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Summary

Genome-wide association studies have successfully identified associations between common diseases and a large number of
single nucleotide polymorphisms (SNPs) across the genome. We investigate the effectiveness of several statistics, including
p-values, likelihoods, genetic map distance and linkage disequilibrium between SNPs, in filtering SNPs in several disease-
associated regions. We use simulated data to compare the efficacy of filters with different sample sizes and for causal SNPs
with different minor allele frequencies (MAFs) and effect sizes, focusing on the small effect sizes and MAFs likely to
represent the majority of unidentified causal SNPs. In our analyses, of all the methods investigated, filtering on the ranked
likelihoods consistently retains the true causal SNP with the highest probability for a given false positive rate. This was
the case for all the local linkage disequilibrium patterns investigated. Our results indicate that when using this method to
retain only the top 5% of SNPs, even a causal SNP with an odds ratio of 1.1 and MAF of 0.08 can be retained with a
probability exceeding 0.9 using an overall sample size of 50,000.
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Introduction

Genome-wide association studies (GWAS) and candidate
gene studies have highlighted regions of the genome con-
taining variants affecting disease susceptibility. The next stage
is fine-mapping of these regions to identify the variants most
likely to be causal. This task is confounded by high corre-
lation between variants in a small chromosomal region. The
effects of this correlation as well as sampling variation mean
that in tests of association the variant with the largest like-
lihood or smallest p-value will not necessarily be the causal
variant. Several statistical methods for analysing fine-mapped
data have now been published but guidelines are needed to
determine which of these will give the highest true positive
rates (TPRs) and lowest false positive rates (FPRs) and in
which scenarios.

Methods for analysing fine-mapped data include those that
analyse multiple variants in a region simultaneously, for ex-
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ample, penalised and nonpenalised regression methods and
Markov chain Monte Carlo routines. Some such methods are
given in reviews by Ayers & Cordell (2010) and Abraham et al.
(2013), including the popular HyperLasso (Hoggart et al.,
2008). There are also fully Bayesian methods implemented in
the software pi-MASS (Guan & Stephens, 2011). Also, some
recent methods attempt to include external data such as func-
tional annotation, for example, p-value weighting (Saccone
et al., 2008) and a Bayesian latent variable model (BLVM,
Fridley et al., 2011). However, we have chosen to compare a
subset of statistical analyses which should work well when a
single causal variant is present in the chromosomal region of
interest. In these methods, each single nucleotide polymor-
phism (SNP) is analysed separately and they are then ranked
in some way based on the likelihood or p-value from a lo-
gistic model or based on linkage disequilibrium (LD) with or
proximity to the top hit SNP in the region. The methods we
consider do not make use of any available functional data. To
our knowledge this set of methods has not previously been
compared in a thorough simulation study such as this.

All of the statistics that this report examines could be used
as filters to remove noncausal variants from the set of all
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candidate causal variants. The variants considered in this work
are SNPs but the methods and results discussed can be applied
directly to any other variants which can be modelled via a
logistic regression model. Successful filters will reduce the
initial set of SNPs down to a much smaller group in which it
is highly probable that the true causal variant remains. Other
techniques, such as the biological analysis of pathways in cell
lines, can then be used to identify the causal variant. These
methods are expensive, so reducing the number of variants to
take forward is of paramount importance.

The first methods we examine are based on p-values and
likelihoods. It is common in GWAS to rank SNPs by p-values
either from Cochran–Armitage trend tests or from Wald tests
and both of these methods have now also been used in the
context of fine-mapping (Miki et al., 2010; Adrianto et al.,
2012). An alternative to using p-values is to use the likeli-
hood (or equivalently log-likelihood) from fitted regression
models. Several studies (including Easton et al., 2007; Udler
et al., 2009, 2010a; French et al., 2013), rank SNPs based on
likelihoods and the usual practice is to retain the set of SNPs
with likelihoods within a prespecified ratio of the highest
likelihood. This method leads to variable numbers of SNPs
being retained. We examine this relative likelihood (RL) filter
as well as the alternative of retaining a prespecified proportion
of all SNPs based on ranking by likelihood. These statistics are
attractive for filtering because they are easily obtained from
standard analyses.

The remaining methods relate to LD structure. Within a
small chromosomal region, LD can be high between SNPs.
When the top hits from GWAS are found, these are not
assumed to be the causal SNPs, but it is often postulated
that the causal SNP lies within the same gene or LD block
as the tagSNP. Alternatively, a handful of candidates may be
suggested based on high LD with the tagSNP (r 2 > 0.9, for
example). We formalise three filtering methods based on these
ideas: ranking by genetic map distance, r 2 and D′ with the top
hit (the SNP with the largest likelihood). The final method
(Zhu et al., 2012) we examine is also LD-based, but takes into
account the LD between each SNP and the top hit compared
to the LD between the SNP and tagSNPs in the region.
Although we use the analyses set out by Zhu et al. (2012),
we use it in a slightly different setting, as it is designed for
use with tagSNPs from a GWAS. As far as we are aware the
application of these LD- and distance-based methods to fine-
mapped genotype data and their comparison with standard
univariate statistical methods is novel.

We found that percentile filtering based on ranked likeli-
hoods was the most efficacious method in all the scenarios
we investigated. To explore the utility of this approach, this
study considers the impact of effect size, sample size, mi-
nor allele frequency (MAF), mode of inheritance and filter
threshold on the effectiveness of the filter proposed. We also

consider whether these results apply to filtering in regions of
the genome with strikingly different LD structures. A range
of plausible odds ratios (ORs) were used in our simulations,
as well as relatively large sample sizes consistent with numbers
being used in the era of disease-specific consortia.

Materials and Methods

Simulation Details and Preliminary Analysis

Filters were tested by applying them to simulated genotype
data with a single causal SNP. Causal SNPs were chosen based
on their MAF and results were examined for scenarios with
different causal SNPs, ORs and sample sizes. By simulating
data with a known “true” causal SNP, it was possible to de-
termine whether or not this SNP was retained in the set of all
candidate causal SNPs after filtering. All datasets mentioned
were simulated using the hapgen2 software (Spencer et al.,
2009). The software generates haplotype sequences based on
MAF and LD structure in a reference dataset, in this case
the European haplotypes of the August 2010 release of the
1000 genomes data (The 1000 Genomes Project Consortium,
2010), and a user-specified effect size for the causal SNP.

We chose three regions of the genome to test the meth-
ods on. Several studies have found evidence to suggest that
the region around the CASP8 gene on Chromosome 2 (a
gene which codes for a protein involved in apoptosis) may
include variants which affect the risk of developing breast
cancer and more recently melanoma (Cox et al., 2007; Han
et al., 2008; Palanca Suela et al., 2010; Barrett et al., 2011;
Camp et al., 2012). A one megabase region (from 201,566,128
to 202,566,128 bases in the Hg19 build of Chromosome 2)
containing CASP8 was used for simulations. This region also
contains around 20 other known genes including CASP8 ho-
mologues CFLAR, CASP10 and several ALS2CR genes. In
this 1 Mb region, there were 2871 SNPs in the August 2010
1000 genomes data (The 1000 Genomes Project Consortium,
2010). This region has mixed LD block sizes averaging ap-
proximately 22 kb in length, so for comparison, two other
regions were selected which have particularly high and par-
ticularly low levels of LD. Using results in Smith et al. (2005),
we carefully selected a region of Chromosome 11 (55–56 Mb,
part of the MHC region, average LD block size ≈130 kb),
and a region in Chromosome 16p13 (9–10 Mb, average LD
block size ≈8 kb). These 1 Mb regions contained 6247 and
6200 SNPs, respectively (1000 genomes, August 2010).

We focused on additive models, varying the per-allele OR
of the causal SNP between 1.06 and 1.24, but other modes
of inheritance were also considered. The causal SNP was also
varied, with MAFs between 0.08 and 0.31, as well as the
sample size between 10,000 and 50,000. The sample sizes
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quoted in this paper represent the total number of cases and
controls, which are always assumed to be equal. We refer to a
specific causal SNP, OR and sample size as a “scenario” and
for each scenario simulate a large number of datasets (usually
1000). The results from the analysis of all 1000 datasets were
then used to assess the filters.

For each SNP, a univariate logistic regression model is fitted
(one SNP per model) so that we are only considering marginal
effects. For SNP i , the probability that a subject j , with xi j

copies of the allele coded “1,” has the disease is yi j and is
given by

yi j = e β0i +β1i xi j

1 + e β0i +β1i xi j
. (1)

β1i is the per-allele log odds ratio (logOR) of disease for the al-
lele coded “1” compared to the allele coded “0” for that SNP.
R (R Core Team, 2012) was used to fit the logistic regres-
sion models and to obtain the maximum likelihood estimates
(MLEs) of β0i and β1i , the likelihood of the parameters for
SNP i , denoted Li and the p-values from Cochran–Armitage
and Wald tests.

Filters Based on p-Values and Likelihood

All the methods that we compare filter out SNPs from the set
of all candidate causal variants to leave a smaller subset. For
each method, the chosen filtering statistic is calculated for
each variant and a threshold is applied. The first two filtering
statistics are the p-values from Cochran–Armitage tests and
those from Wald tests, and a threshold value may be chosen
based on a Bonferroni correction, for example. Although we
carried out filtering using both p-value methods, the results
were always very close, so we consider these as equivalent
methods from now on and report just one, labelling it the
p-value method.

The RL for the i th SNP compares the maximised likeli-
hood for SNP i to the largest of the maximised likelihoods
over all p SNPs in the region:

RLi = L(β̂0i , β̂1i |data)

max
k∈{1,p}

{L(β̂0k, β̂1k|data)} . (2)

These RLs can range from close to zero to one (for the SNP
which satisfies the denominator and which we call the “top
hit” or SNPma x). In the papers by Udler et al. (2009, 2010a),
the RL filter threshold of 1/100 was generally used, filtering
out all SNPs with an RL <1/100. We also briefly examine
the use of different thresholds for RL filtering.

A possible weakness of RL filtering is that the number
of SNPs retained is subject to variation. An alternative is
to rank the likelihood values for each SNP and filter out
a prespecified number or proportion of SNPs. This filter is

called the likelihood percentile (LP) filter and by definition
it is known how many SNPs will be retained (for example,
a threshold of 95% retains the top ranked 5% of SNPs). This
approach has the potential advantage that it will not be affected
by a single extreme likelihood value at one particular SNP due
to sampling variation.

Filters Based on Genetic Map Distance or LD
between Variants

The remaining filters that we investigated also relate individ-
ual SNPs to SNPma x . These methods of filtering are based
on the principle that while SNPma x may not itself be causal,
the true causal SNP is likely to be “close to it” in some sense,
either physically close or highly correlated with it. For three
of the methods, SNPs were ranked by either genetic map
distance in centimorgans (cMs) from SNPma x or by pairwise
D′ or r 2 values with SNPma x . Genetic map distances were
obtained from the 1000 genomes data (The 1000 Genomes
Project Consortium, 2010) and pairwise LD (D′ and r 2) val-
ues were calculated using the simulated haplotypes. Once
again, thresholds were specified so that SNPs further away in
distance or with lower LD values than those thresholds were
filtered out.

The final filtering method (Zhu et al., 2012) was also based
on r 2 between each SNP and SNPma x , but rather than rank-
ing based on this value alone, a preferential LD (PLD) score
was calculated for SNPi . This method is designed for use
with GWAS data so makes use of the panel of tagSNPs from
the genotyping array. PLDi is the proportion of tagSNPs for
which r 2 between them and SNPi is greater than between
SNPma x and SNPi . For the simulated regions, since all SNPs
have been “genotyped,” we chose to use those on the Illumina
300 array as our tagSNPs. There were 77 such SNPs in both
the CASP8 and MHC (mixed and high LD) regions and 135
in the 16q13 (low LD) region. To complete the Zhu method,
a second filtering step is required, which involves calculating
an empirical p-value testing the r 2 value between SNPi and
SNPma x . Specifically, this p-value “estimates the probability
of observing the same or better r 2 value for two random vari-
ants with the same frequencies” (Zhu et al., 2012). This is
done by permuting the genotypes 2000 times in each dataset.
This number of permutations was too computationally ex-
pensive when analysing 1000 simulated datasets, so the Zhu
method was only tested on a subset of 100 datasets for each
scenario.

Robustness of Filters When Imputation is Used

Imputation of SNPs which are not genotyped is now com-
mon, as it is still too costly to genotype every SNP and
methods of imputation based on MAF and LD have been
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shown to be reliable. To test how well these filtering methods
work when some SNPs are imputed compared to when they
are all genotyped, we simulated several sets of 100 datasets,
covering various causal SNP scenarios within the CASP8 re-
gion. To test the effect of imputation, we then chose a list
of 469 informative SNPs to keep as “genotyped,” based on
prior knowledge of the region, as would happen in the plan-
ning stages of a fine-mapping project. All other SNPs were
removed, which always included the causal SNP. The missing
SNPs were then imputed using the software impute2 (Mar-
chini & Howie, 2010) and the data reanalysed. The results
of analyses of the fully genotyped and the partially imputed
datasets could then easily be compared.

Results

Receiver Operating Characteristic (ROC)
Curves

We have used ROC curves to display the results of filtering
on different datasets. For each scenario (fixed causal SNP, ef-
fect size and sample size), multiple datasets were simulated
to allow for sampling variation. The mean FPR is given on
the x-axis of each ROC curve, and this refers to the mean
proportion of noncausal SNPs retained over all of the simu-
lated datasets. The TPR plotted against this on the y-axis is
the probability of the true causal SNP being retained at the
corresponding thresholds, calculated as the proportion of the
simulated datasets in which the causal SNP was retained. The
TPR and FPR when filtering at specific thresholds of interest
are highlighted using points on the ROC curves.

We believe these are appropriate summary statistics for the
results of the simulation analyses, but it should be noted that
there is no single, standard method of combining the results
of multiple tests into a single ROC curve. This is discussed
in detail in a paper by Fawcett (2006), in which the author
describes three possible methods for creating such an ROC
curve. The way we have calculated TPRs and mean FPRs is
equivalent to the method that Fawcett (2006) calls “threshold
averaging” and it results in variation around the curve in both
dimensions. The variation around the mean FPR is given by
the range of FPR values from all simulations. TPR is a sample
proportion from a binomial distribution, so the variance can
be calculated using TPR(1 − TPR)/n, where n is the number
of simulations.

Relative Efficacy of Different Filtering Methods

Figures 1(A) and (B) show ROC curves for the different
filtering methods used on the same set of 1000 datasets for
fine-mapping the high LD MHC region. These simulations

use a sample size of 20,000 and have a causal SNP with
an OR of 1.1 and MAF of 0.08. Figure 1(A) shows the
results from the p-value and likelihood-based methods. Figure
1(B) compares the efficacy of the proximity and LD-based
methods. It should be noted that for computational reasons
the Zhu (PLD) filtering method was only carried out on
a subset of 100 of the simulated datasets. Figures 1(C)–(F)
display the equivalent outcomes of filtering in the mixed LD
(CASP8) and low LD (16q13) simulated datasets. Table 1
contains the area under the curve (AUC) values as percentages
of the total possible area for all of the ROC curves in Figure 1,
and Table 2 gives the AUCs for the parts of the ROC curves
which result in mean FPRs of 0.1 or lower, as these are the
parts of the ROC curves that are most of interest. It should
be noted that the maximum possible partial AUC as given in
Table 2 is 10%.

Although these three regions were carefully chosen so that
their LD structures were all very different it can clearly be
seen that the likelihood and p-value-based methods are gen-
erally more efficacious than the methods which filter based
on proximity to, and LD with, SNPma x for these scenarios in
all three regions. The likelihood method using LP thresholds
resulted in the ROC curves with the highest AUCs, with
the AUC for p-value filtering only slightly lower. So if p-
values were more readily available, it would be acceptable to
use them for filtering. Interestingly we found that in general,
larger sample sizes resulted in a bigger difference between the
AUCs of the LP and p-value methods.

Of the LD- and proximity-based methods, the Zhu method
had the highest AUC over the entire FPR range but r 2 was
better over the more relevant range of FPRs of 0.1 and under.
In all three regions, RL filtering was considerably worse than
LP filtering for the single sample size, causal SNP OR and
MAF we considered in Figure 1. However, we also examined
other scenarios (see the ranges specified in the Methods sec-
tion) and found that the relative performance of the different
filters seem to apply generally for these scenarios as well. Since
LP filtering appears to be the best performing filter we now
examine its performance in more detail.

The Effect of Sample Size, the Causal SNP OR
and MAF on Results of LP Filtering

Figure 2 shows how the results of LP filtering vary dependent
on the sample size, OR and MAF of the causal SNP for
the CASP8 data. Similar results were recorded in the other
regions (data not shown). With LP filtering, we fix the total
proportion of SNPs retained, and as there is only one causal
SNP, this proportion is almost identical to the FPR. Figure
2(A) shows that if there is a fixed proportion of SNPs that can
be taken forward (due to experimental costs, for example),
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(A) p-value and likelihood filtering in a
high LD region (1Mb MHC region).
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(B) Proximity and LD filtering in a high
LD region (1Mb MHC region).
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(C) p-value and likelihood filtering in a
mixed LD region (1Mb CASP8 region).
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(D) Proximity and LD filtering in a mixed
LD region (1Mb CASP8 region).
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(E)p-value and likelihood filtering in a low
LD region (1Mb 16p13 region).
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(F) Proximity and LD filtering in a low LD
region (1Mb 16p13 region).

Figure 1 Comparing the effectiveness of filters for fine-mapped data in three regions of the
genome. Using the LD structure of each region, 1000 datasets were simulated and then analysed
using each method (only 100 were analysed using the Zhu method). Panels (A), (C) and (E) show
the efficacy of filtering using thresholds based on p-values from Cochran–Armitage tests, RLs and
LP points. Panels (B), (D) and (F) show the results using genetic map distance (GMD) from and
pairwise r 2 or D′ values with the top hit and the Zhu method using preferential r 2. The causal
SNPs all have an OR of 1.1, an MAF of 0.08 and the sample size is 20,000.
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Table 1 Area under curve (AUC, given as a percentage) for ROC
curves of different filters using mean false positive rates (FPRs).
Three different 1 Mb regions of the genome were used but in each
the causal SNP has an OR of 1.1, an MAF of 0.08 and the sample
size is 20,000.

Genomic region

High Mixed Low
Filtering method LD (%) LD (%) LD (%)

Likelihood (LP threshold) 93 90 96
p-Value 91 89 96
Likelihood (RL threshold) 87 79 90
Preferential LD (Zhu) 74 60 69
r 2 67 60 63
Genetic map distance (GMD) 62 58 66
D′ 42 42 48

Table 2 Area under curve (AUC, given as a percentage) for portions
of ROC curves of different filters for which FPR ≤0.1. Three
different 1 Mb regions of the genome were used but in each the
causal SNP has an OR of 1.1, an MAF of 0.08 and the sample size
is 20,000. The maximum percentage of AUC for such a portion is
10%.

Genomic region

High Mixed Low
Filtering method LD (%) LD (%) LD(%)

Likelihood (LP threshold) 4.8 4.7 7.2
p-Value 4.3 4.5 7.2
Likelihood (RL threshold) 4.1 3.6 6.2
Preferential LD (Zhu) 2.5 1.0 2.1
r 2 2.9 2.1 2.8
Genetic map distance (GMD) 0.2 1.0 2.2
D′ 0.02 0 0

then, as expected, the TPR increases as sample size increases.
This is also the case as causal SNP OR and MAF increase.
Figure 2(B) shows that if a particular FPR does not yield a high
enough TPR, then the filter threshold could be relaxed from
the 95th to the 85th percentile, say. It is perhaps more relevant
to focus on what threshold is required to achieve a particular
TPR, so the thresholds given in Figure 2(C) are those that
result in a TPR ≥0.95. We focus on these thresholds as we
examine the separate plots in more detail.

Figure 2(A) shows how sample size affects LP filter efficacy.
For a scenario with a sample size of 10,000 where the causal
SNP has an OR of 1.1 and MAF of 0.08, to achieve a TPR of
0.95 a threshold of 15% would be required, meaning that 85%

of the SNPs would be retained. At the same TPR, increasing
the sample size to 20,000 requires a threshold of 49%. For
sample sizes of 30,000, 40,000 and 50,000, the corresponding
thresholds are 75%, 86% and 93%. So for a causal SNP with
this OR and MAF, sample sizes above 50,000 are required to
be 95% sure of capturing the causal SNP while taking forward
5% or less of the original SNPs.

Figure 2(B) shows the results of applying LP filtering as the
OR of the causal SNP varies. In the simulations, the sample
size was 20,000, the causal SNP had an MAF of 0.08 and
the per-allele ORs took values between 1.06 and 1.24. The
general increase in AUC with causal SNP OR is clear. At very
small ORs such as 1.06, LP filtering requires the majority of
the SNPs to be retained in order to achieve a high TPR.
For example, for a TPR of 0.9, a filtering threshold of 27%
is required and for a TPR of 0.95, a threshold of 14% is
required (retaining approximately 2469 SNPs of the 2871 in
this dataset). However, to achieve these same TPRs when the
OR is 1.14 thresholds of 93% and 87% can be applied. Even
for a sample size as large as 20,000, rarer causal SNPs with an
OR of 1.1 or less cannot be captured at a TPR exceeding
0.95 without capturing more than half of all SNPs in the
region.

Although the results are not given here, we also investi-
gated the utility of filtering for SNPs with different modes of
inheritance and found the results to be consistent with those
we modelled additively using per-allele ORs.

Figure 2(C) shows the results of SNP filtration with a sam-
ple size of 20,000 for different MAFs. Causal SNPs were
chosen that had four different MAFs but were located close
together in a single LD block within the 1 Mb region sim-
ulated (to reduce the possible effects of LD structure). It can
be clearly seen from Figure 2(C) that increasing the MAF of
the causal SNP from 0.08 to 0.10 increases the AUC of the
ROC curve (from 88% to 95%). Further increases in MAF
also increase the AUC, although increases above 0.13 (with
an AUC of 99%) only lead to negligible improvements in
AUC. In this figure, a point is marked on each ROC curve
at the threshold which results in a TPR of 0.95. It can be
seen that they are 49%, 80%, 95% and 97% when the causal
SNP has MAF 0.08, 0.1, 0.13 and 0.31, respectively. With a
sample size of 20,000, a causal SNP with an OR of 1.1 would
require an MAF greater than 0.1 in order to reduce the set
of candidate SNPs to less than 20% of its original size while
being 95% sure of capturing it.

RL Filtering

Previous studies (Easton et al., 2007; Udler et al., 2009, 2010a;
French et al., 2013) used RL filtering for fine-mapping, but
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(A) LP filtering for the same causal SNP with sam-
ple sizes of 10,000 to 50,000 with the threshold of
the 95th percentile highlighted. The causal SNP has
a per-allele OR of 1.1 and a MAF of 0.08.
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causal SNP has a MAF of 0.08, the sample size is
20,000.
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(C) LP filtering for causal SNPs with MAFs of 0.08-
0.31 with a threshold which results in a TPR of ap-
proximately 0.95 highlighted for each scenario. Each
causal SNP has a per-allele OR of 1.1, the sample
size is 20,000.

Figure 2 Receiver operating characteristic (ROC) curves showing the effectiveness of likelihood percentile (LP) as a fine-mapping
filter dependent on the sample size used, the per-allele OR and MAF of the causal SNP. One thousand datasets were simulated for
each scenario using the LD structure of the CASP8 region and the results of filtering at specific thresholds are highlighted.
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we have shown that simpler LP filtering results in ROC curves
with larger AUCs (illustrated in Fig. 1) in the scenarios we
considered. A disadvantage to RL filtering is the large amount
of variation between simulated datasets in the FPR using a
specified RL threshold. For example, we examined filter-
ing on the 1000 CASP8 simulations with a sample size of
20,000 and a causal SNP with an OR of 1.1 and an MAF
of 0.08 at the threshold used in these studies of 1/100. This
results in a TPR of 0.682 across the 1000 datasets. The me-
dian FPR across the datasets is 0.105 but the interquartile
(IQ) range of the FPR is (0.046, 0.268) and the full range
is (0.0003,1), indicating that between 1 and all 2871 of the
2871 original SNPs were retained in the simulated datasets
using RL ≥1/100. The full range is still between 2 and 2871
SNPs even at a much more relaxed threshold of RL=1/1000
(TPR=0.962).

We observed that the range of FPRs decreases for RL
filtering as the OR increases. A per-allele OR of 1.24 is
similar to the estimated effect sizes of the causal SNPs in the
studies which have used this type of filtering before (Easton
et al., 2007; Udler et al., 2009, 2010a). The sample size of
20,000 in the simulated datasets is also commensurate with
their sample sizes. The results for RL filtering for this scenario
are not shown, but the AUC (with mean FPR) is very close
to 1 and there is very little variability in FPR, suggesting
that in general RL filtering was a suitable method to use
in these studies. In particular, the mean FPR and TPR at
a threshold of 1/100 are 0.031 and 0.987, respectively. The
variability between simulations is a clear limitation of RL
filtering and we recommend filtering based on likelihood but
using a percentile threshold, particularly for OR of 1.1 or less.

LP Filtering with Imputed Data

All the results presented so far have been for datasets in which
all SNPs of interest were genotyped. However, Figure 3 shows
that when the causal SNP is one of many imputed SNPs, for
the scenario considered, the results of filtering are similar to
those when all SNPs are genotyped, provided an informative
set of SNPs is genotyped. The ROC curves are displayed for
LP and p-value filtering for a causal SNP with an OR of
1.1, an MAF of 0.13 and a sample size of 10,000 as these
were the best performing filters with fully genotyped data.
For both these filtering methods, the ROC curves for the
partially imputed datasets are very similar to those for the fully
genotyped datasets (the AUCs agree to two decimal places).
Imputation in other scenarios was also examined and the
agreement between the imputed and nonimputed analyses
was similarly close. Therefore, these filtering methods also
seem suitable for use with appropriately imputed genotype
doses.

Discussion

We have carried out a thorough simulation study to compare
the performance of several easily computed univariate statis-
tics with the aim of filtering SNPs in order to reduce the
number to take forward for further analysis. Some of these
methods have been previously used, the application of others
as a filter is novel to the best of our knowledge. Our study fo-
cuses on small effect sizes and relatively rare SNPs. The results
show that likelihood and p-value-based methods can be used
to effectively filter candidate causal variants in fine-mapping
studies for the scenarios we consider. We recommend using
the LP method as this is generally the most efficacious. We
carried out simulations based on three carefully chosen re-
gions of the genome to reflect different local LD patterns.
Despite being so different, LP filtering for causal SNPs with
the same OR and MAF resulted in quite similar true and
mean FPRs, meaning that our results might be applicable to
many genomic regions under consideration in fine-mapping
studies. We have also shown that genotype data which are
partially imputed can also be filtered effectively using these
methods. This conclusion relies on a set of carefully chosen
informative SNPs being genotyped and expected genotype
doses for the remaining SNPs being imputed using impute2
(Marchini & Howie, 2010).

In fine-mapping studies, investigators should choose the
filter threshold based on the sample size and the estimated
MAF and OR of the causal SNP (this can be estimated by
fitting the individual logistic regression models to each of
the SNPs and using the maximum fitted OR). The MAF of
the causal SNP is not so easily estimated but crucially affects
the effectiveness of LP filtering (Fig. 2C). For MAFs of 0.05
or less, filters might fail to capture the causal SNP with a
high probability even with a sample size of 50,000 (data not
shown). We suggest performing simulations for different MAF
SNPs in the region of interest. Using a more lenient filtering
threshold increases the probability of retaining the true causal
SNP, but also captures more SNPs in total (Fig. 2B). With LP
filtering, the proportion of SNPs that will be retained in total
is fixed and, with a large number of SNPs being fine-mapped,
this is approximately the same as the FPR and so should be
chosen with this in mind.

These results also highlight the importance of using large
sample sizes for fine-mapping and could be used as a reference
before the genotyping stage of a study to aid in the decision of
a minimum sample size. The required sample size to achieve
any given power to “discriminate between highly correlated
SNPs” at genome-wide levels of significance using RL has
also been investigated in detail in Udler et al. (2010b). They
have developed an online tool to calculate these sample sizes
given other known information. So, filtering at a threshold of
RL=1/100, with a causal SNP with an MAF of 0.12 and OR
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(A) Filtering using likelihood percentile points (LP).
The AUC using the genotyped data is 93.1% and the
AUC using the imputed data is 93.0%, both given
to 3 significant figures.
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(B) Filtering using p-values from Wald tests. The
AUC using the genotyped data is 92.9% and the
AUC using the imputed data is 92.8%, both given
to 3 significant figures.

Figure 3 The effectiveness of LP and p-value filtering for fine-mapping data which has been partially imputed compared to its
effectiveness for data which is fully genotyped. The causal SNP has an OR of 1.14, an MAF of 0.08 and a sample size of 10,000. A
set of 100 datasets were simulated using the LD structure of the CASP8 region containing 2871 fully genotyped SNPs. These were
then reduced to contain 469 genotyped informative SNPs and the remaining 2402 SNPs were imputed.

of 1.12, a sample size of 46,000 would be required to achieve
a power of 0.9 if this causal SNP was in LD at r 2 = 0.4 with
SNPmax (the SNP with the largest likelihood). However, if
the value of r 2 between these two SNPs was 0.7, the sample
size would need to be 92,000. This larger sample size is due
to the difficultly to differentiate between the causal SNP and
SNPmax when they are in such high LD.

Although using RL filtering with a threshold of 1/100
works well with a sample size of 20,000 when the effect
size is moderate, as was the case at both the FGFR2 and
the 16q12 loci (Udler et al., 2009, 2010a), the effectiveness
of this technique was seen to drop rapidly as the per-allele
OR drops below 1.2. One of the major downfalls of using
RL filters is the large amount of variation in FPR. This
results in high uncertainty about the number of SNPs that
will be retained after filtering. This is particularly a problem
for causal SNPs with a low OR or MAF or when the sample
size is small. LP filtering ensures that there is no uncertainty
in the number of SNPs retained which is particularly useful
when the number of SNPs that can be followed up is strictly
limited.

The filters based on the structural relationships between
variants did not produce encouraging results for causal SNPs
with low ORs and MAFs. We showed that filtering in such

scenarios using the PLD score developed by Zhu et al. (2012)
is only slightly more efficacious than the more basic LD meth-
ods and did not perform as well as the LP filter. More work is
needed to assess the utility of this method in other scenarios
before firm conclusions can be drawn.

The competing outcomes of these methods are the prob-
ability of retaining the true causal SNP (TPR) and propor-
tion of SNPs retained (FPR). A Bayesian decision theory
approach has been developed by Wakefield (2007) to help
deal with these two quantities. However, the difficultly with
this method is the specification of a ratio of the cost of false
nondiscovery to the cost of false discovery which many in-
vestigators might struggle to quantify with confidence.

The methods investigated in this study may be used when
it is believed that a single variant is causing an association in
a particular region of the genome. However, this may not
be the case in many genomic regions. Several studies have
also been carried out into alternative methods that may be
more appropriate in identifying multiple causal variants in a
single region, which is a hypothesis that many investigators
are beginning to consider. For example, Vignal et al. (2011)
demonstrated that penalised logistic regression (using Hyper-
LASSO) was an effective method for analysing fine-mapping
data from the HLA region for Rheumatoid Arthritis, and in
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general appears to be useful for finding multiple associations
in a region of high LD.

Whether there are single or multiple causal variants in a
region, causal SNP resolution may be improved by includ-
ing information other than the genotype data. For example,
there is now much data freely available on features of indi-
vidual genetic variants in online databases such as the En-
cyclopaedia of DNA Elements (Encode Project Consortium,
2011). This includes features such as how conserved vari-
ants are across species and whether they are nonsynonymous.
Bayesian methods of statistical analysis can be used to com-
bine prior information about the likely functional role of an
SNP with evidence from the genotype data and are a promis-
ing and exciting avenue of future research. Such methods
include BLVMs (Fridley et al., 2011), stratified false discovery
rates (Sun et al., 2006; Schork et al., 2013) and Bayes Factors
(Wakefield, 2009; Knight et al., 2011).
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