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Abstract

Background: In genomic studies, to investigate how the structure of a genetic network differs between two
experiment conditions is a very interesting but challenging problem, especially in high-dimensional setting. Existing
literatures mostly focus on differential network modelling for continuous data. However, in real application, we may
encounter discrete data or mixed data, which urges us to propose a unified differential network modelling for various
data types.

Results: We propose a unified latent Gaussian copula differential network model which provides deeper
understanding of the unknown mechanism than that among the observed variables. Adaptive rank-based estimation
approaches are proposed with the assumption that the true differential network is sparse. The adaptive estimation
approaches do not require precision matrices to be sparse, and thus can allow the individual networks to contain hub
nodes. Theoretical analysis shows that the proposed methods achieve the same parametric convergence rate for both
the difference of the precision matrices estimation and differential structure recovery, which means that the extra
modeling flexibility comes at almost no cost of statistical efficiency. Besides theoretical analysis, thorough numerical
simulations are conducted to compare the empirical performance of the proposed methods with some other state-of-
the-art methods. The result shows that the proposed methods work quite well for various data types . The proposed
method is then applied on gene expression data associated with lung cancer to illustrate its empirical usefulness.

Conclusions: The proposed latent variable differential network models allows for various data-types and thus are
more flexible, which also provide deeper understanding of the unknown mechanism than that among the observed
variables. Theoretical analysis, numerical simulation and real application all demonstrate the great advantages of the
latent differential network modelling and thus are highly recommended.
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Background
In genomic studies, graphical model has been an impor-
tant tool to capture dependence among different genes.
Particularly, Gaussian graphical model has been widely
applied to infer the relationship between genes at the tran-
scriptional level [1–4]. Under the Gaussian assumption,
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estimating the structure of the graphical model is equiv-
alent to recover the support of precision matrix which
is defined to be the inverse of the covariance matrix.
However, in some cases, compared to focusing on a par-
ticular network, it is of greater interest to investigate
how the network of connected gene pairs change from
one experimental condition to another, which provides
deeper insights on an underlying biological process such
as identification of pathways that correspond to such a
change. For instance, medical experiment usually involves
two groups: the patient group and the control group.
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The analysis of group difference in biological networks
or pathways may offer us a new insight into the underly-
ing disease mechanism, which have extensive biomedical
and clinical applications, such as identifying effective tar-
gets for drug development in a cost-effective and timely
manner. Indeed, differential networking modelling has
recently emerged as an important tool to analyze a set
of changes in graph structure between two conditions
(see, for example; [5–17]). In the context of genomic anal-
ysis, it is reasonable to assume that two genes are defined
to be connected in the differential network if the magni-
tude of their conditional dependency relationship changes
between two conditions. The precision matrix which is
defined as the inverse of covariancematrix can capture the
conditional dependency relationship. Thus the differential
network is typically modelled as the difference of two pre-
cision matrices and this type of modelling has been widely
used [7–9, 14, 15]. Figure 1a, b, c illustrate the definition of
differential network. Each node represents a gene. For two
groups depicted in (a) and (b), there is an edge between
genes (i, j) if and only if (i, j)-th element of � is nonzero.
For each edge, there exists a weight which is the magni-
tude of (i, j)-th element of �. Gene pair (i, j) is defined
to be connected in the differential network in (c) if the
magnitudes of (i, j)-th elements of two precision matrices
change between two groups.
One straightforward approach to estimate the difference

of two precision matrices is to separately estimate the pre-
cision matrices and then subtract the estimates. In the
high dimensional setting where the dimension p is much
larger than the sample size n, which is often the case for
genomic study, many estimation approaches for the preci-
sion matrix have been proposed and proved to enjoy nice

theoretical properties and computation advantage under
the key assumption of sparsity. And this topic has been an
active area of research in recent years [18–22].
Another type of approach to estimate the difference of

two precision matrices is to jointly estimate the precision
matrices. Guo et al. [23] penalized the joint loglikelihood
with a hierarchical penalty that targets the removal of
common zeros in the inverse covariance matrices across
categories. Danaher et al. [24] proposed the joint graphical
Lasso, which is based upon maximizing a penalized log-
likelihood with generalized fused Lasso or group Lasso
penalty. Motivated by the constrained �1 minimization
approach to precision matrix estimation of [22], Zhao
et al. [7] proposed an estimation approach to directly
estimate the difference of the precision matrices.
For the separately estimating methods, Liu et al. [25]

proposed the nonparanormal family to relax the Gaussian
assumption. While the nonparanormal family is much
larger than the standard parametric Gaussian family,
the independence relations among the variables are still
encoded in the precision matrix. In addition, Liu et al.
[26] proposed a semiparametric approach called nonpara-
normal SKEPTIC to estimate high dimensional undirected
graphical models efficiently and robustly and proved that
the nonparanormal SKEPTIC achieves the optimal para-
metric rates of convergency in terms of precision matrix
estimation and graph recovery. Xue and Zou [27] pro-
posed a similar regularized rank-based estimation idea
for estimating nonparanormal graphical models and ana-
lyzed adaptive versions of rank-based Dantzig selector
and CLIME estimators. He et al. [28] proposed a multiple
testing procedure to estimate high-dimensional nonpara-
normal graphical model and proved that the proposed
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Fig. 1 Illustration of latent differential network. a Network in group 1. b Network in group 2. c Differential network. d Data sources. e Data type. f
Latent distribution
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procedure can control the false discovery rate (FDR)
asymptotically.
The disadvantage of Gaussian or nonparanormal graph-

ical models lies in that they are only tailored for modeling
continuous data. However, in genomic studies, we may
encounter discrete data (e.g. CNV data and SNP data),
continuous data (e.g. gene expression and methylation
data) or data of hybrid types with both discrete and con-
tinuous variables. Besides, in some circumstances, even
if the data are continuous, we still need to transform the
data into discrete data to remove the heterogeneity (e.g.
batch effect, outliers and population stratification). For
instance, in the analysis of gene expression data collected
from different platforms, to remove the unwanted vari-
ation among different experiments known as the batch
effects, numerical expression data are often transformed
into 0/1 binary data, where lower expression values are
encoded as 0 and higher expression values are encoded
as 1. In this setting, it is reasonable to assume that the
discrete variable is obtained by discretizing a latent vari-
able. Fan et al. [29] proposed a general model named the
latent Gaussian copula graphical model, assuming that
the observed discrete data are generated by discretizing a
latent continuous variable at some unknown cutoff.
In this paper, we consider estimating differential net-

work for various types of biological data in a joint way.
We propose a unified semi-parametric latent variable dif-
ferential network model. The latent differential network
model is illustrated in Fig. 1e-f. For biological data, there
exist continuous data, discrete data or data of hybrid types
with both continuous and discrete data. It is assumed that
these data are collected by transforming latent continu-
ous variables which are unobservable.We are interested in
the differential network of the latent variables, which pro-
vide deeper understanding of the unknown mechanism
than that among the observed variables. To the best of our
knowledge, our work provides the first method for differ-
ential network estimation for binary or mixed data with
theoretical guarantees under the high dimensional scal-
ing. The advantages of the proposed methods lie in the
following aspects: (I) Our method provides a way to infer
the differential network structure among latent variables,
which provides deeper understanding of the unknown
mechanism than that among the observed variables. (II)
Theoretical analysis shows that the proposed methods
achieve the same parametric rates of convergence for both
difference matrix estimation and differential graph recov-
ery, as if the latent variables were observed. (III) The pro-
posed methods are much more robust to outliers due to
the rank-based correlationmatrix estimator. (IV) The pro-
posed approaches do not require precision matrices to be
sparse, and thus can allow the individual networks to con-
tain hub nodes. Simulation result shows that the proposed
method performs much better and more robustly than

several state-of-the-art methods. The proposed methods
are applied on a gene expression data set associated with
lung cancer. A target gene WIF1 stands out by the pro-
posed method, which indeed is verified as a frequent
target for epigenetic silencing in various human cancers
[30]. The real data example illustrates the great usefulness
of the current work.

Methods
In this part, we propose novel definitions of latent differ-
ential network model for various types of data. In essence,
we define the differential network as the difference of two
precision matrices of the latent variables, which greatly
generalizes the applicability in areas such as bioinformat-
ics, medical research and so on.

Gaussian copula differential graphical model
We first review the definition of the Gaussian copula
distribution. Let f = {

f1, . . . , fp
}
be a set of strictly

increasing univariate functions. A p dimensional ran-
dom variable X = (X1, . . . ,Xp)� is said to follow the
Gaussian copula distribution if and only if f (X) :=
(
f1(X1), . . . , fp

(
Xp

))� := Z ∼ Np(μ,�) and is noted as
X ∼ NPN

(
μ,�, f

)
, where μ = (

μ1, . . . ,μp
)
,� = [

�jk
]

are respectively the mean vector and the correlation
matrix of the Gaussian variate Z. The conditional inde-
pendence structure of X is encoded by the sparsity pattern
of � = �−1. Specifically, it can be shown that Xi is condi-
tionally independent of Xj given all other variables if and
only if ωij = 0, where ωij is the (i, j)-th element of �.
Therefore, the differential network of the Gaussian copula
variables can be defined to be the difference between the
two precisionmatrices, just the same as for the parametric
Gaussian case.
Assume X i = (

Xi1, . . . ,Xip
)� for i = 1, . . . , nX are inde-

pendent observations of the expression levels of p genes
from one group denoted by X and Y i = (

Yi1, . . . ,Yip
)�

for i = 1, . . . , nY from the other denoted by Y , X ∼
NPN

(
μX ,�X , f X

)
and Y ∼ NPN

(
μY ,�Y , f Y

)
. The dif-

ferential network is defined to be the difference between
the two precision matrices, denoted by �0 = �Y − �X ,
where �Y and �X are the inverse matrices of �Y and �X

separately.
We propose a rank-based estimator of �X . It is known

that if Z ∼ NPN
(
μ,�, f

)
, then we have �jk = sin

(
π
2 τjk

)
,

where τjk is Kendall’s tau correlation between Zj
and Zk . Thus we can estimate the unknown correlation
matrix �X by:

ŜXjk =
{
sin

(
π
2 τ̂Xjk

)
j �= k

1 j = k
, (1)

where τ̂Xjk is the sample Kendall’s tau correlation between
Xj and Xk . Similarly, we can estimate �Y in the same way
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and obtain the estimator ŜY . Motivated by the direct esti-
mation method of the difference of two precision matrices
proposed by [7], one can obtain the estimator of �0 by
solving

arg min|�|1, subject to |ŜX�ŜY − ŜX + ŜY |∞ ≤ λn,

which is equivalent to the optimization problem:

arg min|�|1, subject to
∣∣∣
(
ŜX ⊗ ŜY

)
Vec(�) − Vec

(
ŜX − ŜY

)∣∣∣∞ ≤ λn,
(2)

where ⊗ denotes the Kronecker product, |�|1 = ∑
jk δjk

is the element-wise �1 norm of the matrix �. Here, for a
matrix A = [

Ajk
]
, |A|∞ = maxjk

∣∣Ajk
∣∣ and for a vector

a = (
aj

)
, |a|∞ = maxj

∣∣aj
∣∣.

As seen fromEq. (2), the proposed approach can directly
estimate the difference matrix without implicitly estimat-
ing the individual precision matrices. Thus there is no
need to assume the sparsity of

(
�Y )−1 and

(
�X)−1. We

only need to assume that �0 is sparse. Besides, compared
to the sample covariance matrix, the rank-based estima-
tors here can enjoy modelling flexibility and estimation
robustness, especially when outliers exist.

Latent Gaussian copula differential graphical model for
binary data
In the analysis of gene expression data, to remove the
batch effects, numerical expression data are often trans-
formed into 0/1 binary data, where lower expression
values are encoded as 0 and higher expression values
are encoded as 1. To estimate the underlying differential
network for the binary data from two different groups,
we assume that the observed discrete data are gener-
ated by discretizing a latent continuous variable at some
unknown cutoff. To make the model more flexible, we
assume the latent continuous variable is Gaussian copula
distributed instead of Gaussian. Let B = (

B1,B2, . . . ,Bp
)�

∈ {0, 1}p be a p-dimensional 0/1-random vector. The
0/1-random vector B satisfies the latent Gaussian cop-
ula model (LGCM) for binary data, if there exists a p
dimensional random vector X ∼ NPN(0,�, f ) such that

Bj = I
(
Xj > Cj

)
, for all j = 1, . . . , p,

where I(·) is the indicator function and the cutoff
C = (

C1, . . . ,Cp
)
is a vector of constants. Then we

denote B ∼ LGCM(�, f ,C). We call � the latent corre-
lation matrix. The latent Gaussian copula model involves
parameters (�, f ,C). Merely based on the binary random
vector B, only fj(Cj), j = 1, . . . , p are identifiable. Denote
� = (

	1, . . . ,	p
)
, where 	j = fj(Cj). For notational

simplicity, we write LGCM(�,�) for LGCM(�, f ,C).

Assume B1
i =

(
B1
i1, . . . ,B1

ip

)�
for i = 1, . . . , n1

are independent observations of the binary expression
levels of p genes from one group denoted by B1 and
B2
i =

(
B2
i1, . . . ,B

2
ip

)�
for i = 1, . . . , n2 from the other

denoted by B2, where B1 ∼ LGCM
(
�1,�1) and B2 ∼

LGCM
(
�2,�2). The differential network is defined to

be the difference between the two precision matrices,
denoted by �B

0 = (
�2)−1 − (

�1)−1. Motivated by Eq. (2),
we should first derive estimators for �1 and �2. For
ease of presentation, we only present the procedure to
construct the estimator for �1, estimator for �2 can be
obtained similarly. Denote the Kendall’s tau correlation
between B1

j and B1
k by τ 1jk , it can be shown that τ 1jk satisfies:

τ 1jk = 2
{

2

(
	1

j ,	1
k ,�

1
jk

)
− 


(
	1

j

)



(
	1

k
)}

,

where


2(u, v, t) =
∫

x1<u

∫

x2<v
φ2(x1, x2; t)dx1dx2,

is the cumulative distribution function of the standard
bivariate normal distribution, φ2(x1, x2; t) is the proba-
bility density function of the standard bivariate normal
distribution with correlation t. Denote by

F
(
t;	1

j ,	1
k

)
= 2

{

2

(
	1

j ,	1
k , t

)
− 


(
	1

j

)



(
	1

k
)}

.

For any fixed 	1
j and 	1

k , it can be shown that

F
(
t;	1

j ,	1
k

)
is a strictly monotonic increasing function

on t ∈ (−1, 1) and thus is invertible. Given	1
j and	1

k , one

can estimate�1
jk by F

−1
(
τ̂ 1jk ;	

1
j ,	1

k

)
. However, the cutoff

values are unknown in practice. As E
(
B1
ij

)
= 1−


(
	1

j

)
,

we can estimate 	1
j by 	̂1

j = 
−1
(
1 − B̄1

j

)
, where B̄1

j =
∑n

i=1 B1
ij/n. Thus the Kendall’s tau rank-based correlation

matrix estimator b̂
1 =

[
R̂1
jk

]
for �1 is a p × pmatrix with

element entry given by

R̂1
jk =

{
F−1

(
τ̂ 1jk ; 	̂

1
j , 	̂1

k

)
j �= k,

1, j = k.
(3)

Similarly, the Kendall’s tau rank-based correlation
matrix estimator b̂

2 =
[
R̂2
jk

]
for �2 is a p × pmatrix with

element entry given by

R̂2
jk =

{
F−1

(
τ̂ 2jk ; 	̂

2
j , 	̂2

k

)
j �= k,

1, j = k.
(4)
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Motivated by Eq. (2), we can obtain an estimator of �B
0

by solving the following optimization problem:

arg min|�|1, subject to
∣∣∣
(
b̂
1 ⊗ b̂

2)
Vec(�) − Vec

(
b̂
1 − b̂

2)∣∣∣∞ ≤ λn.
(5)

For the binary data, we aim to infer the differential
network among latent variables, which provides deeper
understanding of the unknown mechanism than that
among the observed binary variables. Thus, our model
complements the existing work on high dimensional dif-
ferential network estimation, which mostly focused on
learning differential network among observed variables
including, for example, the Ising model.

Latent Gaussian copula differential graphical model for
mixed data
In the analysis of biological data, there also exists the case
where some biological data are discrete while some oth-
ers are continuous. For instance, multi-level omics data
integrative analysis involves gene mutation, expression,
methylation, metabolome and phenome data. In this case,
mixed data appear naturally. We start with the defini-
tion of the latent Gaussian copula model for mixed data.
Assume that M = (M1,M2), where M1 represents the
p1-dimensional binary variables and M2 represents the
p2-dimensional continuous variables. The random vector
M satisfies the latent Gaussian copula model for mixed
data, if there exists a p1 dimensional random vector X1
such that X = (X1,M2) ∼ NPN(0,�, f ) and

Mj = I
(
Xj > Cj

)
for all j = 1, . . . , p1,

where C = (
C1, . . . ,Cp1

)
is a vector of constants. Then

we denote M ∼ LGCM(0,�, f ,C), and call � the latent
correlation matrix. In the latent Gaussian copula regres-
sion model, the binary components M1 are generated
by a latent continuous random vector X1 truncated at
C, and combining with the continuous components M2,
X = (X1,M2) satisfies the Gaussian copula model. For the
binary data M1, only 	j = fj

(
Cj

)
, j = 1, . . . , p1 are iden-

tifiable. For the continuous componentsM2, the marginal
transformations fj(·), j = p1 + 1, . . . , p are identifiable.

Assume M1
i =

(
M1

i1, . . . ,M1
ip

)�
for i = 1, . . . , n1 are

independent observations of the expression lev-
els of p genes from one group denoted by M1 and
M2

i =
(
M2

i1, . . . ,M
2
ip

)�
for i = 1, . . . , n2 from the other

denoted by M2, where M1 ∼ LGCM
(
�1,�1) and

M2 ∼ LGCM
(
�2,�2). The differential network is

defined to be the difference between the two precision
matrices, denoted by �M

0 = (
�2)−1 − (

�1)−1. Similar to
the discussions in the last sections, we first need to con-
struct estimators for �1 and �2. For ease of presentation,

we only present the procedure to construct the estimator
for �1, estimator for �2 can be obtained similarly. For
discrete components M1

ij,M1
ik(1 ≤ j, k ≤ p1), as what we

have discussed in the last subsection with a slight change
of notation, we can estimate �1

jk by:

T̂1
jk =

{
F−1

(
τ̂ 1jk ; 	̂

1
j , 	̂1

k

)
1 ≤ j �= k ≤ p1,

1, 1 ≤ j = k ≤ p1.
(6)

For continuous components M1
ij,M1

ik , as what we have
discussed, we can estimate �1

jk by:

T̂1
jk =

{
sin

(
π
2 τ̂jk

)
p1 + 1 ≤ j �= k ≤ p,

1, p1 + 1 ≤ j = k ≤ p. (7)

where τ̂jk is defined as follows:

τ̂ 1jk = 2
n1(n1−1)

∑

1≤i≤i′≤n1

sign
(
M1

ij−M1
i′j

)
·sign(

M1
ik−M1

i′k
)
.

We still need to consider the mixed case. Without loss
of generality, we assume thatM1

ij is binary andM1
ik is con-

tinuous. In this case, the Kendall’s tau correlation can be
expressed by

τ̂ 1jk = 2
n1(n1 − 1)

∑

1≤i≤i′≤n1

(
M1

ij − M1
i′j

)
·sign (

M1
ik−M1

i′k
)
.

The population version of Kendall’s tau correlation τ 1jk =
E

(
τ̂ 1jk

)
can be expressed by τ 1jk = H

(
�1

jk ;	
1
j

)
, where

H
(
t;	1

j

)
= 4
2

(
	1

j , 0, t/
√
2
)

− 2

(
	1

j

)
.

Moreover, for fixed 	1
j , H

(
t;	1

j

)
is an invertible func-

tion of t. The parameter 	1
j could be estimated by 	1

j =

−1

(
1 − M̄1

j

)
, where M̄1

j = ∑n
i=1M1

ij/n. Thus when M1
ij

is binary and M1
ik is continuous, �1

jk can be estimated by
the Kendall’ tau rank-based estimator:

T̂1
jk = H−1

(
τ̂ 1jk ; 	̂

1
j

)
, 1 ≤ j ≤ p1 < k ≤ p, (8)

where H−1
(
τ ,	1

j

)
is the inverse function of H

(
t,	1

j

)

for fixed	1
j . Thus the Kendall’s tau rank-based correlation

matrix estimator T̂1 =
[
T̂1
jk

]
for �1 is a p× pmatrix with

corresponding element entry given by Eqs. (6), (7), and (8)
respectively. Similarly, we can obtain estimator T̂2 for �2.
Motivated by Eq. (2), we can obtain an estimator of �0 by
solving the following optimization problem:

arg min|�|1, subject to
∣∣∣
(
T̂1 ⊗ T̂2

)
Vec(�) − Vec

(
T̂1 − T̂2

)∣∣∣∞ ≤ λn.
(9)

We show that the rank-based covariance matrix estima-
tors achieve the same parametric rate of convergence for
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both difference matrix estimation and differential graph
recovery in the Additional file 1. Thus the extra modelling
flexibility comes at almost no cost of statistical efficiency.
Besides, for the binary data or data of hybrid types with
both binary and continuous variables, the differential net-
work among latent variables can be well estimated, which
provides deeper understanding of the unknown mecha-
nism than that among the observed variables.

Implementation
In this section we will present how to solve the opti-
mization problems in Eqs. (2), (5), and (9). For ease of
presentation, we only present the procedure to obtain
the solution to optimization problem in Eq. (2) and solu-
tions to optimization problems in Eqs. (5) and (9) can be
obtained in the similar way.
Recall that in Eq. (2), the optimization problem is

arg min|�|1, subject to
∣∣∣
(
ŜX ⊗ ŜY

)
Vec(�) − Vec

(
ŜX − ŜY

)∣∣∣∞ ≤ λn.

Let � = [ δjk]1≤j,k≤p and define θ to be the p(p+ 1)/2×
1 vector with θ = (δjk)1≤j≤k≤p. Estimating a symmetric
� is thus equivalent to estimating θ , which alleviates the
computation burden especially when p is large. Define the
p2 × p(p + 1)/2 matrix � with columns indexed by 1 ≤
j ≤ k ≤ p and with rows indexed by l = 1, . . . , p and
m = 1, . . . , p, so that each entry is labeled by �lm,jk . For
j ≤ k, let �jk,jk = �kj,jk = 1 and set all other entries of �

equal to zero. With these notations, one may consider the
following optimization problem:

θ̂ = arg min|θ |1 subject to

⎧
⎨

⎩

∣∣∣��Ŝ�θ − ��ŝ
∣∣∣
O∞ ≤ λn,

∣∣∣��Ŝ�θ − ��ŝ
∣∣∣
D∞ ≤ λn/2,

(10)

where Ŝ = ŜX ⊗ ŜY , ŝ = Vec
(
ŜX − ŜY

)
and for a

p(p + 1)/2 × 1 vector c, |c|O∞ denotes the sup-norm of
the entries of c corresponding to the off diagonal elements
of its matrix form, while |c|D∞ denotes the sup-norm of
the entries of c corresponding to the diagonal elements.
The matrix form of θ̂ will be denoted by �̂ in the follow-
ing sections. The optimization problem in Eq. (10) can be
solved by the alternating direction method of multipliers
(ADMM), for a thorough discussion, we refer to [31]. For
the optimization problem in Eq. (10), to apply the ADMM
algorithm, we rewrite it as:

θ̂ = arg minθ ,z
{|θ |1 + g(z)

}

subject to ��Ŝ�θ + z = ��ŝ,

where the function g(·) is defined by

g(z) =
{ ∞ |zO∞| > λn or |zD∞| > λn/2.
0, otherwise.

The augmented Lagrangian can be written as

Lρ(θ , z,u) = u�
(
��Ŝ�θ + z − ��ŝ

)
+ |θ |1

+ρ
2

∣∣∣��Ŝ�θ + z − ��ŝ
∣∣∣
2

2
+ g(z),

(11)

where u is the Lagrange multiplier and ρ is a positive
penalty parameter which can be specified by users. The
ADMM algorithm is based on minimizing the augmented
Lagrangian in (11) over θ and z and then applying a dual
variable update to the Lagrange multiplier u, which yields
the updates

z(t+1) = arg min
z

∣∣∣u(t)/ρ + ��ŝ − ��Ŝ�θ (t) − z
∣∣∣
2

2

+2g(z)/ρ

θ (t+1) = arg min
θ

∣∣∣u
(t)

ρ
+ ��ŝ − ��Ŝ�θ − z(t+1)

∣∣∣
2

2

+2|θ |1/ρ
u(t+1) = u(t) + ρ

(
��ŝ − ��Ŝ�θ (t+1) − z(t+1)

)

for iterations t = 0, 1, 2 . . .. As for the tuning parame-
ter λn in (10), it can be chosen by an approximate Akaike
information criterion (AIC). λn is chosen to minimize

(nX + nY )L(λn) + 2k,

where k is the effective degrees of freedom that can be
approximated by |θ̂ |0 and L(λn) represents the loss func-
tion either L∞ or LF which are defined by

L∞(λn) =
∣∣∣Ŝ

X
�̂(λn)Ŝ

Y − ŜX + ŜY
∣∣∣∞ ,

LF(λn) =
∥∥∥Ŝ

X
�̂(λn)Ŝ

Y − ŜX + ŜY
∥∥∥
F
.

In this paper we focus on the loss functions with the
supremum and Frobenius norms for further theoretical
development. One may also use other matrix norms, such
as spectral norm:

Lsp(λn) =
∥∥∥Ŝ

X
�̂(λn)Ŝ

Y − ŜX + ŜY
∥∥∥
2
.

Similarly, for the latent Gaussian copula model for
binary data, one can solve the following optimization
problem:

θ̂
B = arg min|θ |1 subject to

⎧
⎨

⎩

∣∣∣��b̂�θ − ��r̂
∣∣∣
O∞ ≤ λn,

∣∣∣��b̂�θ − ��r̂
∣∣∣
D∞ ≤ λn/2,

(12)



He et al. BMC Bioinformatics 2018, 19(Suppl 17):493 Page 11 of 107

where b̂ = b̂
1 ⊗ b̂

2
, r̂ = Vec

(
b̂
1 − b̂

2)
. The matrix form

of θ̂
B
will be denoted by �̂

B in the following sections. For
the latent Gaussian copula model for mixed data, one can
solve the following optimization problem:

θ̂
M = arg min|θ |1 subject to

⎧
⎨

⎩

∣∣∣��T̂�θ − ��t̂
∣∣∣
O∞ ≤ λn,

∣∣∣��T̂�θ − ��t̂
∣∣∣
D∞ ≤ λn/2,

(13)

where T̂ = T̂1 ⊗ T̂2, t̂ = Vec
(
T̂1 − T̂2

)
. The

matrix form of θ̂
M

will be denoted by �̂
M in the fol-

lowing sections. Besides, corresponding Akaike informa-
tion criterion can be proposed to choose the tuning
parameter λn.

Simulation
Simulation for Gaussian copula differential graphical
model In this part, we conduct simulation study for differ-
ential network estimation under Gaussian copula model.
We mainly focus on the graphs that contain hub nodes.
First we generate the edge set EX for the group X. We par-
tition p features into 5 equally-sized and non-overlapping
sets: C1∪C2 · · ·∪C5 = {1, . . . , p}, |Ck| = p/5, Ci∩Cj = ∅.
For the smallest i ∈ Ck , we set (i, j) ∈ Ck for all {j �= i :
j ∈ Ck}. The non-zero entries of �X is then determined by
the edge set EX , where �X = (

�X)−1. Next, the value of
each nonzero entry of �X was generated from a uniform
distribution with support [−0.75,−0.25]∪[ 0.25, 0.75]. To
ensure positive definiteness of �X , let �X = �X + (0.2 +
|λmin

(
�X) |)I. At last the �X is rescaled such that �X is a

correlation matrix. Then we proceed to generate the dif-
ferential network �0. We randomly select two hub nodes
from the 5 equally-sized and non-overlapping sets. The
differential network�0 is generated such that the connec-
tions of these two hub nodes change sign between �X and
�Y . The correlation matrix �X and �Y are generated by
(
�X)−1 and

(
�Y )−1 respectively. Finally we generate nX

i.i.d observations of ZX from the N
(
0,�X)

distribution
and nY i.i.d observations of ZY from the N

(
0,�Y )

distri-
bution. Next we sample nX i.i.d samples from the nonpara-
normal distribution NPN

(
0,�X , f X

)
and nY i.i.d samples

from the nonparanormal distribution NPN
(
0,�Y , f Y

)
.

For simplicity, we use the same univariate transforma-
tions on each dimension: f X1 = f X2 = · · · = f Xp = f
and f X = f Y . To sample data from the nonparanor-
mal distribution, we also need g := f −1. We consider
the Gaussian CDF Transformation of g which is used
in [26].
In the simulation study, we let p = 50,80,100,120 and

nX = nY = 100. The simulation result is based on 100

replications. For each simulated data set, we apply three
estimation methods. That is , the direct differential net-
work estimator (DDN) in [7], the rank-based differential
network estimator (RDN) and the direct differential net-
work estimator based on the latent variable Z and Pearson
correlation (ZP-DDN). In ZP-DDN, we assume that ZX

and ZY are observed and the Pearson correlation estima-
tor of cov(ZX) and cov(ZY ) are plugged into the direct
estimation procedure. While ZP-DDN are often not avail-
able in real applications, we use ZP-DDN as benchmarks
for quantifying the information loss of the remaining
estimators.
We evaluate the performance of the estimationmethods

from two aspects: support recovery and estimation error.
The support recovery results are evaluated by true posi-
tive rate (TPR) and true negative rate (TNR) along a range
of tuning parameter λ. Suppose the true difference matrix
�0 has the support S0 = {(j, k) : δ0jk �= 0, and j �= k} and
its estimator �̂ has the support set Ŝ . TPR and TNR are
defined as follows:

TPR = TP

|S0| , TNR = TN

p(p − 1) − |S0| ,

where TP and TN are the numbers of true positives and
true negatives respectively, which are defined as

TP = #
{
(i, j) : (i, j) ∈ S0 ∩ Ŝ

}
,

TN = #
{
(i, j) : (i, j) ∈ Sc

0 ∩ Ŝc
}
.

To evaluate the support recovery performance, we use
the true discovery rate, which is defined as TD = TP/|Ŝ0|.
As for the estimation error, we calculate the element-wise
L∞ norm and Frobenius norm of �̂ − �0.
Simulation for latent Gaussian copula differential

graphical model In this part, we conduct simulation
study for differential network estimation under Latent
Gaussian copula model. We assume that the cutoff vector
C ∼ Unif [ 0, 1] and let �1 and �2 be generated in the
same way as �X and �Y described in the last subsection.
We consider the following three Scenarios:

• Scenario 1 Generate data B1 =
(
B1
1, . . . ,B1

p

)�
,

where B1
j = I(Xj > Cj), j = 1, . . . , p and X ∼

NPN
(
0,�1, f 1

)
; Generate data B2 =

(
B2
1, . . . ,B2

p

)�
,

where B2
j = I(Yj > Cj), j = 1, . . . , p and Y ∼

NPN
(
0,�2, f 2

)
. The transformation functions f 1 and f 2

are Gaussian CDF transformation.
• Scenario 2 Generate data M1 =

(
M1

1, . . . ,M1
p

)�
,

where M1
j = I

(
Xj > Cj

)
, j = (p/2 + 1), . . . , p, X ∼

NPN
(
0,�1, f 1

)
andM1

j = Xj, j = 1, . . . , p/2;
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Generate data M2 =
(
M2

1, . . . ,M2
p

)�
, where M2

j =
I
(
Yj > Cj

)
, j = p/2 + 1, . . . , p, and Y ∼ NPN

(
0,�2, f 2

)

and M2
j = Yj, j = 1, . . . , p/2. The transformation func-

tions f 1 and f 2 are Gaussian CDF transformation.
• Scenario 3 Generate data B1 =

(
B1
1, . . . ,B1

p

)�
, where

B1
j = I

(
Z1
j > Cj

)
, j = 1, . . . , p andZ1 ∼ N

(
0,�1), where

10 entries in each Z1 is randomly sampled and replaced by
-5 or 5;
Generate data B2 =

(
B2
1, . . . ,B2

p

)�
, where B2

j =
I
(
Z2
j > Cj

)
, j = 1, . . . , p and Z2 ∼ N

(
0,�2), where 10

entries in each Z2 is randomly sampled and replaced by
-5 or 5.
In Scenario 1 and Scenario 3, we generate binary data.

Scenario 1 corresponds to the latent Gaussian copula
model and Scenario 3 corresponds to the setting where the
binary data can be misclassified due to the outliers of the
latent Gaussian variable. Scenario 3 is designed to investi-
gate the robustness of the proposed approach. Scenario 2
corresponds to the mixed data generated from the latent
Gaussian copula model.

Application to gene expression data sets related to lung
cancer
In this section we consider the differential network esti-
mation for a gene expression data set related to lung
cancer. The data set is publicly available from the Gene
Expression Omnibus at accession number GDS2771 and
was studied in [24]. It includes 22,283 microarray-derived
gene expression measurements from large airway epithe-
lial cells sampled from 97 patients with lung cancer and
90 controls in the data set. It is of interest to investigate
how the structure of the gene co-expression network dif-
fers between the group of patients with lung cancer and
the control group. It may shed light on underlying lung
cancer mechanisms. In this real example study, we limited
our analysis to the 122 genes in the Wnt signaling path-
way. The Wnt signaling pathway has recently emerged
as a critical pathway in lung carcinogenesis as already
demonstrated inmany cancers and particularly in colorec-
tal cancer [32]. The Gene expression levels were analyzed
on a logarithmic scale. Each gene feature was standard-
ized to have mean zero and standard deviation 1 within
the cancer samples and the controls separately.

Results
Simulation results for Gaussian copula differential
graphical model
The receiver operating characteristic (ROC) curves of the
three estimation methods are depicted in Fig. 2. It shows
that the proposedmethod RDN compares favourably with
the benchmark method ZP-DDN, which means that the

information loss is negligible. Besides, Fig. 2 also shows
that DDN performs pretty bad in the non-Gaussian case.
Table 1 gives the true discovery rates with different loss

functions. The results also show the method RDN com-
pares favourably with the benchmark method ZP-DDN.
For all the methods, tuning using the LF gives better true
discovery rates than tuning using the L∞. Table 1 depicts
the elementwise L∞ norm estimation accuracies of the
thresholded estimators tuned using the loss functions L∞
and LF . From Table 1, we can see that the LF loss func-
tion gives slightly better results than the L∞ loss function.
For all the methods, the elementwise L∞ norm estimation
accuracy are comparable. We point out that it is possible
for RDN to simultaneously give better support recovery
but similar estimation than DDN. The reason is that esti-
mation error depends on the magnitudes of the estimated
entries, while support recovery depends only on whether
the entries are nonzero. Besides, RDN has comparable
performance with the benchmark method ZP-DDN in
terms of both support recovery and estimation accuracy,
which indicates that the information loss of the estimator
RDN is negligible.

Simulation results for Latent Gaussian copula differential
graphical model
The ROC curves for Scenario 1 and Scenario 2 with differ-
ent dimensionality p (varying from 50 to 120) is presented
in Fig. 3. Table 2 give the true discovery rates with different
loss functions and the elementwise L∞ norm estimation
accuracies of the thresholded estimators tuned using the
loss functions L∞ and LF, respectively. For method ZR-
RDN, we assume that the latent Gaussian copula variables
are observed. In particular, the rank-based correlation
matrix estimator of the latent Gaussian copula variables
are plugged into the direct estimation procedure. With a
slight abuse of notation, the RDN method here refers to
either the rank-based method for binary data or for mixed
data. The ROC curves in Fig. 3 show that the rank-based
methods RDN proposed for latent Gaussian copula model
(binary and mixed) perform pretty well even when the
dimensionality is larger than the sample size.
By the ROC curves in Fig. 4, we can find that RDN

is more robust to the data misclassification than the
benchmark estimator ZP-DDN. The robustness of RDN
to outliers illustrates the advantage of the dichotomization
method. In the absence of misclassification, it is seen that
the ROC curves of RDN and ZR-RDN are similar, which
indicates little information loss for differential network
recovery due to the dichotomization procedure. Table 3
gives the true discovery rates with different different loss
functions for Scenario 3 and presents the elementwise L∞
norm estimation accuracies of the thresholded estimators
tuned using the loss functions L∞ and LF for Scenario 3.
From Table 3, we can see that the LF loss function gives
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Fig. 2 Receiver operating characteristic curves under Gaussian copula model with dimensionality varying from 50 to 120. The red line represents the
proposed RDN method, the black dotted represents the benchmark method ZP-DDN, the blue dotted line represents DDN method. a Scenario 3,
p = 50. b Scenario 3, p = 80. c Scenario 3, p= 100. d Scenario 3, p = 120

slightly better results than the L∞ loss function. Besides,
we can see that the elementwise L∞ norm estimation
accuracy are comparable. This is also true for Scenario 1
and Scenario 2.

Theoretical results
The estimators �̂, �̂B and �̂

M, after an additional thresh-
old step, are shown to be able to recover not only the

support of the true �0 but also the signs of its nonzero
entries as long as those entries are sufficiently large.
Besides, under mild conditions, the estimation errors
bounds in terms of matrix Frobenius norm and ele-
mentwise �∞ norm both achieve the parametric rate√
log p/min(nX , nY ), see details in Additional file 1. It

indicates that the extramodeling flexibility and robustness
come at almost no cost of statistical efficiency and it seems

Table 1 Average true discovery rates (%) and average estimation errors over 100 simulations

ZP-DDN RDN DDN

p L∞ LF L∞ LF L∞ LF

Average true discovery rates

50 74.0 (13.6) 83.2 (10.9) 75.6 (14.0) 89.1 (11.3) 45.9 (24.7) 27.8 (17.3)

80 91.4 (16.4) 99.6 (4.3) 95.2 (14.2) 100.0 (0.0) 44.9 (34.6) 51.0 (42.8)

100 96.3 (14.1) 100.0(0.0) 99.5 (5.2) 100.0 (0.0) 39.3 (40.3) 50.0 (49.1)

120 78.8 (16.8) 100.0(0.0) 79.0 (18.2) 100.0 (0.0) 23.4 (41.3) 30.0 (46.3)

Average estimation errors in the elementwise L∞ norm

50 3.26 (0.41) 2.91 (0.33) 3.08 (0.32) 2.59 (0.35) 2.27 (0.12) 2.41 (0.21)

80 2.06 (0.28) 1.92 (0.06) 1.98 (0.21) 1.91 (0.00) 1.97 (0.09) 1.94 (0.08)

100 1.86 (0.15) 1.82 (0.00) 1.82 (0.04) 1.82 (0.00) 1.87 (0.10) 1.83 (0.04)

120 1.12 (0.17) 0.87 (0.00) 1.12 (0.18) 0.87 (0.00) 0.89 (0.07) 0.87 (0.00)
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a b

Fig. 3 Receiver operating characteristic curves for Scenario 1 and Scenario 2 under latent Gaussian copula model, with dimensionality varying from
50 to 120. a Scenario 1. b Scenario 2

as if the latent variable can be observed. Thus these new
estimators can be used as a safe replacement of Gaussian
estimators even when the data are truly Gaussian. Com-
pared to the separate and joint approaches to estimating
differential networks (e.g. [22, 23],) which require sparsity
on each �−1, the proposed direction estimation methods
for different types of data only require the sparsity of the
difference matrix �0. The detailed theorems and proofs
are in the Additional file 1 available online.

Results of application
In the real application part, we compare three estima-
tion methods. The first method is the Gaussian copula
RDN method, which we denote as C-RDN. The sec-
ond method is the latent Gaussian copula RDN method,
which we denote as B-RDN. In specific, we first apply
the adaptive dichotomization method implemented by
the ArrayBin package in R to remove the batch effect in

Table 2 Simulation results over 100 replications for Scenario 1
and Scenario 2

Scenario 1 Scenario 2

p L∞ LF L∞ LF

Average true discovery rates(%)

50 78.8 (15.2) 98.4 (5.9) 79.6 (13.8) 40.8 (25.6)

80 76.4 (23.1) 100.0(0.0) 83.4 (17.0) 88.2 (17.6)

100 89.5 (22.1) 100.0(0.0) 84.8 (20.0) 99.3 (3.9)

120 76.5 (31.0) 94.0(24.0) 82.4 (15.2) 100.0 (0.0)

Average estimation errors in the elementwise L∞ norm

50 2.66 (0.26) 2.21 (0.15) 3.23 (0.40) 3.85 (0.55)

80 2.10 (0.20) 1.91 (0.00) 2.29 (0.35) 2.14 (0.32)

100 1.88 (0.13) 1.82 (0.00) 2.03 (0.28) 1.83 (0.08)

120 1.00 (0.16) 0.87 (0.00) 1.17 (0.16) 0.88 (0.07)

the gene expression data. The adaptive dichotomization
method transforms the numerical gene expression data
into 0/1 binary data. The genes with high expression level
are encoded as 1 and the genes with lower expression
level are encoded as 0. Then we apply the B-RDN to the
0/1 binary data. The third method is the direct differ-
ential network estimation method proposed by [7] with
Gaussian assumption, which we denote as DDN.
We conduct Shapiro-Wilk test on the gene data set and

63% of the genes reject the normality null hypothesis.
Therefore, the Gaussian assumption of DDN method is
violated in this real data example. Thus we expect that
C-RDN which relaxes the Gaussian assumption may pro-
vide a more reliable result. The deficiency of the C-RDN
method lies in that it does not take the batch effect of the
genes expression data from different platforms into con-
sideration. For the B-RDN method, it removes the batch
effect.
Figure 5 depicts the differential network estimated by

the three methods. Table 4 gives the hub genes selected
out by different estimation methods. For method C-RDN,
the tuning parameter λ is selected by the AIC criterion
with the elementwise �1 norm loss function. To ensure
a fair comparison, the tuning parameter λ for method
B-RDN and DDN are selected such that the number of
edges in the estimated differential graphs by all three
methods are almost the same. The number of edges
selected by the three methods are 56, 59 and 52, respec-
tively. From Fig. 5, we can see that B-RDN identifies an
obvious hub gene WIF1 that is an extracellular antago-
nist of WNT. WIF1 is a frequent target for epigenetic
silencing in various human cancers [30]. WIF1 promoter
is frequently methylated in non-small cell lung cancer
(NSCLC) cells to down-regulate its mRNA expression
[33]. Both C-RDN and B-RDN select out a common hub
gene APC. APC expression in lung cancer are associated
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Fig. 4 Receiver operating characteristic curves for Scenario 3 under latent Gaussian copula model, with dimensionality varying from 50 to 120. The
red line represents the proposed RDN method, the black dotted represents the benchmark method ZP-DDN, the blue dotted line represents DDN
method. a Scenario 3, p = 50. b Scenario 3, p = 80. c Scenario 3, p= 100. d Scenario 3, p = 120

with survival time and is also related to cancer metas-
tasis [34]. Both C-RDN and DDN select out a com-
mon hub gene, MAPK8, which plays a significant role
in the promotion of lung inflammation and tumorige-
nesis subsequent to tobacco smoke exposure [35]. The

expression level of DVL2 was reported significantly higher
in lung adenocarcinomas than in squamous carcinomas,
and was associated with poor tumor differentiation [36].
Winn et al. [37] reported that the restoration of FZD9
signaling inhibited both cell proliferation and anchorage-

Table 3 Simulation results over 100 replications for Scenario 3

ZP-DDN RDN ZR-RDN

p L∞ LF L∞ LF L∞ LF

Average true discovery rates(%)

50 39.8 (39.5) 46.1 (47.3) 87.6 (14.7) 97.3 (7.4) 88.0 (11.0) 90.0 (12.4)

80 32.4 (41.9) 35.5 (47.9) 80.7 (14.8) 99.8 (2.5) 89.5 (8.7) 95.4 (7.2)

100 23.5 (40.2) 31.7 (46.9) 75.6 (20.3) 100.0(0.0) 84.0 (12.0) 99.1 (4.2)

120 16.0 (37.0) 16.0 (37.0) 52.9 (44.6) 68.0(47.1) 70.4 (26.8) 93.0 (24.8)

Average estimation errors in the elementwise L∞ norm

50 2.15 (0.03) 2.16 (0.01) 2.05 (0.15) 2.12 (0.08) 2.05 (0.17) 2.02 (0.15)

80 1.91 (0.02) 1.91 (0.01) 1.91 (0.12) 1.92 (0.04) 1.92 (0.12) 1.91 (0.08)

100 1.82 (0.02) 1.82 (0.00) 1.88 (0.12) 1.82 (0.00) 1.90 (0.12) 1.83 (0.04)

120 0.87 (0.00) 0.87 (0.00) 0.91 (0.09) 0.87 (0.00) 0.97 (0.11) 0.88 (0.05)
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a b c

Fig. 5 Differential network estimated by different methods. Orange edges show an increase in conditional dependency from control group to lung
cancer patient group; grey edges show a decrease. Red points stand for hub genes which have edges with more than 3 other genes. a C-RDN.
b B-RDN. c DDN

independent growth, promoted cellular differentiation,
and reversed the transformed phenotype in NSCLC. The
overexpression of MMP7 was associated with tumor pro-
liferation, and a poor prognosis in NSCLC [38]. RAC1
generally plays an important role in cancer progression
and metastasis [39].
By comparing (a) and (b) in Fig. 5, we can see that

the estimated differential network can be very different
with/without considering the batch effect. Although it is
inevitable to result in information loss in the discretiza-
tion procedure for method B-RDN, [40] argued that this
procedure can potentially improve the accuracy of the sta-
tistical analysis. In real data example, we recommend to
use the B-RDNmethod to remove the batch effect despite
the little information loss. At last we argue that statistical
comparison of group difference in this biological network
or pathway can provide new insight into the underlying
lung cancer mechanism, which may further offer more
effective targets for drug development.
To further interpret the underlying biological implica-

tions of the identified hub genes, we conducted Gene
Ontology (GO) enrichment analysis. Table 5 shows the
common GO terms enriched by C-RDN, B-RDN and
DDN. The GO enrichment analysis is performed using
R package “clusterProfiler” with the P-value adjusted by

Table 4 Hub genes selected by different methods

DDN PRKACA MAPK8 CACYBP CAMK2B SFRP1 CSNK2A2 TCF7

BTRC RUVBL1

C-RDN PLCB2 DVL2 MAPK8 PLCB1 APC WNT2 FZD9

WNT11 DKK1 SFRP4

B-RDN WIF1 MMP7 RAC1 LEF1 APC PRKACA WNT8B

BAMBI

Benjamini-Hochberg method. It shows that our meth-
ods (C-RDN, B-RDN) have smaller P-value than DDN.
The common molecular function and cellular component
suggest that the change of frizzled binding, Wnt-protein
binding and beta-catenin destruction complex are impor-
tant in the etiology of lung cancer. These predictions are
supported by the literatures [41–43] , which indicates
that the proposed differential network model can provide
biological meaningful underlying signals.

Discussion
A complex disease phenotype (e.g. diabetes, cancer) often
reflects various pathobiological processes that interact
in a network rather than the abnormality of a single
gene. Such interactions are not static processes, instead
they are dynamic in response to changing genetic, epi-
genetic and environmental factors, which further entails
the analysis of differential network. In this paper, we
propose adaptive estimation approaches for latent vari-
able differential network model with the assumption
that the true differential network is sparse, which do
not require precision matrices to be sparse. The latent
variable differential network model is fundamentally dif-
ferent from the existing ones in the literature in the
sense that the differential structure in the unobserved
latent variables are of primary interest. Theoretical anal-
ysis shows that the proposed methods achieve the same
parametric convergence rate for both the difference of
the precision matrices estimation and differential struc-
ture recovery, which means that the extra modelling
flexibility comes at almost no cost of statistical effi-
ciency. The unified latent variable differential network
model provides deeper understanding of the unknown
genomic mechanism than that among the observed
variables.



He et al. BMC Bioinformatics 2018, 19(Suppl 17):493 Page 17 of 107

Table 5 Gene Ontology (GO) enrichment analysis result

ID Functional term Ontology
Adjust P-value

C-RDN B-RDN DDN

GO:0016055 Wnt signaling pathway BP 1.69 × 10−11 2.96 × 10−6 0.0022

GO:0198738 cell-cell signaling by wnt BP 1.69 × 10−11 2.96 × 10−6 0.0022

GO:0060828 regulation of canonical Wnt signaling pathway BP 1.49 × 10−9 0.0012 0.0027

GO:0060070 canonical Wnt signaling pathway BP 4.78 × 10−9 0.0012 0.0027

GO:0030111 regulation of Wnt signaling pathway BP 6.67 × 10−9 0.0058 0.0091

GO:0005109 frizzled binding MF 5.28 × 10−5 0.0058 0.0091

GO:0007369 gastrulation BP 0.0024 0.0058 0.0276

GO:0017147 Wnt-protein binding MF 0.0025 0.0073 0.0286

GO:0060562 epithelial tube morphogenesis BP 0.0068 0.0073 0.0290

GO:0003002 regionalization BP 0.0074 0.0080 0.0331

GO:0035239 tube morphogenesis BP 0.0082 0.0090 0.0332

GO:0001503 ossification BP 0.0093 0.0131 0.0341

GO:0007389 pattern specification process BP 0.0113 0.0131 0.0357

GO:0043393 regulation of protein binding BP 0.0202 0.0175 0.0377

GO:0034329 cell junction assembly BP 0.0205 0.0178 0.0382

GO:0030877 beta-catenin destruction complex CC 0.0223 0.0377 0.0382

GO:0045216 cell-cell junction organization BP 0.0229 0.0409 0.0402

GO:0034330 cell junction organization BP 0.0259 0.0411 0.0408

GO:0071496 cellular response to external stimulus BP 0.0281 0.0411 0.0418

GO:0071214 cellular response to abiotic stimulus BP 0.0290 0.0421 0.0448

GO:0104004 cellular response to environmental stimulus BP 0.0290 0.0450 0.0453

GO:0051098 regulation of binding BP 0.0330 0.0474 0.0478

GO:0045992 negative regulation of embryonic development BP 0.0341 0.0479 0.0495

GO:1903829 positive regulation of cellular protein localization BP 0.0397 0.0489 0.0495

GO:1901990 regulation of mitotic cell cycle phase transition BP 0.0409 0.0489 0.0498

BP: biological process; MF: molecular function; CC: cellular component

The current work could be extended in the following
two aspects. First, in this paper, we consider the following
optimization problem to directly estimate the difference
matrix �:

arg min|�|1, subject to
∣∣∣Ŝ

X
�ŜY − ŜX + ŜY

∣∣∣∞ ≤ λn,

where ŜX and ŜY denote the rank-based estimators of the
covariance matrices. The D-trace loss function [15, 44]
can also be applied to to directly estimate the precision
matrix difference. Thus, we may also consider the D-trace
loss function to estimate the Gaussian copula and latent
Gaussian copula differential graphical models. In specific,
the difference matrix � could be eatimated by:

arg min�

1
2
Tr

(
�ŜX�ŜY

)
−Tr

(
�

(
ŜX − ŜY

))
+Gλ(�),

where λ > 0 is a regularization parameter and Gλ is a
decomposable non-convex penalty function which has the
form Gλ = ∑

j,k gλ
(
�jk

)
, such as smoothly clipped abso-

lute deviation (SCAD) penalty [45]. The theoretical guar-
antees are still needed to be investigated, but we expect
that the empirical performance could be comparable.
Second, for the latent Gaussian copula differential

graphical model, we focus on the binary data. In fact, the
methods can be extended to the discrete data with more
than two categories. The properties of this procedure are
left for future investigation as there are a lot of work still
needed to be done.

Conclusions
The proposed latent variable differential network models
are very flexible and provide deeper understanding of the
unknown biological mechanism. It is demonstrated latent
differential network models enjoy great advantages over
existing models and thus are highly recommended in real
application.
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