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a b s t r a c t 

Recent advances have made it possible to decode various aspects of visually presented stimuli from patterns 
of scalp EEG measurements. As of recently, such multivariate methods have been commonly used to decode 
visual-spatial features such as location, orientation, or spatial frequency. In the current study, we show that 
it is also possible to track visual colour processing by using Linear Discriminant Analysis on patterns of EEG 

activity. Building on other recent demonstrations, we show that colour decoding: (1) reflects sensory qualities (as 
opposed to, for example, verbal labelling) with a prominent contribution from posterior electrodes contralateral 
to the stimulus, (2) conforms to a parametric coding space, (3) is possible in multi-item displays, and (4) is 
comparable in magnitude to the decoding of visual stimulus orientation. Through subsampling our data, we also 
provide an estimate of the approximate number of trials and participants required for robust decoding. Finally, 
we show that while colour decoding can be sensitive to subtle differences in luminance, our colour decoding 
results are primarily driven by measured colour differences between stimuli. Colour decoding opens a relevant 
new dimension in which to track visual processing using scalp EEG measurements, while bypassing potential 
confounds associated with decoding approaches that focus on spatial features. 
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. Introduction 

Human scalp electroencephalography (EEG) and magnetoen-
ephalography (MEG) are sensitive to synchronous activity in large neu-
al populations, thus providing a macroscopic readout of brain activity.
hereas extracranial measures of brain activity carry the problem of

ource ambiguity ( Koles, 1998 ), it is nevertheless possible to compare
calp topography of brain activity to differentiate spatial patterns gener-
ted by subtly different configurations of neuronal populations ( Stokes
t al., 2015 ). Recently, studies have shown that the information across
n array of electrodes can be used in multivariate analyses to decode
eural information such as stimulus orientation, spatial location, spa-
ial frequency, and motion direction ( Bae and Luck, 2019 ; Cichy et al.,
015 ; Foster et al., 2017 ; King and Dehaene, 2014 ; Myers et al., 2015 ;
.g. Ramkumar et al., 2013 ; Sandhaeger et al., 2019 ; Stokes et al., 2015 ).

Fewer studies have successfully applied multivariate approaches to
ecode non-spatial features, such as colour. Decoding of visual-spatial
eatures, which have typically been the focus in EEG decoding studies to
ate (such as orientation, location, and spatial frequency), is susceptible
o contributions of spatial attention and/or eye movements, such as spa-
ial biases in micro-saccades ( Engbert and Kliegl, 2003 ; Hafed and Clark,
002 ; Hollingworth et al., 2013 ; Mostert et al., 2018 ; Quax et al., 2019 ;
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hielen et al., 2019 ; van Ede, Chekroud, and Nobre, 2019 ). Therefore,
he extension of decoding methods to features like colour, which are
ot defined by spatial parameters, provides an important validation of
he approach by ensuring that decoding is based on the neural process-
ng of feature-specific content. The demonstration of colour decoding
rom scalp EEG should therefore have important implications – afford-
ng novel ways to track perceptual representations in various contexts. 

To date, a number of MEG ( Hermann et al., 2020 ; Rosenthal et al.,
021 ; Sandhaeger et al., 2019 ; Teichmann et al., 2019 ; Teichmann et al.,
020 ) and, to a lesser extent, EEG studies ( Bocincova and Johnson,
018 ; Sandhaeger et al., 2019 ; Sutterer et al., 2021 ) have applied de-
oding approaches to distinguish amongst colour values upon visual pre-
entation. We have built on these initial studies to further establish and
haracterise the properties of colour decoding from scalp EEG measure-
ents. For example, it remains to be determined whether the relevant

ignals represent the sensory processing of colours and are independent
rom other associated factors, such as verbal labels or decision-making
n tasks, or from subtle differences in luminance that can occur between
endered colours. 

Like orientation, colour also follows an organisational structure in
isual cortices ( Engel et al., 1997 ; Kleinschmidt et al., 1996 ), and re-
earch has shown that it is possible to decode colour with functional MRI
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easurement with millimetre resolution ( Brouwer and Heeger, 2009 )
cross a range of cortical visual areas ( Brouwer and Heeger, 2009 ;
ersichetti et al., 2015 ). Therefore, finding that colour-related decod-
ng follows parametric variations in stimuli (as opposed to binary or
ategorical boundaries) in a manner akin to decoding of stimulus ori-
ntation is an important step toward ensuring that decoding can reveal
olour-specific neural information (in line with Rosenthal et al., 2021 ).
urther reassurance would come from the involvement of electrodes sen-
itive to visual processing to the decoding, at posterior sites posterior
ites contralateral to the decoded stimulus (akin to recent MEG research;
ermann et al., 2020 ). Finally, the ability to decode the colours of mul-

iple stimuli presented concurrently (as opposed to a single central stim-
lus in isolation, as in most prior colour decoding studies) would greatly
dd to the flexibility and analytical power of colour decoding as a tool
n future studies. 

In the present study, we therefore aimed to track parametric varia-
ions in colour processing in scalp EEG, from multi-item displays, while
lso qualitatively comparing ‘colour decoding’ to the more established
ecoding of stimulus orientation (in term of robustness, tuning profile,
iming, spatial topography, and so on). To do so, we presented 30 partic-
pants with two sinusoidal Gabor gratings (one left, one right) that each
ontained a unique colour and orientation, and we required participants
o attend to both features of both items (for a later memory test, which
s beyond the scope of the current study). Using Linear Discriminant
nalysis, we obtained reliable (and comparable) decoding of the colour
nd orientation of both stimuli. Our data also provide a clear case for a
visual ” account of this decoding, by showing that colour decoding has
 contralateral-posterior topography, and follows the parametric colour-
oding space. 

. Materials & methods 

.1. Participants 

Ethical approval for this study was obtained from the Central Uni-
ersity Research Ethics Committee of the University of Oxford. Thirty
ealthy adults (28.3 years old on average; ranging from 18 - 35 years
ld; 17 females) were included in this study after excluding two partic-
pants due to technical difficulties and incomplete data collection. All
articipants had normal or corrected-to-normal vision and reported no
eficiencies in their colour vision. All participants were reimbursed £15
er hour for their time. 

.2. Visual display 

Stimuli were generated using the Psychophysics Toolbox version
.0.11 ( Brainard, 1997 ) in MATLAB 2014b (MathWorks, Natick, MA).
he stimuli were presented on a 27-inch monitor (1920 ×1080, 144 Hz;
efault gamma correction of 2.2). The monitor was integrated in a noise-
roof booth with a glass barrier right in front of the display. Viewing
istance was 90 cm from the monitor where participants were stabilised
t a fixed position using a chin rest. Using a photodiode we established
 24 ms delay between the stimulus triggers received on the acquisition
oftware and the visual presentation of the stimulus on screen. We cor-
ected for this in our analyses accordingly. 

.3. Stimuli & design 

The critical stimuli for this experiment were presented within the
ontext of a visual working-memory task that ensured attentive view-
ng of the visual stimuli at encoding. Task details are presented here for
larity, but the analyses only focus on decoding the memory stimuli at
ncoding (for a full description of the task and participants’ behavioural
erformance, see: Hajonides et al., 2020 ). At the start of each trial, two
abor stimuli with a diameter of 4.3° of visual angle (one to the left, the
2 
ther to the right of fixation, centred at ± 4.3° each) were presented si-
ultaneously for 300 ms ( Fig. 1 C) on a grey background (defined RGB:
.196 0.196 0.196; measured CIE L ∗ a ∗ b ∗ : 15.18, 3.146, − 3.822). The
timuli consisted of bilateral luminance-defined sinusoidal Gabor grat-
ngs and each had a unique colour and orientation. Colours were drawn
rom a CIELAB colour space, which is often used to define perceptually
niform stimulus sets. Forty-eight evenly-spaced colours were drawn
rom a circle in CIELAB colour space with a fixed lightness of L = 54
 Fig. 1 A; centre is at a = 18, b = − 8, radius = 59). 

To get a precise measurement of the obtained luminance of our stim-
li on our monitor, forty-eight rendered colours were measured post-hoc
sing a CRS ColorCal KMII Colorimeter (Cambridge Research Systems,
ent, UK). Luminance and CIE chromaticity (in CIE xyY coordinates)
ere measured on a uniform colour patch containing only the aver-
ge colour of the sinusoidal grating as an approximation of the grating
olour with varying intensity. CIE xyY coordinates were converted to
IELAB coordinates using a d65 white point ( Fig. 1 B). Deviations of
he rendered colours from the CIELAB colours can be caused through
arious ways. For example, CIELAB colours were converted using a lin-
ar colour conversion algorithm (Image Processing Toolbox, MATLAB,
he MathWorks, Inc., Natick, MA) with an industry standard d65 white
oint. Without monitor calibration, the sampled RGB colours could de-
iate from originally defined CIELAB colours. Also, not all colours can
e rendered by computer monitors. This is likely to impose small non-
ystematic imprecisions on the generation of individual colours. Finally,
s previously described, there was a glass barrier between the monitor
nd the participant. The glass barrier could be introducing reflections,
esulting in light loss. We added these deviations to our analysis to as-
ess the relative contributions of stimulus rendering offsets and to map
ut (and rule out) potential alternative explanations for our colour de-
oding (such as decoding of luminance differences, rather than colour
ifferences, between our stimuli). 

In total, 48 different colours and 48 different orientations were pre-
ented, with feature values ranging from 3.75 to 180° in evenly spaced
teps. Orientation and colour values were initially allocated randomly
ithin each block. However, to minimise trials in which the two items
ad the same or very similar colour or orientation values, we redrew the
olour and orientation values of all trials in a block when more than 2
rials were allocated two items with colour or orientation values within
he same bin (out of 12 bins). To increase the amount of samples for fea-
ure, we binned the 48 colour and orientation features into 12 - equally
paced – bins ( Fig. 1 AB). To match the orientation space more closely,
e opted for a symmetrical colour probe that included all colours in the
 – 𝜋 range of the probe. The colour wheel was not rotated from trial-
o-trial but was always presented in the same orientation as displayed
n Fig. 1 C. 

At the time of stimulus presentation, participants were instructed to
ttend to and remember both the colour and the orientation of both
ratings. At the end of each trial, participants were probed to report a
ingle feature from one of the two items. Which feature and item would
e probed was unpredictable at encoding. During the 2400-ms memory
elay, two events occurred: (1) 1000 ms after encoding onset a cue could
rovide information about the item or feature dimension that would be
robed and (2) 1800 ms after encoding onset, a bilateral colour or orien-
ation distractor was presented to distort visual processing. These trial
etails are not critical to the current investigation, which focuses almost
xclusively on the encoding phase of the experiment. More detailed de-
cription of the experiment from which we here re-analysed the EEG
ata can be found in Hajonides et al. (2020) . 

.4. EEG recording 

The EEG signal was acquired using a 10–20 system using 61 Ag/AgCl
intered electrodes (EasyCap, Herrsching, Germany). The data were
ecorded using a Synamps amplifier and Curry 8 acquisition software
Compumedics NeuroScan, Charlotte, NC). An electrode placed behind
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Fig. 1. Stimulus characteristics and presentation. 

A) Forty-eight colours - depicted in small dots - were 
sampled from CIELAB colour space with a fixed light- 
ness ( “L ”) of 54. During analysis, colours were binned 
into 12 evenly-spaced bins, depicted in circles. B) Mea- 
sured CIE chromaticity a ∗ and b ∗ coordinates on the 
monitor using the Colorimeter. C) Participants were pre- 
sented with two Gabor gratings for 300 ms with both 
colour and orientation information. Colour and orien- 
tation were varied independently, using circular spaces 
with 48 possible feature-values (indicated in panel A 

and B). Participants were required to reproduce the ex- 
act colour or orientation of either stimulus after a brief 
memory delay, this ensured attentive encoding of the 
stimuli. The memory delay contained two events: a retro 
cue, and a visual distractor that consisted of a bilateral 
colour circle or two identical orientated Gabor gratings. 
We focus our analyses on the 1000 ms after onset of the 

gratings. The schematic shows an example trial prompting a report for the colour of the left grating. Stimulus durations are shown next to the tick marks along with 
in brackets the onset time after the start of the trial. See Hajonides et al. (2020) for the full details of the task design. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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he right mastoid was used as the active reference during acquisition.
ffline, data were re-referenced to the average of the left and right mas-

oids. The ground was placed above the left elbow. Bipolar electroocu-
ography (EOG) was recorded from electrodes above and below the left
ye and lateral of both eyes. EEG data were digitised at 1000 Hz with an
nti-aliasing filter with a cut-off frequency of 400 Hz. Impedances were
ept below 7k Ω. 

.5. EEG pre-processing 

EEG data were analysed in MATLAB 2017a using FieldTrip
 Oostenveld et al., 2011 ) in conjunction with the OHBA Software
ibrary (OSL; https://ohba-analysis.github.io/ ). After importing,
he data were epoched from − 300 ms to 1000 ms around presen-
ation the presentation of the Gabor gratings (ft_redefinetrial) and
e-referenced to the average of both mastoids (ft_preprocessing). Raw
poched data were downsampled to 100 Hz, and stored for subse-
uent analyses (analysis scripts and data is made available online at
SF https://osf.io/j289e/?view_only = b13407009b4245f7950960c34
5474a6 ). 

Subsequently, we used the EOG to identify trials in which partici-
ants blinked and might have missed the visually presented stimuli. The
ertical EOG was baselined between 300 ms to 100 ms before stimulus
resentation. Trials that exceeded half of the maximum voltage elicited
y blinks (half of 400 𝜇V) within the timeframe of 100 ms prior to and
00 ms post stimulus presentation were marked and later discarded. Ad-
itional eye-related artefacts were identified using Independent Com-
onent Analysis (ICA; ft_componentalanalysis) by applying the FastICA
lgorithm ( Hyvärinen, 1999 ) to the full EEG layout. Components were
ejected if they had a correlation of r > 0.40 with the EOG electrodes (on
verage 2.7 components per participant, and a maximum of 4 compo-
ents). In addition to trials where participants blinked at the moment of
timulus presentation, trials with high within-trial variance of the EEG
roadband signal were removed using a generalised ESD test at a 0.05
ignificance threshold ( Rosner, 1983 ; implemented in OSL), removing
.48% ± 2.18% (mean ± standard deviation) of all trials. 

.6. Classification on EEG data 

To focus our decoding on visual processing, we restricted our main
nalyses on the 17 most posterior electrodes (P7, P5, P3, P1, Pz, P2, P4,
6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz and O2; as in Wolff et al.,
017 ). 

To make class predictions we employed Linear Discriminant Anal-
sis (LDA) using the Scikit-learn toolbox ( Pedregosa et al., 2011 ) and
3 
stimated the likelihood for all classes. LDA is a multi-class decoding
lgorithm that performs well for neuroscientific time-course data (for a
omparison of classifiers see Grootswagers et al., 2017 ). 

To increase the sensitivity of our decoding analysis, we capitalised
n both spatial and temporal patterns for decoding ( Grootswagers et al.,
017 ; Wolff et al., 2020 ). To do so, we used a sliding-window approach
nd concatenated topographical patterns from t 0 up to t -19 (20 steps
f 10 ms, ranging over 200 ms) into a single vector. This increased
he amount of features in the LDA classifier from 17 (17 posterior
lectrodes) to 340 (17 electrodes ×20 time steps). To avoid baselining
ssues and to utilise dynamic activity rather than stable brain states, we
ubtracted the mean activity across the 20 time points within each time
indow for each channel and trial separately. This analysis method

hus exploits embedded informative temporal variability, reduces
oise by combining data over time, and circumvents baselining issues
 Grootswagers et al., 2017 ; Wolff et al., 2020 ). In a supplementary
nalysis, we confirmed that similar (be it less robust) colour and
rientation decoding could be obtained when decoding based on purely
patial patterns, on a timepoint-by-timepoint basis. 

Principal component analysis was applied to the data to cap-
ure 95% of the variance in the data (sklearn.decomposition.PCA).
rial feature labels were binned into 12 classes (each subtending
2/ 𝜋 for orientation and 6/ 𝜋 for colour; numpy.digitize). These
ata were split into train-and-test sets using 10-fold stratified cross-
alidation (sklearn.model_selection.RepeatedStratifiedKFold). Next,
raining data were standardised (sklearn.preprocessing.StandardScaler)
nd after the same standardisation was applied to the
est data we fit the LDA to the training data and labels
sklearn.discriminant_analysis.LinearDisciminantAnalysis; using singu-
ar value decomposition and a default threshold for rank estimation
f 0.001). Likelihoods for each class were estimated after training
nd testing the LDA classifier separately for each time point, features
colour and orientation from left and right sides), and participant.
he resulting likelihoods were centred so that the predicted class was
lways in centre surrounded by neighbouring feature classes. These
redicted-class likelihoods were convolved with a cosine ([- 1 2 𝜋, 1 2 𝜋]
or orientation and [- 𝜋, 𝜋] for colour) to provide a single measure of
vidence. This serves to convert two-dimensional tuning curves and
btain a single measure of evidence of each time point. For additional
nalyses, where we looked at dissimilarity matrices, no cosine convo-
ution was applied. Training and testing were performed separately for
eft and right features and only at the final stage we averaged across
oth sides. 

To confirm the posterior locus of decodability, we also ran a
earchlight decoding analysis ( Kriegeskorte et al., 2006 ), iteratively

https://www.ohba-analysis.github.io/
https://www.osf.io/j289e/?view_only=b13407009b4245f7950960c34a5474a6
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Fig. 2. ERPs and decoding performance for colours and orientations. A) 
Event-related potentials for the 7 posterior electrodes contralateral to the pre- 
sented feature (see inset), averaged over left and right, locked to stimulus 
presentation. Displaying micro voltage for all twelve different orientations or 
colours. B) Two-dimensional, decoding tuning curves with the likelihood for 
target colour or orientation (value “0 ″ ) and all neighbouring values of theta. 
For visualisation purposes, a 13th bin was added at the bottom on the diagram 

mirroring the top bin. These multivariate analyses were done using only the 17 
posterior electrodes (see inset 2C). C) Mean cosine-convolved evidence with red 
lines for colour, blue for orientation. Cluster-permutation corrected significant 
time points are indicated with horizontal lines. Grey-shaded area between 150 
and 350 ms is used for subsequent analyses. These multivariate analyses were 
done using only the 17 posterior electrodes (see inset 2C). Error bars show 95% 

confidence intervals, calculated across participants ( n = 30). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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onsidering a small group of electrodes. To this end, we applied the
ame temporal classification on the voltages between 150 and 350 ms,
ut this time only considered the data from a given electrode together
ith the data from its immediately adjacent (left/right/above/below)
eighbours. 

Building on RSA (representational similarity analysis; Kriegeskorte
t al., 2008 ) we additionally investigated how our measured differences
n luminance (L ∗ ) and colour (a ∗ b ∗ ) each contributed to the identified
arametric decoding of colour. RSA allowed us to examine relative con-
ributions of different neural codes. The preceding analyses assumed a
erfectly circular organisation of colours ( Fig. 1 A) with identical tun-
ng curves for each colour. In practice, rendered colours slightly violate
his hypothesised organisation. To test the relative contribution of lu-
inance and colour in our data, we therefore constructed ‘dissimilarity
odels’ for both features using the measured Colorimeter data. For mea-

ured luminance (L ∗ ), a one-dimensional variable, we characterised the
ifference in luminance of each of the 12 colour bins as the absolute dif-
erence of one colour bin with all other colour bins. Doing so for each
olour, we obtained a 12-by-12 matrix containing differences of mea-
ured luminance of each colour with all other colours with a value of
ero across the diagonal. Similarly, we generated a model characterising
ifferences in measured a ∗ b ∗ . Here, we used Euclidean distance between
easured a ∗ - and b ∗ -coordinates of each colour bin and all other colour

ins as a proxy of colour dissimilarity. A third model acted to compare
hese two models to the circular model (that used the desired CIELAB
olour space as its basis) described above. All models were z-scored.
wice is too much, all three models were multiplied - and summed -
ith LDA evidence of every colour bin for each of the 12 possible clas-

ifier predictions for every subject, using the spatial-temporal decoding
ethod described above. Higher scores indicate higher similarity be-

ween the patterns in the data and those in the model. 

.7. Statistical analysis 

For the analysis of the classifier predictions, cosine-convolved ev-
dence for each decoded feature-dimension (colour, orientation) was
ompared to mean evidence of 40 permutations where the labels were
andomly shuffled prior to training the classifier for each time point
sing a cluster permutation test (mne.stats.permutation_cluster_test;
ramfort et al., 2014 ) with 10,000 iterations and a F-statistic thresh-
ld of 2.045 ( p < .05 with 29 degrees of freedom). Cluster-based per-
utation tests were also applied to the similarity measure obtained in

he RSA analysis. Here, we compared similarity of the measured a ∗ b ∗ 

odel and that of the defined CIELAB model against the luminance
odel to ask whether we could decode CIE chromaticity over and above
easured differences in luminance. For completeness, we also tested
hether measured luminance could be significantly decoded, for this
e tested similarity scores of the luminance model against similarity

cores of a 12-by-12 matrix of z-scored random values multiplied with
he data. 

For further characterisation of the data, we also ran several anal-
ses with data over the 150–350 post-stimulus time-window in which
oth colour and orientation decoding were particularly prominent. We
rst used this window to assess the reliability of the LDA likelihoods

or each of the 12 colours and orientations separately. For each bin
e tested decoding against zero using one-tailed one-sample t-tests,
nd report both the uncorrected results and the results after apply-
ng a Bonferroni correction for multiple comparisons. We also used
he data from the same window to investigate the parametric coding
paces for colour and orientation by applying multi-dimensional scal-
ng (MDS; sklearn.manifold.MDS; Kruskal, 1964 ) to a matrix with rows
or decodable colour or orientation and columns for classifier predic-
ions. This matrix was inverted so that the diagonal had the smallest
ikelihoods. We ran MDS with 1000 initialisations and a maximum of
000 iterations to find the configuration with the lowest stress score
or a two-dimensional embedding of the 12 colours and orientations.
4 
inally, we varied the number of participants and trials/participant we
ncluded in our analysis. Doing so, we randomly sampled a subset of
articipants (5–30) and the first n trials/participants (where n ranged
rom 96 to 912 in steps of 48), we took this approach to simulate hav-
ng run a shorter experiment. Subsequently, we evaluated the cosine-
onvolved classifier evidence resulting from spatial-temporal decoding
etween 150 ms and 350 ms for colours and orientations, averaged over
eft and right stimulus presentations. To ensure random sampling we
rew each subset of participants over 100 permutations and averaged
ver the results. In contrast to other analyses, a 5-fold cross validation
as used to deal with the full range of trial numbers. The resulting ma-

rix was slightly smoothed using a gaussian kernel with a sigma of 0.5
scipy.ndimage.gaussian_filter), where edge artefacts were avoided by
eplicating the nearest data point. 

. Results 

.1. Colour can be decoded from scalp EEG, and is comparable to 

rientation decoding 

We extracted EEG data from the 17 posterior electrodes ranging from
00 ms prior to the presentation of the two gratings to 1000 ms after
timulus presentation onset. Average ERP traces revealed similar volt-
ge profiles across the range of tested colours ( Fig. 2 A, left) and ori-
ntations ( Fig. 2 A, right). An LDA classifier was able to uncover a clear
econstruction of the presented colours and as well orientations ( Fig. 2 B;
veraged over left and right stimulus presentations). To increase sensi-
ivity and to ease visualisation, we reduced these tuning-profiles from
ig. 2 B, to a single decodability value per time point, by convolving the
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Fig. 3. Colour and orientation decoding are primarily driven by poste- 

rior electrodes contralateral to the decoded stimulus. Top row topographies 
show which electrodes show highest mean cosine-convolved evidence for A) 
colours and B) orientations, of stimuli that were presented on the left or on 
the right of fixation. Posterior contralateral electrodes show highest evidence. 
Bottom panels show the difference between left-stimulus and right-stimulus de- 
coding topographies, highlighting the lateralisation of the evidence, and the 
comparable lateralisation obtained for colour and orientation decoding. 
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Fig. 4. Decoding of individual features between 150 and 350 ms. A) This 
polar plot illustrates the decoding evidence of 12 individual colours and orien- 
tations. The distance from the centre depicts the t-value of testing the cosine- 
convolved tuning curve for a single feature, left and right combined, across par- 
ticipants, relative to zero. The size of the dots mirrors the magnitude of the evi- 
dence for that feature B) Two-dimensional visualisation of the similarity matrix 
in which we observed a circular configuration for colour features. Dissimilarity 
matrices show feature (colour or orientation) on the y-axis and distance between 
bins of the tuning curve on the x-axis. 
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uning profiles with a cosine function ( van Ede, Chekroud, Stokes, and
obre, 2018 ; Wolff et al., 2019 ; as in Wolff et al., 2017 ). Decoding time-
ourses are depicted in Fig. 2 C. We found highly significant decodability
or both visual features. Colour decoding first reached significance af-
er 115 ms and remained significant until 875 ms. Orientation decoding
rst reached significance after 135 ms and remained significant until
45 ms. Colour decoding could also be demonstrated for the processing
f the visual distractors, which were not attended and did not require a
ehavioural report ( Fig. S1 ) 

.2. Colour decoding is driven by visual signals with a 

ontralateral-posterior topography 

To understand what contributed to our ability to decode colour,
e next ran a searchlight decoding analysis ( Kriegeskorte et al., 2006 )
cross all sensors ( van Ede, Chekroud, Stokes, and Nobre, 2019 ; Wolff
t al., 2020 ). This demonstrated that classifier evidence (in the 150 to
50 ms post-stimulus period in which we found robust decoding; grey-
haded windows in Fig. 2 C) peaked in posterior electrodes, with primary
ontributions from electrodes contralateral to the decoded stimuli. This
as the case both for decoded colour ( Fig. 3 A), and orientation ( Fig. 3 B).
his provides compelling evidence for the “visual ” nature of this de-
oding (as opposed to, for example, decoding distinct “verbal labels ”
ssociated with distinct colours). 

.3. Colour decoding is parametrically organised 

To test how well each of the feature-value bins could be decoded
relative to all other feature-value bins within the colour and orienta-
ion spaces), we analysed mean cosine-convolved LDA likelihoods in the
ata pooled between 150 - 350ms (indicated in grey in Fig. 2 C). Decod-
ng, as a function of the decoded feature-values, is shown in Fig. 4 A. For
olour bins, all 12/12 colours could be decoded significantly against a
 < .05 threshold (mean t 29 = 4.523; min = 2.440; max = 6.175), and for
rientation 11/12 orientations could be decoded significantly against
n uncorrected single-tailed threshold (mean t 29 = 4.096; min = 1.585;
ax = 7.390). After applying Bonferroni correction, 9/12 colour bins
ere significant and 8/12 orientations. Using multi-dimensional scal-

ng we revealed the representational space in two dimensions, show-
ng a circular, or oval, configuration for both colour and orientation
ins ( Fig. 4 B). For orientation, the cardinal orientations (0, 90, and
80°) showed higher decoding than the off-cardinal decoding. Interest-
ngly, due to some non-linearities in the circular space, we observe some
olours (pink, red, orange) in one part of the representational space and
5 
ther colours (purple, blue, green) on the other (see also Hermann et al.,
020 ). 

.4. Decoding is sensitive to luminance (L ∗ ) differences but primarily 

riven by difference in colour (a ∗ b ∗ ) 

Colours generated for this experiment were drawn from a plane in
IELAB with identical (desired) lightness, and with equal distances be-
ween the colours in the circular colour landscape ( Fig. 1 A). Neverthe-
ess, because of slight luminance and colour differences generated dur-
ng the conversion to RGB colours and rendering process on the moni-
or, measured colour properties were slightly different. In the next step,
e therefore used the physically observed measured luminance (L ∗ ) and
easured colour (a ∗ b ∗ ) to dissect their relative contributions to the iden-

ified colour decoding. 
To this end, we created three “models ” ( Fig. 5 A) and used RSA to

sk how well each of them independently fit the empirical EEG data.
e observed that measured differences in luminance (L ∗ ; Luminance
odel in Fig. 5 A) between the 12 colour-bins could be decoded from the
EG signal yielding a significant cluster between 115 - 765 ms ( Fig. 5 B).
ritically, however, in addition to the luminance model, we also com-
ared the data to the dissimilarity matrix of the measured colour values
a ∗ b ∗ ; Fig. 5 A), as well as the (highly similar) CIELAB model used in the
revious analyses. This revealed that the colour model and the CIELAB
odel each fit the observed data significantly better than the luminance
odel, with significant clusters between 155 - 855 ms and 165 - 735 ms,

espectively (indicated by the increased line width in the horizontal
luster-significance lines in Fig. 5 B). This is also appreciated by compar-
ng the three models to the empirical dissimilarity matrices, at several
ime slices, in the bottom of Fig. 5 B. These data confirm that the empir-
cal dissimilarity matrix in the EEG data is more similar to the colour
nd CIELAB models, than to the model constructed from measured lumi-
ance values, and that this is so consistently across time. Thus, although
nintended luminance differences between our stimuli may have made
ome contribution, the vast share of our colour decoding appears to be
riven by colour(a ∗ b ∗ ) differences between our stimuli. 
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Fig 5. Decoding measured luminance and a ∗ b ∗ differences between stim- 

uli. A) Z-scored dissimilarity models representing the measured differences is 
luminance (L ∗ ), Euclidean distances between 12 pairs of measured a ∗ b ∗ values, 
and a CIELAB model that assumes equal dissimilarity between all neighbouring 
colours (and that was used in all other analyses). B) Similarity between dis- 
similarity models and the LDA evidence in the EEG data for each time point 
between all 12 colour bins. Going from left to right, the matrices below the x- 
axis show the average LDA evidence between − 100 to 150 ms, 150 to 400 ms, 
400 to 650 ms, and 650 to 900 ms post stimulus onset. Clusters of significant 
differences between a random model and measured a ∗ b ∗ (purple), measured 
luminance model (black) and CIELAB (green) are indicated with the coloured 
horizontal lines below the similarity time courses. Larger line width of the hor- 
izontal green and purple lines indicate cluster-corrected differences with lumi- 
nance evidence. Error bars show 95% confidence intervals, calculated across 
participants ( n = 30). 
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Fig. 6. Feature decoding as a function of trial and participant numbers. 

Average cosine-convolved evidence of data between 150 and 350 ms for the 
average of left and right feature decoding. Contours mark the 0.05, 0.01, 0.001, 
and 0.0001 p-value thresholds for n-1 degrees of freedom. 
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.5. Dependence of decoding on trial and participant numbers 

The current study included 30 participants who each completed over
00 trials. To provide guidance on “how many ” participants and trials
ould typically be required to achieve robust decoding, we ran the fol-

owing analysis. We randomly sampled x participants (in 100 permu-
ations) and, for each included participant, we incrementally increased
he number of trials used for our decoding analysis, always including
he first y trials of the session (as if we had only collected data up to this
rial). For each combination of number of participant by number of trials
er participant, we assessed feature decoding between 150 and 350 ms
fter stimulus onset, and plotted the resulting matrix ( Fig. 6 ). Both the
umber of trials and the number of participants have a strong effect
n the reliability of feature decoding. It is evident that both sources of
tatistical power influence our decoding scores. 

. Discussion 

We investigated the ability to decode visual colours from scalp
EG measurements. We built on other recent studies that have em-
loyed colour decoding in scalp EEG ( Bocincova and Johnson, 2018 ;
andhaeger et al., 2019 ; Sutterer et al., 2021 ) and MEG ( Hermann
t al., 2020 ; Rosenthal et al., 2021 ; Sandhaeger et al., 2019 ; Teichmann
6 
t al., 2019 , 2020 ) and extended these in several ways. We show that
e can reliably classify four simultaneously presented visual features –

wo colours and two orientations – from posterior EEG recordings using
ulti-class LDA. Follow-up analyses revealed that activity in posterior

lectrodes contralateral to the decoded stimulus were the primary con-
ributors to the decoding of both features, suggesting that visual sensory
rocessing was the main source of decodable signals, ruling out alter-
ative explanations of colour decoding, such as verbal labelling. Fur-
hermore, colour decoding followed a colour circle in representational
pace, speaking to the parametric nature of visual colour decoding. Fi-
ally, by having both orientation and colour information present in our
timuli, we were able to decode both. This revealed how the decoding
f colour is comparable in magnitude, and if anything even clearer, to
he decoding of orientation in a visual stimulus. 

The current results are in line with, and nicely build on, several other
ecent non-invasive human electrophysiological studies showing an in-
rease in classifier evidence following visual presentation of coloured
timuli ( Hermann et al., 2020 ; Rosenthal et al., 2021 ; Sandhaeger et al.,
019 ; Teichmann et al., 2019 , 2020 ). One critical difference between
he current work and these previously described studies is that we here
sed a 61-electrode EEG setup rather than a MEG system which typi-
ally contains a much larger number of sensors. Though MEG and EEG
re sensitive to similar types of activity (but see Lopes da Silva, 2013 ;
almivuo, 2012 ), demonstrating that it is also feasible to decode colour

n scalp EEG is an important advance. This is because EEG has lower
patial resolution than MEG and because EEG is more accessible as a
echnique to labs around the world. Adding to this particular advance,
ur data further reveal that it is possible to decode parametric colour
alues in multi-item displays with lateralised stimuli - which allowed us
o demonstrate a predominant contralateral topography - and that de-
oding of colour is not necessarily inferior (at least in our data) to the
ecoding of stimulus orientation. 

To increase sensitivity, in the current work we capitalised on
oth spatial and temporal activity patterns for classification (see
rootswagers et al., 2017 ; Wolff et al., 2020 ). However, to ensure that
ur results did not critically depend on this choice, we also ran all of
ur analysis using a more basic decoding approach whereby we relied
nly on spatial patterns for decoding; running the decoding analysis
eparately for each time point after stimulus onset. While this analysis
as, as expected, less sensitive, we could nevertheless demonstrate that

t was still possible to significantly decode visual colour from purely
patial patterns in the EEG data; that colour and orientation decoding
emained highly comparable in magnitude; and that colour and orien-
ation decoding each had a contralateral-posterior topography and con-
ormed to a parametric coding space ( Fig. S2–5 ). 

One limitation of the current study is that the reported colour wheel
as fixed, instead of being rotated from trial-to-trial. As a consequence,

olour positions on the colour wheel could potentially be predicted by
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articipants ahead of time. However, there are several reasons why we
elieve our colour-decoding results are not driven by processes related
o spatial and/or response anticipation related to the upcoming colour
heel. Foremost, colour decoding was not limited to task-relevant mem-
ry content but could also be demonstrated following task-irrelevant
istractor stimuli that did not require any behavioural report (Fig. S1).
f colour decoding indeed reflected anticipation of the colour wheel, this
hould have applied only to the task-relevant memory items, not the dis-
ractor. Furthermore, the decoding occurred very early, during the tim-
ng of initial sensory coding, and was prominent over electrodes most
ensitive to sensory processing (countering potential interpretations re-
ated to response preparation). Also, while colour could be decoded well
rom the broadband EEG signal, we could not establish reliable colour
ecoding when using alpha power instead (Fig. S6). This provides addi-
ional support against a spatial attention account, provided that alpha is
ften considered a sensitive marker of spatial attention ( Bae and Luck,
018 , 2019 ; Foster et al., 2017 ; Sutterer et al., 2018 ; Thut et al., 2006 ;
orden et al., 2000 ). Finally, in our task, colour decoding could be

emonstrated when participants were simultaneously encoding four in-
ependent features into working memory. Even when considering only
he task-relevant memory items, the possibility that the brain would
roject two orientations and two colours onto four equally probable fu-
ure response scenarios and do so within 150 ms of stimulus onset in
ontralateral visual electrodes, appears unlikely. ”

Perceived colour and luminance depend on many factors, including
onitor setup, local stimulus contrasts, and individual biology ( Webster

t al., 2000 ). While it is therefore difficult to disentangle fully the respec-
ive contributions of each of these factors to our ability to decode colour,
ur primary aim was to demonstrate its primary source and usefulness in
ognitive neuroscientific research. Furthermore, to characterise the rel-
tive contributions of subtle difference in luminance from the desired
ifferences in colour empirically, we performed post-hoc measurements
f each and used RSA to estimate their relative contribution to our neu-
al colour decoding results. Though we observed significant evidence
f luminance differences between the rendered colour stimuli, we also
ound significantly stronger evidence for the decodability of both the
ntended (CIELAB) and the physically measured colour differences be-
ween rendered stimuli. We further observed a clear parametric cod-
ng space that conformed to the circular colour space (that was defined
or colour, not for luminance). Furthermore, recent neurophysiological
tudies described how luminance and hue may modulate brain activity
ndependently ( Hermann et al., 2020 ; Sutterer et al., 2021 ), providing
urther validation that is it possible to decode colour, independently
rom luminance. 

The ability to decode colour, as a reliable proxy of detailed visual
rocessing, is important not only because it opens a new dimension
hrough which to track detailed visual processing on the basis of scalp
EG measurements. It may also prove instrumental to by-pass a fun-
amental limitation faced by other decodable features such as spatial
ocation, orientation, or spatial frequency. Colour, being a non-spatial
arametric feature, should be much less susceptible to confounds asso-
iated with visual-spatial processing, such micro-saccades ( Engbert and
liegl, 2003 ; Hafed and Clark, 2002 ; Hollingworth et al., 2013 ; Mostert
t al., 2018 ; Quax et al., 2019 ; Thielen et al., 2019 ; van Ede, Chekroud,
nd Nobre, 2019 ). 

onclusion 

In conclusion, like several other recent studies, we show that colour
ecoding is possible from scalp EEG measurements. Building on this re-
ated recent work, we have now shown that this colour decoding reflects
isual processing with a clear posterior-contralateral topography; that
t conforms to a parametric colour-coding space; that it is possible in
ulti-item display; and that it is comparable to the decoding of stimu-

us orientation. This opens a relevant new dimension in which to track
isual processing using scalp EEG measurements. 
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