
EDITORIAL
Minimal residual disease in gastroesophageal adenocarcinoma:
the search for the invisible
Gastroesophageal adenocarcinoma (GEA) is a lethal dis-
ease, with fewer than 35% of patients surviving beyond 5
years despite an optimal neoadjuvant chemotherapy fol-
lowed by surgery with curative intent.1 In an effort to
improve patient outcomes, genomic profiling has improved
the identification of oncogenic alterations, which could
guide a molecular-based approach.2 Despite the develop-
ment of targeted therapies against driver genes such as
MET, FGFR2, EGFR and ERBB2,3-6 only trastuzumab against
ERBB2-amplified tumors has been regulatory approved.6

The high intratumor heterogeneity (ITH) could be consid-
ered one of the major determinants of the poor success of
targeted therapies in GEA. ITH found both within the pri-
mary and between primary and metastatic tumors shows
the relevance of the clonal and dynamic molecular
approach to distinguish target alterations.7 Therefore, data
indicate that current tissue sampling practices for
biomarker testing do not effectively guide personalized
medicine in this disease.

In this context, liquid biopsy has emerged as a potential
tool to overcome the heterogeneity barrier. Circulating tu-
mor DNA (ctDNA) analysis allows capturing the whole tu-
mor genetic profile present within a patient, unlike tissue
biopsies which are limited by the partial analysis achievable
from only one tumor region. In the last few years, ctDNA
analysis has been proposed as a noninvasive real-time
biomarker to provide prognostic and predictive informa-
tion for monitoring treatment. The presence of ctDNA in
plasma following surgical resection has been strongly
associated with a high risk of recurrence across tumor
types.8-11 Likewise, the evidence for the prognostic value of
ctDNA in patients with operable esophageal adenocarci-
noma (EAC) to detect minimal residual disease (MRD) has
been demonstrated in some cohorts.7,12-14

In discordant primary and metastatic lesions, several
studies demonstrated high concordance for targetable al-
terations in metastatic tissue and ctDNA samples,7 sug-
gesting the potential for ctDNA profiling to enhance
selection of therapy. In advanced gastrointestinal cancer,
the presence of specific mutations in plasma can be used to
select patients for molecular-matched therapy15 and to
detect the emergence of resistant clones suitable for sub-
sequent lines of treatment.16 Liquid biopsy using ctDNA
may ultimately provide a more accurate genomic landscape
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of tumor tissue, potentially reducing the need for costly and
invasive metastatic biopsies.

Currently, there are two approaches for assessing MRD
using ctDNA: one that is informed by genomic sequencing
of the primary tumor (tumor-informed) and another that is
uninformed by the mutations in the primary tumor (tumor-
agnostic). However, what is the ideal assay to monitor MRD
remains unanswered.

In this issue of ESMO Open, Bonazzi and colleagues17

describe the results from a commercially available pan-
cancer mutation panel evaluated in both ctDNA and tumor
samples in a single cohort from resected EAC (n ¼ 57).
Moreover, whole-genome and whole-exome sequencing
was carried out on the primary tissue in a subset of patients
(n ¼ 18). The main objectives of the study were to deter-
mine: (i) the prognostic value of pre- and post-operative
ctDNA analysis using both a tumor-agnostic and a tumor-
informed approach, (ii) whether ctDNA profile is reflective
of ITH, and (iii) the ability of serial ctDNA monitoring to
detect recurrence during follow-up.

Plasma ctDNA detectable at baseline in patients with
resectable EAC was not associated with worse survival. The
detection, however, of ctDNA after treatment, either after
neoadjuvant therapy or surgery, was significantly associated
with worse disease-specific survival using both the tumor-
agnostic (P ¼ 0.0130) and the tumor-informed (P ¼
0.0007) approaches. ctDNA is considered as a surrogate
endpoint for MRD that is correlated to the definitive
endpoint progression-free survival (PFS) in adjuvant tri-
als.18,19 This study favored a tumor-informed approach over
a tumor-agnostic test to find a worse PFS (median survival
9.3 versus 60 months, P ¼ 0.0311) in ctDNA-positive versus
ctDNA-negative patients. Nevertheless, it is remarkable that
66% of patients without detectable ctDNA after surgery
died from disease at 40 months suggesting a low sensitivity
for both tests. A potential explanation of the relatively high
recurrence rate among those patients is the use of a non-
EAC-specific gene panel, which could fail to detect EAC-
specific mutations.12 On the other hand, localized EAC has
been shown to be a low ctDNA shedding tumor, which
would limit the power of detection of MRD through ctDNA
despite using tumor-specific panels.14

This research suggests that a tumor-informed approach
helps in determining MRD with both high sensitivity and
specificity as it leads to the identification of tumor-specific
variants at a very low variant allele frequency (VAF) of
0.01%. Besides tumor-naïve tests being less sensitive, they
are able to detect tumor-specific variants for a VAF between
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0.1% and 1%. Overall, carrying out the same depth molecular
analyses for both primary tumor and matched PL plasma
samples increases the possibility of monitoring true tumor-
derived clonal variants.10,20 A multidisciplinary workshop
organized to discuss routine implementation of liquid
biopsies in cancer management concluded that tumor-
informed assays will most likely provide better clinical util-
ity than tumor-agnostic tests, yet at a higher cost.21 Other
approaches for tracking MRD that are currently also being
studied, such as analyzing ctDNA methylation, need further
validation before they can be used in a clinical setting.22

The authors also sequenced multi-region primary tumor
samples in a subset of 17 patients reporting that 94% of
them harbored at least one mutation. These data confirm
that sequencing multiple tumor regions increases the
sensitivity to detect tumor variants. Nevertheless, concor-
dance between primary tumor and ctDNA variants at
diagnosis was as low as 22% of patients sequenced across
several platforms. In this study, ctDNA testing did not reflect
the genomic profile of different tumor locations sequenced.
This effect should be assessed through the cancer cell
fraction (CCF), which would allow understanding the mo-
lecular aberrations belonging to each of the possible clones
within each region.23 The predominance of a specific clone,
masking minority clones with a lower CCF, and the arbi-
trariness of the biopsies in the primary tissue, may not
reflect the set of genomic aberrations contained in the
clones that make up the tumor bulk, being able to have a
significant greater discrepancy between the primary tissue
and the ctDNA profile.24

Next, the authors inquired the capability of predicting
relapse from serial timepoints of plasma during follow-up. A
progressive increase in VAF in relapsed patients was
observed, indicating that MRD cannot be immediately
detected in plasma after surgery, but can be successfully
captured with ctDNA sampling at follow-up.8 The detection
of longitudinal ctDNA can be used to identify residual dis-
ease following patients’ standard primary treatment and is
associated with poorer PFS across different tumor types.
Moreover, many of these observational studies have
demonstrated that the detection of ctDNA typically pre-
cedes radiological relapse by a median lead time of 3-8
months.8-11 However, it remains to be elucidated whether
interventional clinical trials during surveillance before
radiological relapse will impact on survival outcomes.
Ongoing trials in patients with triple-negative breast cancer
(cTRAK TN, NCT03145961) are investigating the role of
ctDNA detection during follow-up and the safety and ac-
tivity of pembrolizumab in treating MRD.

Bonazzi et al.17 demonstrated that ctDNA variants can be
detected in patients with EAC and has prognostic value for
survival. However, the use of ctDNA as a predictive marker
in patients with EAC is still limited. To develop a successful
ctDNA-guided strategy in patients with GEA, more sensitive
and specific a assays would be needed before using them as
a tool in interventional trials. Another question to be
addressed in future studies is whether we need to
personalize or not ctDNA assays to monitor MRD.
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