estimation in mm

8 Depth_mm Depth in mm. If no manual measurement was 
done, automated estimation is used

9 DepthAutomated_mm Automated depth estimation in mm

Red columns are present only when data calibration has been performed.

TA B L E  1 Data in exported file

F I G U R E  4 Loading GUI. (1) Load test 
image. (2) Set segmentation settings 
and location for depth measurement. 
(3) Set rectangular or circular ROI for 
segmentation. (4) Test settings and 
ROI. (5) Calibrate pixel measurements 
into millimeters. (6) Load dataset using 
settings displayed in Panel 2. (7) Window 
displaying effect of settings on test image

1

2

3

4 5 6

7
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depth location depends on the species of fish being researched. For 
Atlantic cod (Gadus morhua) and Atlantic bluefin tuna (Thunnus thyn-
nus), the default of 50 achieved good results, meaning that depth 
was measured at the midpoint of the length of the larva. Calibration 
of pixel-based measurements into millimeters is done via the cali-
bration panel, either by retrieving a previously created calibration 
file or by creating a new one (see manual for details). After cali-
bration, the “Load dataset” button is green to reflect that calibra-
tion has been done. After visual validation of correct segmentation 
settings, images are loaded with the “Load images” button, after 
which a progress bar appears. When the progress bar disappears, 
the slider below window 2 in the main GUI, as well as hotkeys “a” 
and “s”, can be used to navigate the dataset. If automatic estima-
tion is satisfactory, no additional work is needed, and the user can 
move to the next image. If the automatic estimation is unsatisfac-
tory, manual length and depth extraction is done in the same way 
as ImageJ. The “Export data” button is green if calibration has been 
performed and pressing the button will produce a comma-delimited 
file with five (without calibration) or nine (with calibration) columns 
containing data as described in Table 1.

4  |  PERFORMANCE E VALUATION

Performance of this software depends heavily on the quality of 
the images used. We tested it on a set of 101 haphazardly chosen 
tuna larva images. Here, the software estimated the length cor-
rectly (±5% of total larva length) in 89% and depth in 70% of the 
images. A comparison of the length and depth values extracted via 
the semi-automated method of FishSizer with the manual meas-
urements from ImageJ showed strong agreement throughout the 

range of sizes measured (Figure 5). A paired t test (α = .05) showed 
no difference in the measurements (length: p = .49, depth p = .27). 
Time savings were calculated compared to ImageJ (Schneider et al., 
2012), a commonly used software for this task. Two independent 
observers went through the test dataset and extracted length and 
depth in FishSizer, including visually verifying all measurements. 
Compared to extracting the same measurements from the same 
dataset in ImageJ, a time saving of 66 and 78% was observed for 
observer 1 (R1) and 2 (R2), respectively. Intra-observer variabil-
ity is expected to be lower using FishSizer compared to ImageJ 
as the threshold for accepting automatic parameter extraction will 
remain fairly constant for each observer. For manually extracted 
parameters in FishSizer, variability is expected to be the same as 
ImageJ, as the process for manual extraction is the same in both 
software packages.

To examine inter-observer variability compared to ImageJ, we 
analyzed data from two observers to compare percentage-wise 
differences in length and depth measurements across 101 haphaz-
ardly chosen tuna larva images (Figure 6). For length we found a 
deviation between the two observers of 2.69%±3.35% (mean±std) 
for FishSizer compared to 3.13% ± 4.54% for ImageJ. For depth we 
found a mean of 15.6% ± 14.6% for FishSizer and 19.8% ± 34.0% 
for ImageJ. Therefore, there were a small but not significant dif-
ference between the two software packages for both parameters. 
For visual representation of the variability using a Bland–Altman 
graph, see Figure 6. One important aspect of variability is human 
error. In FishSizer, all handling of parameters and data output is au-
tomatic and linked to the image file name. Therefore, FishSizer has 
less potential to introduce human errors than other programs which 
can require manual data curation (e.g., using copy/paste), such as 
ImageJ.

F I G U R E  5 Length (a) and depth (b) from 101 haphazardly selected images of tuna larvae representing various developmental stages 
measured in imageJ versus FishSizer. For both dimensions, a paired t test shows no difference in the measurements on a 5% significance 
level (Length: p = .49; depth p = .27)

(a) (b)
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5  |  CONCLUSION AND FUTURE 
DIREC TIONS

The partial automation of obtaining larval morphological meas-
urements in this software saves a considerable amount of time 
compared to the manual procedure used so far. Even when all meas-
urements obtained via our software were manually verified and cor-
rected, we experienced a time saving of 66%–78%.

When tested across a range of species, we found the software 
to achieve good segmentation for a wide range of species like 
Atlantic cod, Atlantic bluefin tuna, Pufferfish, European plaice, and 
Southern flounder using a rectangular ROI, and Atlantic herring 
using a circular ROI. (Figure 7). As the parameter extraction relies 
heavily on segmentation, we expect that the accuracy for these 
and similar species will be the same as seen for the tuna statisti-
cally investigated here. Unfortunately, as the software is based on 

F I G U R E  6 Bland–Altman plot for inter-observer variability for 101 haphazardly chosen tuna larva images. Y axes show percentage 
deviation between two observers, R1 and R2. X axes show mean of the two observations. (a) Plot for length and (b) Plot for depth

(a) (b)
R1

-
)

%( )2R,1R(nae
m/2R

mean(R1,R2) (mm)

F I G U R E  7 Examples of correct segmentation across species and stages. (a) Atlantic cod (Gadus morhua), (b) Atlantic bluefin tuna (Thunnus 
thynnus), (c) Pufferfish (Tetraodontidae spp.), (d) European plaice (Pleuronectes platessa), and (e) Southern flounder (Paralichthys lethostigma) 
using a rectangular ROI, and (f) Atlantic herring (Clupea harengus) using a circular ROI

(a) (b) (c)

(d) (e) (f)
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contrast detection, we found the quality of images to be essential. 
High-contrast artefacts in direct contact with the larva can hinder 
correct segmentation and thereby correct parameter extraction 
(Figure 8).

A logical future direction for this software will be to include 
deep learning. This current version of FishSizer can help create 
large datasets of segmented larva images to be used as ground 
truth for training neural networks. Deep learning will not only fa-
cilitate analysis of images with more than one larva, a sought after 
feature for this kind of software, but it will also open the door to 
automatic species and/or stage identification of larval fish, which 
is far behind other pelagic marine organisms such as plankton (Guo 
et al., 2021).
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