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A B S T R A C T

Background: To use clinical and MRI radiomic features coupled with machine learning to assess HER2 expres-
sion level and predict pathologic response (pCR) in HER2 overexpressing breast cancer patients receiving
neoadjuvant chemotherapy (NAC).
Methods: This retrospective study included 311 patients. pCR was defined as no residual invasive carcinoma
in the breast or axillary lymph nodes (ypT0/isN0). Radiomics/statistical analysis was performed using MAT-
LAB and CERR software. After ROC and correlation analysis, selected radiomics parameters were advanced to
machine learning modelling alongside clinical MRI-based parameters (lesion type, multifocality, size, nodal
status). For predicting pCR, the data was split into a training and test set (80:20).
Findings: The overall pCR rate was 60.5% (188/311). The final model to predict HER2 heterogeneity utilised
three MRI parameters (two clinical, one radiomic) for a sensitivity of 99.3% (277/279), specificity of 81.3%
(26/32), and diagnostic accuracy of 97.4% (303/311). The final model to predict pCR included six MRI parame-
ters (two clinical, four radiomic) for a sensitivity of 86.5% (32/37), specificity of 80.0% (20/25), and diagnostic
accuracy of 83.9% (52/62) (test set); these results were independent of age and ER status, and outperformed
the best model developed using clinical parameters only (p=0.029, comparison of proportion Chi-squared
test).
Interpretation: The machine learning models, including both clinical and radiomics MRI features, can be used
to assess HER2 expression level and can predict pCR after NAC in HER2 overexpressing breast cancer patients.
Funding: NIH/NCI (P30CA008748), Susan G. Komen Foundation, Breast Cancer Research Foundation, Spanish
Foundation Alfonso Martin Escudero, European School of Radiology.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Introduction

The human epidermal growth factor receptor 2 (HER2) gene islo-
cated on human chromosome 17q21 and is a member of ErbB family
of receptor tyrosine kinases. Overexpression of the HER2 gene and its
protein is observed in 20�30% of breast cancer cases, is a prognostic
factor, and informs treatment selection [1]. Protein overexpression
detected by immunohistochemistry (IHC) or amplification of the
HER2 gene analysed by fluorescence in situ hybridisation (FISH) are
the two main methods used to determine HER2 status in clinical
practice. The American Society of Clinical Oncology/College of Ameri-
can Pathologists (ASCO/CAP) guidelines provide recommendations to
interpret and assign HER2 status [2].

However, tumours may contain multiple clones with distinct
HER2 amplification characteristics within the tumour, resulting in
HER2 intratumour heterogeneity. Recently, studies have suggested
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Research in Context

Evidence before this study

Overexpression of the HER2 gene and its protein is an impor-
tant prognostic factor in breast cancer patients and affects
treatment strategy. Prior studies have suggested that intratu-
mour heterogeneity based on HER2 expression levels can affect
response to neoadjuvant chemotherapy (NAC). Breast magnetic
resonance imaging (MRI) is the most accurate imaging method
to evaluate the breast cancer at presentation and to predict
pathologic response in HER2-positive breast cancer after NAC.

Added value of this study

Our results showed that MRI features can be used to predict
HER2 expression and pathological response after NAC in HER2
overexpressing breast cancer patients. The best accuracy was
achieved when the machine learning models included radio-
mics parameters alongside clinical MRI-based parameters.

Implications of all the available evidence

Machine learning models, including both clinical and radio-
mics-based MRI features, may be used to better select patients
who could benefit from anti-HER2 treatment after validation in
larger multi-institutional studies.

Fig. 1. Flowchart of inclusion and exclusion criteria for the study.
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that intratumour heterogeneity based on HER2 expression levels can
affect response to neoadjuvant chemotherapy (NAC) [3�7].

The assessment of HER2 status is usually based on the analysis
from a single biopsy of a potentially heterogenous tumour, which
can capture only a snapshot of the tumour tissue and is subject to
selection bias. Therefore, the development of non-invasive bio-
markers to evaluate whole-tumour heterogeneity are needed.
Breast magnetic resonance imaging (MRI) is the most accurate
imaging method to evaluate the breast cancer at presentation and
to predict pathologic response in HER2-positive breast cancer after
NAC [8]. Radiomic analysis of pretreatment breast MRI has been
shown to enable pCR prediction [9]. Imaging intratumour hetero-
geneity with MRI delivers additional predictive value beyond cur-
rent clinical-pathologic and biologic predictors in breast cancer,
and could potentially be used to stratify patients for individualised
therapy [10].

The aim of this study was to use MRI-based clinical and radiomic
features coupled with machine learning to assess HER2 expression
level in HER2 overexpressing breast cancer patients receiving NAC,
and to correlate these findings with pathologic response.

2. Methods

This retrospective single-centre Health Insurance Portability and
Accountability Act (HIPAA)-compliant study was approved by the
Institutional Review Board and the need for written informed con-
sent was waived. For this study, the datasets generated and/or ana-
lysed are available from the corresponding author on reasonable
request. Inclusion criteria were: HER2 overexpressing breast cancer
patients who underwent NAC and pretreatment state-of-the-art con-
trast-enhanced breast MRI [11,12]. Of 445 consecutive patients with
HER2 overexpressing invasive breast carcinoma treated with NAC
and surgical resection at our institution between July 2014 and May
2019, 70 were excluded because they did not have pretreatment
breast MRI and 64 patients with outside images were excluded
because of poor image quality. Of 311 patients included in the final
analysis, 168 (54%) had MRI studies performed at our institution and
143 (46%) had studies performed elsewhere (Fig. 1). The neoadjuvant
treatment regimens included AC-THP (Adriamycin and Cyclophos-
phamide followed by Paclitaxel, Trastuzumab, and Pertuzumab) in
270 patients (86.8%), TCHP (Docetaxel, Carboplatin, Trastuzumab,
and Pertuzumab) in 28 (9.0%) patients, THP (Docetaxel, Trastuzumab
and Pertuzumab) in seven (2.3%) patients, ACT (Adriamycin, Cyclo-
phosphamide and Paclitaxel) in five (1.6%) patients, and AC (Adria-
mycin and Cyclophosphamide) in 1 (0.3%) patient.

Oestrogen receptor (ER) and HER2 expression were evaluated on
percutaneous biopsy according to the 2018 ASCO/CAP guidelines
[2,13]. All pathologic results from outside biopsies were reviewed at
our institution. ER expression above 1% on IHC was considered posi-
tive [13]. Patients were classified into two groups based on HER2
expression level. The first group (IHC group) comprised patients with
tumours that showed HER2 protein overexpression on IHC (IHC 3+).
The second group (FISH group) comprised patients with tumours
that showed HER2 gene amplification detected by FISH in the
absence of protein overexpression on IHC (IHC 2+ or 1+ to 2+). Patho-
logic complete response (pCR) was defined as no residual invasive
carcinoma in the breast or axillary lymph nodes (ypT0/isN0) at surgi-
cal resection, similar to prior studies [3�5,7]. Breast MRIs were
assessed according to the American College of Radiology (ACR) Breast
Imaging Reporting and Data System (BI-RADS) lexicon [12]. Clinical
MRI features included tumour size, lesion type (mass, non-mass
enhancement [NME] or both), presence of multifocality, and suspi-
cious axillary lymph nodes.

A dedicated breast radiologist (AB) with seven years of experience
reviewed the MRI exams and performed 3D segmentations of the
whole tumour in the first post-contrast non-subtracted sequence
using ITK-SNAP software. All included MR images used fat suppres-
sion. Susceptibility artefacts related to post-biopsy changes, when
present, were excluded from segmentation and only the largest
lesion was segmented in multifocal tumours (Fig. 2). Enhancement
maps were calculated as the percentage increase in signal from the
pre-contrast image to the first post-contrast image. Radiomics and
statistical analysis were performed using MATLAB and publicly avail-
able CERR (Computational Environment for Radiological Research)
software [14]. CERR has recently been shown to conform to the Image
Biomarker Standardisation Initiative (IBSI) guidelines [15]. For analy-
sis, data was reduced to a fixed bin number of 16 grey levels and only
an interpixel distance of one was considered. CERR analysis resulted
in 102 texture parameters sub-divided into six categories � 22 first
order statistics, 26 statistics based on grey level cooccurrence matri-
ces, 16 statistics based on run length matrices, 16 statistics based on
size zone matrices, 17 statistics based on neighborhood grey level
dependence matrices, and finally five statistics based on neighbor-
hood grey tone difference matrices. Features were computed from



Fig. 2. Examples of 3D segmentations of HER2 overexpressing breast carcinomas in the breast MRI’s first minute post-contrast sequence. a) Unifocal tumour (whole tumour was
segmented). b) Multifocal tumour (only the largest lesion was segmented).

Table 1
Clinical and MRI features of the included patients according to the HER2
expression (n = 311).

Clinical/MRI feature HER2 expression p-value

IHC FISH

Age 49.7 § 11.6 years 47.3 § 11.9 years 0.302a

Estrogen receptor
- Negative 112 (91.1%) 11 (8.9%) 0.572b

- Positive 167 (88.8%) 21 (11.2%)
Lesion type
- Mass 113 (86.9%) 17 (13.1%) 0.204b

- NME 133 (90.5%) 14 (9.5%)
- Both 33 (97.1%) 1 (2.9%)

Tumour size 4.7 § 2.5 cm 4.4 § 2.8 cm 0.312a

Multifocality
- Absent 94 (88.7%) 12 (11.3%) 0.696b

- Present 185 (90.2%) 20 (9.8%)
Nodal status
- Negative 71 (91.0%) 7 (9.0%) 0.830b

- Positive 208 (89.3%) 25 (10.7%)
a Mann�Whitney U-test.
b Chi-squared test.
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each 2D directional matrix and averaged over 2D directions and sli-
ces, since data was not isotropic. As patients were scanned at differ-
ent sites, Combat harmonisation was performed to remove the
centre effect (in our case local vs. foreign scans) while retaining the
pathophysiologic information (in our case either HER2 expression or
pathologic response). The harmonisation employed Bayes estimates
to account for both additive and multiplicative scanner effects [16].

Initially, univariate analysis was performed to identify significant
parameters. Continuous variables were described as mean, standard
deviation (SD), and range. The two-tailed Mann�Whitney U test for
two independent samples was used to determine significant differen-
ces between groups. Correlation analysis was then employed to
remove redundant parameters from advancement to model develop-
ment. If a highly positive (> 0.9) or highly negative (< �0.9) correla-
tion was noted, the parameter with the lowest area under the
receiver operating curve (AUROC) was removed. After ROC and corre-
lation analysis, radiomics parameters that demonstrated significant
differences between groups were retained and advanced to model-
ling alongside clinical MRI-based parameters, including tumour size,
lesion type, multifocality, and nodal status. For the prediction of path-
ological complete response, the data was split into training and test
sets at a ratio of 4:1 (80% training and 20% test), with feature selection
performed purely on the training set. Due to the low number of cases
in the minority class, this was not feasible for the comparison
between the IHC and FISH groups. Machine learning models were
developed utilising coarse decision trees and five-fold cross-valida-
tion. Coarse decision tree modelling was implemented in MATLAB,
with the maximum number of splits set at four and utilising Gini’s
diversity index as the splitting criterion. For the prediction of pCR,
model development was performed on the training set and then
validated on the test set.

3. Results

The mean patient age was 49.4 years (SD: 11.6 years; range:
24�78 years) and the mean tumour size by MRI was 4.7 cm (SD: 2.6
cm; range: 0.9�14.8 cm). The index tumour presented as a mass in
147/311 cases (47.3%), non-mass enhancement (NME) in 34/311
(10.9%), and both mass and NME in 130/311 (41.8%). Most tumours
were multifocal (n = 205/311; 65.9%) and had suspicious axillary
lymph nodes on MRI (n = 233/311; 74.9%). ER was positive in 188/311
tumours (60.5%). There were 279/311 tumours (89.7%) with 3+ IHC
expression and 32/311 (10.3%) with amplification by FISH. The overall
pCR rate was 60.5% (188/311). Tables 1 and 2 summarise the clini-
cal MRI features according to HER2 expression level and pCR,
respectively.

Prior to data harmonisation, 77 radiomic features were signifi-
cantly different between the local and foreign scans, and after harmo-
nisation, only seven features were still significantly different.

Tables 3 and 4 describe the significant radiomics features related
to HER2 expression level and pathologic response on initial univari-
ate analysis, respectively. After observing the correlations between
radiomics parameters, two radiomics parameters were advanced for
both HER2 expression level and four for pathologic response analysis
models. Six clinical parameters, including four MRI features (size,
multifocality, lesion type, and nodal status), ER status, and age were



Table 2
Clinical and MRI features of the included patients according to the pathologic
response (n = 311).

Clinical/MRI feature Pathologic response p-value

No pCR pCR

Age 48.7 § 12.6 years 50.0 § 10.9 years 0.183a

Estrogen receptor
- Negative 28 (22.8%) 95 (77.2%) < 0.001b

- Positive 95 (50.5%) 93 (49.5%)
HER2 expression
- IHC 98 (35.1%) 181 (64.9%) < 0.001b

- FISH 25 (78.1%) 7 (21.9%)
Lesion type
- Mass 44 (33.8%) 86 (66.2%) 0.119b

- NME 67 (45.6%) 80 (54.4%)
- Both 12 (35.3%) 22 (64.7%)

Tumour size 4.3 § 2.4 cm 4.9 § 2.6 cm 0.037a

Multifocality
- Absent 46 (43.4%) 60 (56.6%) 0.330b

- Present 77 (37.6%) 128 (62.4%)
Nodal status
- Negative 37 (47.4%) 41 (52.6%) 0.110b

- Positive 86 (36.9%) 147 (63.1%)
a Mann�Whitney U-test.
b Chi-squared test.
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also advanced to modelling. The processing of selecting radiomic fea-
tures for final model development is illustrated using correlation and
area under the curve analysis for pCR in Table 5.

The final model to predict HER2 intratumour expression levels
(IHC vs. FISH) utilised three MRI parameters (two clinical parameters
[lesion type and multifocality] and one radiomic parameter [large
zone emphasis]) for a sensitivity of 99.3% (277/279), specificity of
81.3% (26/32), positive predictive value of 97.9% (277/283), negative
predictive value of 92.9% (26/28), and diagnostic accuracy of 97.4%
(303/311) � Table 6.

Random splitting of the data resulted in 249 cases (150 pCR, 99 no
pCR) in the training set and 62 cases (38 pCR, 24 no pCR) in the test
set. The model to predict pCR included six MRI parameters (two clini-
cal parameters [lesion type and size] and four radiomic parameters
[variance, first order entropy, 90th percentile and zone length vari-
ance]) for a sensitivity of 87.4% (95% CI: 81.1�92.3%), specificity of
81.6% (95% CI: 72.5�88.7%), positive predictive value of 88.0% (95%
CI: 82.8�91.8%), negative predictive value of 80.8% (95% CI:
73.2�86.6%), and diagnostic accuracy of 85.1% (95% CI: 80.1�89.3%)
in the training set � Table 7. For the test set, a sensitivity of 86.5%
(95% CI: 71.2�95.5%), specificity of 80.0% (95% CI: 59.3�93.2%), posi-
tive predictive value of 86.5% (95% CI: 74.3�93.4%), negative predic-
tive value of 80.0% (95% CI: 63.4�90.2%), and diagnostic accuracy of
83.9% (95% CI: 72.3�92.0%) were obtained � Table 8. Age and ER sta-
tus were not retained in the final models. For comparison, utilising
the six clinical features only and exhaustively testing all 63 possible
combinations (26�1) the best results obtained were a diagnostic
accuracy of 65.9% (95% CI: 59.6�71.7%) for the training set and a diag-
nostic accuracy of 72.6% (95% CI: 59.8�83.2%) for the test set. Com-
parison of diagnostic accuracy with the radiomics model developed
Table 3
Significant radiomics features according to HER2 expression level (
italicised.

Parameter IHC

Variance 2250 (935�5711)
Run length variance 0.738 (0.391�1.438)
Large zone emphasis 232.2 (�27.9 to 313.2)
Large zone low grey level emphasis 37.56 (�13.75 to 40.00)
Zone length variance 235.5 (�38.6 to 299.8)

Abbreviations: IHC, immunohistochemistry; FISH, fluorescence in situ
using both clinical and radiomic features revealed a significant differ-
ence (p = 0.029, comparison of proportion Chi-squared test), thus
showing the value of including radiomic features.

4. Discussion

This study aimed to evaluate HER2 expression level and patho-
logic response after NAC in HER2 overexpressing breast cancer
patients through the analysis of MRI images. Our results show that
MRI features are associated with differences in HER2 expression lev-
els and pathological response after NAC. The best accuracy was
achieved when the machine learning models included both clinical
and radiomic MRI parameters.

Pathological intratumour heterogeneity with respect to differen-
ces in HER2 expression levels has been described in 1�40% of HER2
breast cancers [6]. Many authors have reported that pathological
intratumour HER2 heterogeneity is associated with a worse progno-
sis [3�7]; however, there is no consensus on the best way to evaluate
this pathological intratumour heterogeneity in clinical practice. In
most studies, HER2 intratumour heterogeneity is evaluated based on
both protein expression and gene signal on core needle biopsies
obtained at diagnosis. However, new approaches have been pro-
posed. Metzger Filho et al. performed core biopsies from two distinct
areas of each tumour (three cores/site) in 164 patients and defined
intratumour HER2 heterogeneity as at least one area demonstrating
either HER negativity or HER2 positivity by FISH in less than 50% of
tumour cells. They found a correlation between intratumour hetero-
geneity and pathologic response, even when stratifying by ER status
and HER2 IHC [4].

However, the HER2 status of a core biopsy specimen, even when
obtained from several sites within a tumour, is limited in providing
comprehensive information on the pathologic heterogeneity of the
tumour in its entirety. In contrast, MRI combined with radiomics
analysis allows a non-invasive evaluation of the entire tumour. The
model presented here showed 97% diagnostic accuracy to detect dif-
ferences in HER2 expression, suggesting that such a model could help
to select patients with HER2 gene amplification without HER2 pro-
tein overexpression who would benefit from anti-HER2 therapy. The
only radiomics parameter retained by the model to distinguish HER2
expression levels between IHC and FISH assignment of HER2 status
was large zone emphasis. This parameter attempts to quantify het-
erogeneity via the assessment of zones of similar intensity, and as the
name suggests, accentuates the presence of larger zones. Higher val-
ues are indicative of coarser texture, i.e. higher radiomics heteroge-
neity. Based on the data in Table 3, such higher radiomics
heterogeneity is associated with lesions with high levels of HER2 pro-
tein 3+ overexpression on IHC (IHC group).

Our sample of HER2 overexpressing breast carcinomas was com-
posed of large tumours, with high rates of multifocality as well as sus-
picious axillary lymph nodes, which is consistent with the literature
[17�19]. In our study, the pCR rate among patients determined to be
HER2+ by IHC was 65%, compared to 22% among patients in the FISH
group, similar to the results of other investigators [4,7]. These find-
ings suggest that the degree of benefit provided by HER2-targeted
n = 311). Parameters retained in the final predictive model are

FISH p-value (Mann�Whitney U test)

1149 (�3407 to 2839) 0.0007
0.486 (�0.948 to 1.112) 0.0045
�93.9 (�688.6 to 106.0) < 0.0001

�15.31 (�60.98 to 13.32) < 0.0001
�162.2 (�714.7 to 94.7) < 0.0001

hybridisation.



Table 4
Significant radiomics features according to pathologic response for the training set (n = 249). Parameters retained in the
final predictive model are italicised.

Parameter No pCR pCR p-value (Mann�Whitney U test)

Mean 114 (90 to 146) 129 (101 to 169) 0.016
Standard deviation 43.9 (32.5 to 63.5) 51.3 (37.2 to 72.4) 0.040
Variance 1596 (803 to 3361) 2989 (1088 to 6079) 0.001
Median 112 (88 to 140) 123 (100 to 161) 0.024
Entropy 3.37 (3.01 to 3.82) 3.59 (3.19 to 3.84) 0.029
Root mean square 127 (99 to 163) 143 (116 to 184) 0.012
Mean absolute deviation 31.9 (24.8 to 47.9) 38.3 (29.3 to 52.8) 0.043
Median absolute deviation 32.0 (24.6 to 47.5) 37.9 (29.4 to 52.4) 0.042
P90 171 (131 to 218) 192 (150 to 236) 0.008
Long run emphasis 2.38 (1.73 to 3.70) 2.56 (1.96 to 4.07) 0.039
Run length variance 0.475 (0.136 to 1.172) 0.779 (0.352 to 1.510) 0.001
Large zone emphasis 1.0 (-126.0 to 188.8) 245.5 (�35.5 to 245.5) < 0.0001
Zone length variance -8.0 (-136.9 to 166.1) 249.3 (�44.6 to 249.3) < 0.0001

Abbreviations: pCR, pathologic complete response.
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therapy may be different in patients with HER2 gene amplification
with and without HER2 protein overexpression, which is expected,
since these drugs target the HER2 receptor on the cell surface.

Previous studies have shown that MRI-based radiomic signatures
enable the assessment of breast cancer molecular subtypes with high
diagnostic accuracy [20�22]. Radiomics models using pretreatment
MRI features have also been used to predict pCR after NAC. For triple
negative and HER2 overexpressing subtypes, different models have
shown accuracy rates to predict pCR of 70% to 93% [23�25]. In the
present study, the MRI-based model showed an 83.9% diagnostic
accuracy to predict pCR among HER2 overexpressing tumours. Three
of the radiomics parameters utilised in the determination of pCR, var-
iance, entropy and zone level variance, are measures of the spread of
values present within the lesion, with higher values representing
greater spread. Lesions with pCR showed higher values for these
parameters, suggesting that increased radiomic heterogeneity is
advantageous in terms of treatment response. Significantly higher
values of the 90th percentile in pCR lesions seems to indicate that
Table 5
Extract of radiomic features determination to forward to model development for pre-
diction of pathological complete response, utilising correlation analysis.

Spearman rank correlation coefficients AUROC

Variance Entropy P90 rlv lze zlv

Variance 0.883 0.791 0.534 0.578 0.584 0.697
Entropy 0.883 0.868 0.301 0.290 0.287 0.655
P90 0.791 0.868 0.203 0.216 0.220 0.671
rlv 0.534 0.301 0.203 0.928 0.910 0.693
lze 0.578 0.290 0.216 0.928 0.997 0.749
zlv 0.584 0.287 0.220 0.910 0.997 0.761

Abbreviations: AUROC, area under the receiver operating curve; P90, 90th percentile;
rlv, run length variance; lze, large zone emphasis; zlv, zone length variance.

Table 6
Results from the final model to predict HER2 intratumour expression lev-
els (IHC vs. FISH), which utilised three MRI parameters (two clinical
parameters [lesion type and multifocality] and one radiomic parameter
[large zone emphasis]).

Predictive Model Result HER2 expression Total

IHC FISH

IHC 277 (97.9%) 6 (2.1%) 283 (100%)
FISH 2 (7.1%) 26 (92.9%) 28 (100%)
Total 279 (89.7%) 32 (10.3%) 311 (100%)

Abbreviations: IHC, immunohistochemistry; FISH, fluorescence in situ
hybridisation.
lesions with hotspots of enhancement are more likely to respond
well to treatment.

In our study, higher levels of HER2 protein overexpression as well
favourable treatment response were associated with greater radio-
mics intratumour heterogeneity. This seems counter-intuitive as
prior studies have shown that pathologic intratumour heterogeneity
is associated with a worse prognosis [3�7]. Our data suggest that
radiomic intratumour heterogeneity does not equal pathologic intra-
tumour heterogeneity but can be used in prediction models as a valu-
able parameter. This finding is supported by Rauch et al. who also
demonstrated that radiomic intratumoural heterogeneity seems to
be different from pathological intratumuor heterogeneity, in this
case with respect to the level of tumour infiltrating lymphocytes, and
was shown to be associated with achievement of pCR [26].

The clinical parameters selected in the final models to predict both
HER2 expression level and pCR did not necessarily have a statistically
significant association with the outcome in univariate analysis. Larger
tumour size was the only clinical parameter retained that showed a sta-
tistically significant correlation to pCR in univariate analysis. On the
other hand, even though ER status was a significant parameter to pre-
dict pCR in univariate analysis, it was not retained in the final model.

This study has some limitations related to its retrospective nature.
We included MR images from different sites with different acquisition
protocols, which could affect the radiomics analysis despite the
Table 7
Results from the model to predict pCR included six MRI parameters (two clinical
parameters [lesion type and size] and four radiomic parameters [variance, entropy,
90th percentile and zone length variance]) in the training set.

Predictive model result Pathologic complete response (pCR) Total

No pCR pCR

No pCR 80 (80.8%) 19 (19.2%) 99 (100%)
pCR 18 (12.0%) 132 (88.0%) 150 (100%)
Total 98 (39.4%) 151 (60.6%) 249 (100%)

Table 8
Results from the model to predict pCR included six MRI parameters (two clinical
parameters [lesion type and size] and four radiomic parameters [variance,
entropy, 90th percentile and zone length variance]) in the test set.

Predictive model result Pathologic complete response (pCR) Total

No pCR pCR

No pCR 20 (80.0%) 5 (20.0%) 25 (100%)
pCR 5 (13.5%) 32 (86.5%) 37 (100%)
Total 25 (40.3%) 37 (59.7%) 62 (100%)
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harmonisation process used to reduce this effect. On the other hand, dif-
ferent protocols are commonly seen in clinical practice and including all
studies could improve the reproducibility of themethod in amulti-insti-
tutional setting. Secondly, we used HER2 expression level at percutane-
ous biopsy to assess intratumour heterogeneity, the approach used in
previous studies. While whole-tumour evaluation of HER2 heterogene-
ity would be the best approach, it was not feasible as all included
patients received neoadjuvant chemotherapy. It is also acknowledged
that the model developed to assess radiomic features in HER2 IHC and
FISH lesions demonstrates associations only rather than predictions,
since no test set was utilised due to the small size of the minority class.

In conclusion, machine learning models, including both clinical
and radiomics-based MRI features, can be used to assess HER2
expression level and can predict pCR after NAC in HER2 overexpress-
ing breast cancer patients. This information could be used to better
select patients who could benefit from anti-HER2 treatment after
validation in larger multi-institutional studies.
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