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According to the American Cancer Society’s forecasts for 2019, there will be about 268,600 new cases in the United States with
invasive breast cancer in women, about 62,930 new noninvasive cases, and about 41,760 death cases from breast cancer. As a result,
there is a high demand for breast imaging specialists as indicated in a recent report for the Institute of Medicine and National
Research Council. One way to meet this demand is through developing Computer-Aided Diagnosis (CAD) systems for breast
cancer detection and diagnosis using mammograms. This study aims to review recent advancements and developments in CAD
systems for breast cancer detection and diagnosis using mammograms and to give an overview of the methods used in its steps
starting from preprocessing and enhancement step and ending in classification step.The current level of performance for the CAD
systems is encouraging but not enough to make CAD systems standalone detection and diagnose clinical systems. Unless the
performance of CAD systems enhanced dramatically from its current level by enhancing the existing methods, exploiting new
promising methods in pattern recognition like data augmentation in deep learning and exploiting the advances in computational
power of computers, CAD systems will continue to be a second opinion clinical procedure.

1. Introduction

Cancer is a disease that occurs when abnormal cells grow in
an uncontrolled manner in a way that disregards the normal
rules of cell division, which may cause uncontrolled growth
and proliferation of the abnormal cells. This can be fatal if
the proliferation is allowed to continue and spread in such a
way that leads to metastasis formation. The tumor is called
malignant or cancer if it invades surrounding tissues or
spreads to other parts of the body [1]. Breast cancer forms in
the same way and usually starts in the ducts that carry milk
to the nipple or in the glands that make breast milk. Cells in
the breast start to grow in an uncontrolled manner and form
a lump that can be felt or detected using mammograms [2].
Breast cancer is the most prevalent cancer between women
and the second cause of cancer-related deaths among them
worldwide [3–5]. According to the American Cancer
Society’s forecasts for 2019, there will be about 268,600 new
cases in the United States of invasive breast cancer diagnosed
in women, about 62,930 new noninvasive cases, and about

41,760 death cases from breast cancer [3]. The death rates
among women dropped 40% between 1989 and 2016, and
since 2007, the death rates in younger women are steady and
are steadily decreasing in older women due to early detection
through screening, increased awareness, and better treat-
ment [3, 6].

Mammography, which is performed at moderate X-ray
photon energies, is commonly used to screen for breast
cancer [7, 8]. If the screening mammogram showed an
abnormality in the breast tissues, a diagnostic mammogram
is usually recommended to further investigate the suspicious
areas. The first sign of breast cancer is usually a lump in the
breast or underarm that does not go after the period.
Usually, these lumps can be detected by screening mam-
mography long before the patient can notice them even if
these lumps are very small to do any perceptible changes to
the patient [9].

Several studies showed that using screening mammogra-
phy as an early detection tool for breast cancer reduces breast
cancer mortality [10–12]. Unfortunately, mammography has a

Hindawi
Journal of Healthcare Engineering
Volume 2020, Article ID 9162464, 21 pages
https://doi.org/10.1155/2020/9162464

mailto:saleem.ramadan@gju.edu.jo
https://orcid.org/0000-0003-1241-0886
https://doi.org/10.1155/2020/9162464


low detection rate and 5% to 30% of false-negative results
depending on the lesion type, the age of the patient, and the
breast density [13–19]. Denser breasts are harder to diagnose as
they have low contrast between the cancerous lesions and the
background [20, 21]. The miss of classification in mammog-
raphy is about four to six times higher in dense breasts than in
nondense breasts [17, 20–24]. Dense breast reduces the test
sensitivity (increases false-positive value), hence requiring
unnecessary biopsy, and decreases test specificity (increases
false-negative value), hence missing cancers [25].

Radiologists try to enhance the sensitivity and specificity
of mammography by double reading the mammograms by
different radiologists. Some authors reported that double
reading enhances the specificity and sensitivity of mam-
mography [26–28] but with extra cost on the patient. A
recent study [29] and an older study [30] showed that the
detection rate of double reading was not statistically different
from the detection rate of a single reading in digital
mammograms and hence the double reading is not a cost-
effective strategy in digital mammography. The inconsis-
tency in the results shows that there is a need for further
studies in this area. Recently, Computer-Aided Diagnosis
(CAD) systems are used to assist doctors in reading and
interpreting medical images such as the location and the
likelihood of malignancy in a suspicious lesion [7]. CADe
and CADx schemes are used to differentiate between two
strands of CAD systems.Themain difference between CADe
and CADx is that CADe stands for Computer-Aided De-
tection system, in which CADe systems do not present the
radiological characteristics of tumors but help in locating
and identifying possible abnormalities in the image and
leaving the interpretation to the radiologist. On the other
hand, CADx stands for Computer-Aided Diagnosis system,
in which CADx serves as decision aids for radiologists to
characterize findings from radiological images identified by
either a radiologist or a CADe system. CADx systems do not
have a good level of automation and do not detect nodules.

CAD helped the doctors to improve the interpretations
of images in terms of accuracy in detection and productivity
in time to read and interpret the images [31–37]. A study
regarding CAD systems showed an increase in the radiol-
ogists’ performance for those who used CAD systems [38].
Another study indicated that the detection rate for double
reading was not significantly different from the detection
rate of a single reading accompanied by a CAD system [23].
Typically, a CAD session starts with the radiologist reading
the mammogram to look for suspicious patterns in it fol-
lowed by the CAD system scanning the mammograms and
looking for suspicious areas. Finally, the radiologist analyzes
the prompts given by the CAD system about the suspicious
areas [7].

The two main signs for malignancy are the micro-
calcification and masses [24, 39, 40]. Microcalcifications can
be described in terms of their size, density, shape, distri-
bution, and number [41]. Microcalcification detection in
denser breasts is hard due to the low contrast between the
microcalcification and the surrounding tissues [21]. A
valuable study on how to enhance contrast, extraction,
suppression of noise, and classification of microcalcification

can be found in [42]. Masses, on the other hand, are cir-
cumscribed lumps in the breast and are categorized as be-
nign or malignant. Masses can be described by shape,
margin, size, location, and contrast.The shape can be further
classified as round, lobular, oval, and irregular. Margin can
also be further classified as obscured, indistinct, and spi-
culated. Masses are harder to detect by the radiologists than
microcalcification because of their similarity to the normal
tissues [43, 44]. Many studies presented the usage of CAD
systems in mammography diagnosis such as [7, 45–50]. Like
any other algorithm for a classification problem, the CAD
system can be divided into three distinct areas: feature
extraction, feature selection, and classification methodolo-
gies. On top of these three major areas, CAD systems depend
heavily on an image enhancement step to prepare the
mammogram for further analysis. Figure 1 shows a flow-
chart for a typical CAD system schema.

In this study, we are presenting the developments of
CAD methods used in breast cancer detection and diagnosis
using mammograms, which include preprocessing and
contrast enhancement, features extraction, features selec-
tion, and classification methods. The rest of the paper will be
organized based on the schema in Figure 1 as follows:
Section 2 presents the preprocessing and enhancement step,
Section 3 discusses features selection and features extraction
step, Section 4 is devoted to discussing classification through
classifiers and combined classifiers, and Section 5 presents
the conclusions.

2. Preprocessing and Contrast Enhancement

Mammograms do not provide good contrast between
normal glandular breast tissues and malignant ones and
between the cancerous lesions and the background especially
in dense breasts [20–24, 51]. There are recognized poor
contrast problems inherent to mammography images.
According to the Beer-Lambert equation, the thicker the
tissue is, the fewer the photons pass through it. This means
that as the X-ray beam passes through normal glandular
breast tissues and malignant ones in dense breast tissues, its
attenuation will not differ much between the two tissues and
hence there will be low contrast between normal glandular
and malignant tissues [52]. Another well-known problem in
mammograms is noise. Noise occurs in mammograms when
the image brightness is not uniform in the areas that rep-
resent the same tissues as it supposes to be due to non-
uniform photon distribution. This is called quantum noise.
This noise reduces image quality especially in small objects
with low contrast such as a small tumor in a dense breast. It
is known that quantum noise can be reduced by increasing
the exposure time. For health reasons, most of the time the
radiologist prefers to decrease the exposure time for the
patient at the expense of increasing the quantum noise,
which will result in reducing the visibility of the mammo-
gram. The presence of noise in a mammogram gives it a
grainy appearance. The grainy appearance reduces the vis-
ibility of some features within the image especially for small
objects with low contrast, which is the case for a small tumor
in a dense breast [52, 53]. Because of this low-contrast
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problem, contrast enhancement techniques were proposed
in the literature. A good review of conventional contrast
enhancement techniques can be found in [54]. Unfortu-
nately, there is no unified metrics for evaluating the per-
formance of the preprocessing techniques to enhance the
low-contrast problem and the existing evaluations are still
highly subjective [55, 56].

Image enhancement usually is done by changing the
intensity of the pixels for the input image [57]. The con-
ventional histogram equalization technique for image en-
hancement is an attractive approach for its traceability and
simplicity. The conventional histogram equalization starts
by collecting statistics about the intensity of the image’s
pixels and formulating a histogram for the intensity levels
and their frequency as in

H � fi , (1)

where i is intensity index and fi is the frequency for intensity
index i.

Using equation (1), a cumulative density function is
defined as in

CF(i) � 
L−1

i�0

fi

N
, (2)

where L is the number of intensity levels and N is the total
number of pixels in the image. A transformation function is
defined based on equation (2) to give the output image Iout as
follows:

Iout(i) � Imin + Imax − Imin(  × CF(i), (3)

where Imin and Imax are the minimum and the maximum
intensity levels of the input image, respectively.

Unfortunately, the conventional histogram equalization
tends to shift the output image brightness to the middle of
the allowed intensity range. To overcome this problem,
subimage based histogram equalization methods were
proposed in the literature where the input image is divided
into subimages and the intensity for each subimage is
manipulated independently. A bi-histogram equalization
method discussed in [58, 59] splits the image into two
subregions of high and low mean brightness based on the
average intensity of all pixels and then applies the histogram

equalization to each subregion independently. The mathe-
matics of bi-histogram equalization method starts by cal-
culating the expected value for the intensity of the input
image as in

E Iinp  � 
L−1

i�0
i ×

fi

N
. (4)

Based on E[Iinp] , two subimages, Ilow and Ihigh, are
created such that

EIlow � Iinp(i), ∀i≤E Iinp ,

Ihigh � Iinp(i), ∀i>E Iinp .
(5)

Then Ilow and Ihigh are equalized using their corre-
sponding range of intensities to produce two enhanced
images Ilowenh

and Ihighenh. The enhanced output image is then
constructed as the union of these two subimages. The first
limitation for this method is that the original brightness can
be preserved only if the original image has a symmetric
intensity histogram such that the number of pixels in Ilow is
equal to the number of pixels in Ihigh. If the histogram is not
symmetric, the mean tends to shift toward the long tail and
hence the number of pixels in each subimage will not be
equal. The second limitation arises when pixels intensities
tend to concentrate in a narrow range. This will be shown as
peaks in the histogram and hence will generate artifacts in
the output image. A third limitation is that the image may
suffer from overenhancement especially if the brightness
dispersion in the image is high such that there are regions of
very high and very low brightness.

To overcome the limitation generated from the unequal
number of pixels in the subimages, dualistic subimage
histogram equalization discussed in [60] incorporated the
median value as the divider threshold in the process instead
of the mean to have an equal number of pixels in each
subimage. This method maximizes Shannon’s entropy of
the output image [61]. In this method, the input image is
divided into two subimages just like with equal number
pixels and hence the original brightness of the input image
can be preserved to some extent. To overcome the limi-
tation generated from pixels concentrated in a narrow
range, the histogram peaks are clipped prior to cumulative
density calculations [62]. The procedure used is similar to
bi-histogram equalization method discussed earlier in
which two subimages are created along with their histo-
grams, but on the top of that, the mean values for the two
subimages are calculated as the clipping limits for the
subimages as in

CLlow � 

E Iinp 

i�0
i ×

fi

N
,

CLhigh � 
L−1

i�E Iinp +1

i ×
fi

N
.

(6)

The clipping limits are used to generate the histograms
for the subimages as in equation (7) and the procedure

Preprocessing and contrast enhancement 

Features selection

Features extraction 

Classification of lesions

Input of digital image

Figure 1: Flow chart for a typical CAD system.
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continues after that as in the bi-histogram equalization
method.

Hlow �
Hlow(i), Hlow(i)<CLlow
Hlow, Otherwise

 ,

Hlow �
Hhigh(i), Hhigh(i)<CLhigh
Hhigh, Otherwise

⎧⎨

⎩

⎫⎬

⎭.

(7)

A difficulty that sometimes arises in this method is that
the mean brightness for the resulting image is hard to
calculate, as it sometimes does not have a closed-form ex-
pression to evaluate it [63].

An attempt to mitigate the limitation of over-
enhancement is by multiple division method proposed in
[63] in which dynamic quadrants histogram equalization
plateau limit method divides the image into four sub-
images. Another attempt is by median-mean based sub-
image clipped histogram equalization proposed in [64],
which is an enhancement for the dynamic quadrants
histogram equalization plateau limit method. In this
method, the mean brightness of the input image was used
first to divide the input image into subimages, these
subimages are then further divided using the mean
brightness for the subimages, and then the peaks of the
subimage histogram were clipped using median values.
The minimum mean brightness error bi-histogram
equalization method was used in [65], which is an ex-
haustive search method, to determine the best separation
threshold. This method, like the subimage based histogram
equalization method, cannot guarantee a match between
the input and the output brightness. Another drawback of
this method is that it may need a considerable amount of
computational time, as it is exhaustive in nature.

A dynamic stretching strategy is adopted in [63] for
contrast enhancement instead of histogram equalization
with the mean or median value for the separation
threshold in which the efficient golden section search
approach was used to find the optimal threshold, which
preserves the mean brightness in the output image.
Equation (8) gives the function used for the golden section
search. The golden section search method is basically
searching for the mean output image intensity E[Iout] that
will minimize the absolute deviation between the output
image mean intensity and the input image mean intensity
E[Iinp].

f E Iout (  � E Iinp  − E Iout 


. (8)

There are many methods in literature to reduce the noise
level in X-ray images. The traditional solution to reduce
noise in X-rays images is to use aWiener filter that computes
a statistical estimate of the desired output image by filtering
out the noise from the input image utilizing the second-
order statistics of the Fourier decomposition [66, 67]. The
Wiener filter minimizes the overall mean square error be-
tween the output image and the input image as in

min E (f(x, y) − f(x, y))
2

  . (9)

By taking the derivatives of equation (9), the Fourier
transformation, F(u, v), of the constructed image can be
derived as in

F̂(u, v) �
H∗(u, v)

H2(u, v) + (Sζ /Sf) × G(u, v)
, (10)

wheref(x, y) is the original image, f(x, y) is the constructed
image, H∗(u, v) is the complex conjugate of the Fourier
transform of the degradation filter, H2(u, v) is the mo-
mentum square of the degradation filter, Sζ is the power
spectrum of the noise, Sf is the power spectrum of the original
image, G(u, v) is the observation, and (H∗(u, v)/(H2(u, v) +

(Sζ/Sf))) is the Wiener filter. The output image is just the
input image multiplied by the Wiener filter.

The Bayesian estimator is an extension toWiener filter to
exploit the higher-order statistics found in the point sta-
tistics of the subband decomposition of natural images,
which cannot be captured by Fourier based techniques [68].
The Bayesian estimator needs to have the probability density
function of the noise and the prior probability density
function of the signal and hence usually parametrization
model is needed to estimate the parameters for those
functions. Let y be a scalar x with additive noise n such that
y � x + n. The least-square estimator of x as a function of y

can be derived using Bayes’ rule as in

x(y) �  dxPx|y(x | y)x

� x(y) �

 dxPy|x(y | x)Px(x)x

 dxPy|x(y | x)Px(x)

� x(y) �

 dxPn(y − x)Px(x)x

 dxPn(y − x)Px(x)

,

(11)

where Pn is the pdf for the noise, Px is the prior pdf for the
signal, and the denominator is the pdf for the noise ob-
servations. Both probability density functions must be
known to estimate the original signal x. A generalized
Laplacian distribution was used by [69] as a parameteri-
zation model for these densities.

The wavelet transformation is a signal processing
technique used to represent real-life nonstationary signals
with high efficiency [70]. Continuous and discrete wavelet
transformations are used extensively in image processing
especially in microcalcification enhancement methods in
mammograms [71].

Wavelet decomposes the signal into subbands using a
mother wavelet function to generate other window func-
tions. The mother wavelet function is a scaling and trans-
lation function of the form

ψa,b(x) �
1
���
|a|

√ ψ
x − a

b
 , (12)
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where a is the scaling factor and b is the translation pa-
rameters. The mother wavelet function is applied to the
original function f(x) as in

Wψf (a, b) � f,ψa,b(x)  �  f(x) · ψ∗a,b(x)dx.

(13)

Images are 2D and hence a 2D discrete wavelet trans-
form is needed, which can be computed using 2D wavelet
filters followed by 2D downsampling operations for one level
decomposition [72].

Microcalcification in mammograms was detected using a
wavelet transformation with supervised learning through a
cost function in [73]. The cost function represented the
difference between the desired output image and the
reconstructed image, which is obtained from the weighted
wavelet coefficient for the mammogram under consider-
ation. Then, a conjugate gradient algorithm was used to
modify the weights for wavelet coefficients to minimize the
cost function. In [74], the continuous wavelet transform was
used to enhance the microcalcification in mammograms. In
this method, a filter bank was constructed by discretizing a
continuous wavelet transform. This discrete wavelet de-
composition is designed in an optimal way to enhance the
multiscale structures in mammograms. The advantage of
this method is that it reconstructs the modified wavelet
coefficients without the introduction of artifacts or loss of
completeness.

Reference [75] presented a tumor detection system for
fully digital mammography that detects the tumor with very
weak contrast with its background using iris adaptive filter,
which is very effective in distinguishing rounded opacities
regardless of howweak its contrast with the background.The
filter uses the orientation map of gradient vectors. Let Qi be
any arbitrary pixel and let g be gradient vector toward the
pixel of interest P; then, the convergence index can be
expressed as

f Qi(  �
cos θ, |g|≠ 0

0, |g| � 0
 , (14)

where θ is the orientation of the gradient vector g at Qi with
respect to the ith half line. The average of convergence
indexes over the length PQi, i.e., Ci is calculated by

Ci �


Qi

P
f(Q)dQ

PQi

. (15)

The output of the iris filter C(x, y) at the pixel (x, y) is
given by equation (16), where Cim is the maximum con-
vergence degree deduced from equation (15):

C(x, y) �
1
N



N−1

i�0
Cim. (16)

Reference [54] lists a number of other contrast en-
hancement algorithms with their advantages and limitations.
For example, manual intensity windowing is limited by its
operator skill level. Histogram-based intensity windowing has
the advantage of improving the visibility of the lesion edge but

at the expense of losing the details outside the dense area of
the image. Mixture-model intensity windowing enhances the
contrast between the lesion borders and the fatty background
but at the expense of losing mixed parenchymal densities near
the lesion. Contrast-limited adaptive histogram equalization
improves the visibility of the edges but at the expense of
increasing noise. Unsharp masking improves visibility for
lesion’s borders but at the expense of misrepresenting in-
distinct masses as circumscribed. Peripheral equalization
represents the lesion details well and keeps the peripheral
details of the surrounding breast but at the expense of losing
the details of the nonperipheral portions of the image. Trex
processing increases visibility for lesion details and breast
edges but at the expense of deteriorating image contrast.

3. Feature Selection and Feature Extraction

Pattern, as described in [76], is the opposite of chaos, i.e.,
regularities. Pattern recognition is concerned with automatic
discovering of these regularities in data utilizing computer
algorithms in order to take action like classification under
supervised or unsupervised setup [77, 78]. Pattern recog-
nition has been studied in various frameworks but the most
successful framework is the statistical framework [79–82]. A
good reference for discussing statistical tools for features
selection and features extraction can be found in [83]. In a
statistical framework, a pattern is described by a vector of d
features in d-dimensional space. This framework aims to
reduce the number of features used to allow the pattern
vector, which belongs to different categories, to occupy
compact and disjoint regions in m-dimensional feature
space to improve classification, stabilize representation, and/
or to simplify computations [78]. A preprocessing and
contrast step, which includes outlier removal, data nor-
malization, handling of missing data, and enhancing con-
trast, is usually performed before the selection and
extraction step [84]. The effectiveness of the selection step is
measured by how successful the different patterns can be
separated [76]. The decision boundaries between the pat-
terns are determined by the probability distributions of the
patterns belonging to the corresponding class. These
probability distributions can be either provided or learned
[85, 86]. Because selecting an optimal subset of features is
done offline, having an optimal subset of features is more
important than execution time [85].

The selection step involves finding the most useful subset
of features that best classifies the data into the corresponding
categories by reducing the d-dimensional features vector
into an m-dimensional vector such that m≤ d [84]. This can
be done by features selection in measurement space (i.e.,
features selection) or transformation from the measure-
ments to lower-dimensional feature space (i.e., features
extraction). Features extraction can be done through a linear
or nonlinear combination of the features and can be done
under supervision or no supervision [83]. The most im-
portant features that are usually extracted from the mam-
mograms are spectral features, which correspond to the
variations in the quality of color and tone in an image;
Textural features, which describe the spatial distribution of
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the color and tone within an image, and contextual features,
which contain the information from the area surrounding
the interest region [67]. Textural features are very useful in
mammograms and can be classified into fine, coarse, or
smooth, rippled, molled, irregular, or lineated [67]. Several
linear and nonlinear features extraction techniques based on
textural features are used in mammograms analysis such as
in [72, 87–95].

Considering M classes and corresponding feature vec-
tors distributed as p(x | wi), the parametric likelihood
functions, and the corresponding parameters vectors θi, we
can find the corresponding probability density function
p(x | θi). A maximum log-likelihood estimator, or other
methods like Bayesian inference, can be used to estimate the
unknown parameters giving the set of known feature vec-
tors. The expected maximization algorithm can be used to
handle missing data. Having the probability density func-
tions for the data available, we can extract meaningful
features from them.

Gray-level cooccurrence matrix (GLCM) proposed by
[67] is a well-established method for texture features ex-
traction and is used extensively in the literature [80, 96–104].
Fourteen features were extracted from GLCM by the same
author who originally proposed it [105].The basic idea of the
GLCM is as follows: let I be an N-greyscale level image, and
then the gray-level cooccurrence matrix G for I is an N

square matrix with its entries being defined as the number of
occasions a pixel with intensity i is adjacent (on its vertical,
horizontal, right, or left diagonals) to a pixel with intensity j.
The features are calculated on each possible combination of
adjacency and then the average is taken. G can be normalized
by dividing each element of G by the total number of
cooccurrence pairs in G. For example, consider the following
gray-level image:

0 0 0 1 2

1 1 0 1 1

2 2 1 0 0

1 1 0 2 0

0 0 1 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

If we apply the rule “1 pixel to the right and 1 pixel
down,” the corresponding gray-level cooccurrence matrix is

C �
1
16

4 2 1

2 3 2

0 2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

For example, the first entry comes from the fact that
there are 4 occasions where a 0 appears below and to the
right of another 0, whereas the normalization factor (1/16)

comes from the fact that there are 16 pairs entering into this
matrix.

The 14 Haralick’s texture features are contrast, correlation,
sum of squares, homogeneity, sum average, sum variance, sum
entropy, entropy, difference variance, difference entropy, in-
formation measure of correlation 1, information measure of

correlation 2, and maximum correlation coefficient. Probably
the most used are energy, entropy, contrast, homogeneity, and
correlation [105].

Let P(i, j, d, θ) denote the probability of how often one
gray-tone i in an N-greyscale level image will appear in a
specified spatial relationship determined by the direction θ
and the distance d to another gray-tone j in a mammogram.
The probability can be calculated as

P(i, j, d, θ) �
C(i, j)


N−1
i,j�0C(i, j)

, (19)

where C(i, j) are the values in cell (i, j).
This definition will be used to define five of the most

commonly usedmeasures of the 14Haralick’s texture features:
energy, entropy, contrast, homogeneity, and correlation.

Energy, also known as angular second moment, mea-
sures the homogeneity of the image such that if the texture of
the image is uniform, there will be very few dominant gray-
tone transitions and hence the value of energy will be high.
The energy can be calculated as

energy � 
N−1

i,j�0
P
2
(i, j, d, θ). (20)

Entropy measures the nonuniformity in an image or
complexity of an image. Entropy is strongly but inversely
correlated to energy and can be calculated from the second-
order histogram as

entropy � − 
N−1

i,j�0
P(i, j, d, θ) × logP(i, j, d, θ). (21)

Contrast measures the variance of the gray level in the
image, i.e., the local gray-level variations present in an
image. It detects disorders in textures. For smooth images,
the contrast value is low, and for coarse images, the contrast
value is high.

contrast � 
N−1

i,j�0
(i − j)

2
× P(i, j, d, θ). (22)

Homogeneity, which is also known as inverse difference
moment, is a measure of local homogeneity and it is in-
versely related to contrast such that if contrast is low, the
homogeneity is high. Homogeneity is calculated as

homogeneity � 
N−1

i,j�0

P(i, j, d, θ)

i +|i − j|2
. (23)

Correlation is used to measure the linear dependencies
in the gray-tone level between two pixels.

Corr � 
N−1

i,j�0

i − μx(  × j − μy  × P(i, j, d, θ)

σx × σy

, (24)

where μx is the mean value of pixel intensity i, σx is the
standard deviation value of pixel intensity i, μy is the mean
value of pixel intensity j, and σy is the standard deviation
value of pixel intensity j.
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Figure 2 shows the mdb028 mammogram (a) from the
MIAS database [106] and the corresponding region of in-
terest (b).

The corresponding contrast, correlation, energy, en-
tropy, and homogeneity values calculated based on the
GLCM matrix are 0.0813, 0.9617, 0.2656, 6.53, and 0.9594,
respectively. One can see that this image has high homo-
geneity and low contrast as expected.

Gradient-based methods are widely used in analyzing
mammograms [107–109]. The basic idea of the gradient is as
follows: let Y be an R-valued random variable, and then

z

zx
E[Y | X � x] � B  y

z

zz
p(y | z)

z�BTx
dy, (25)

where (X, Y) is a random vector such that X �

(X1, . . . , Xm) ∈ Rm, and B is a projection matrix, such that
BTB � Id, into d-dimensional subspace such that d≤m.
Equation (25) implies that the gradient z/zxE[Y | X � x] at
any x is contained in the effective direction for regression.

Traditional gradient methods often could not reveal a
clear-cut transition or gradient information because ma-
lignant lesions usually fill a large area in the mammogram
[110]. This limitation was addressed by [95] where direc-
tional derivatives were used to measure variations in in-
tensities. This method is known as acutance, A, and is
calculated as

A �


N
i�1

���������������������


ni�1
j�0 fi(j) − fi(j + 1)( 

2


fmax − fmin
, (26)

where fmax and fmin are the local maximum and minimum
pixel values in the region under consideration, respectively,
N is the number of pixels along the boundary of the region,
and fi(j), j � 0, 1, . . . , ni are (ni + 1) number of perpen-
dicular pixels available at the ith boundary point including
the boundary point [110].

The evaluation of the spiculations of the tumor’s edges
through pattern recognition techniques is widely used
among scholars to classify masses into malignant and benign
[87, 89, 111–114]. Morphological features can help in dis-
tinguishing between benign and malignant masses. Benign
masses are characterized by smooth, circumscribed, mac-
rolobulated, and well-defined contours, while malignant
masses are vague, irregular, microlobulated, and spiculated
contours. Based on these morphological features of the mass,
scholars defined certain measures and indicators to classify
the masses into benign and malignant like the degree of
compactness, the spiculation index, the fractional factor, and
fractal dimension [115].

Differential analysis is also used to compare the prior
mammographic image with the most current one to find if
the suspicious masses have changed in size or shape. The
relative gray level is also compared between the old mam-
mogram and the current one to deduce the changes in the
breast since the last mammogram by comparing the cu-
mulative histograms of prior and current images [90]. The
bilateral analysis is also used to compare the left and right
mammograms to see any unusual differences between the
left and right breasts [116].

The classification metrics for a classifier depends on the
interrelation between sample size, number of features, and
type of classifier [78]. For example, in naı̈ve table-lookup, the
number of training data points increases exponentially with
the number of features [117]. This phenomenon is called the
curse of dimensionality and it leads to another phenomenon.
As [78] argued that as long as the number of training
samples is arbitrarily large and representative of the un-
derlying densities, the probability of misclassification of a
decision rule does not increase as the number of features
increases because under this condition the class-conditional
densities are completely known. In practice, it has been
observed that adding features will degrade the metrics of the
classifier if the size of the training data used is small
compared to the number of features. This inconsistent be-
havior is known as the peaking phenomenon [118–120]. The
peaking phenomenon can be explained as follows: most of
the parametric classifiers estimate the unknown parameters
for the classifier and then plug them into the class-condi-
tional densities. At the same sample size, as the number of
features increases (consequently the number of unknown
parameters increases), the estimation of the parameters
degrades, and consequently, this will degrade the metrics of
the classifier [78]. Because of the curse of dimensionality and
peaking phenomena, features selection is an important step
to enhance the overall metrics of the classifier. Many
methods have been discussed in the literature for features
selection [78, 83]. Class separability measure can help in a
deep understanding of the data and in determining the
separability criterion of various features classes along with
suggestions for the appropriate classification algorithms.

Class separability measures are based on conditional
probability. Given two classes Ci andCj and a features vector
v, Ci will be chosen if the ratio between P(Ci | v), and
P(Cj | v) is more than 1. The distance Dij between Ci and Cj

can be calculated as

Dij � 
∞

−∞
p v | Ci( ln

p v | Ci( 

p v | Cj 
dv. (27)

And Dji can be calculated in the same way.The total distance
dij is a measure of separability for multiclass problems. This
distance is referred to as divergence or Kullback-Leibler
distance measure. Kullback-Leibler distance can be calcu-
lated as discussed in [84, 121] as

dij � Dij + Dji � 
∞

−∞
p v | Ci(  − p v | Cj  ln

p v | Ci( 

p v | Cj 
dv.

(28)

Another well-known distance is Mahalanobis distance.
Consider two Gaussian distributions with equal covariance
matrices; then, the Mahalanobis distance is calculated as

dij � μi − μj 
T
Σ− 1 μi − μj , (29)

where Σ is the covariance matrix for the two Gaussian
distributions and μi and μj are their two means.

Class separability measures are important if many fea-
tures are used. If up to 3 features, the analyst can see the class
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scatter. Three class separability measures are widely used:
class scatter measure, Thornton’s separability index, and
direct class separability measure [122].

In class scatter measure, an unbounded measure J is
defined as the ratio of the between-class scatter and the
within-class scatter such that the larger the value of J is, the
smaller the within-class scatter compared to the between-
class scatter is. J can be calculated as

J �


C
i�1 mi − m( 

t
mi − m( 


C
i�1 

ni

j�1 xij − mi 
t

xij − mi 
, (30)

whereC is the number of classes, ni is the number of instances
in class i, mi is the mean of instances in class i, m is the overall
mean of all classes, and xij is the jth instance in class i.

Separability index (SI) reports the average number of
instances that share the same class label as their nearest
neighbors. SI is calculated as

SI �


n
i�1 f xi(  + f xi�(  + 1( mod2

n
. (31)

Direct class separability DCSM takes into consideration
the compactness of the class compared to its distance from
the other class. DCSM can be calculated as

DCSM � 

ni

i�1


nj

j�1
xi − xj

�����

����� − 

ni

i�1


ni

i�1
xi − xj

�����

�����
⎡⎢⎢⎣ ⎤⎥⎥⎦, (32)

where xi and xj are the instances in classes i and j,
respectively.

Class separability measures aim to choose the best set of
features to increase the metrics of the classifier. Without this
insight choice of features, two different datasets can look
alike if the features were selected in the wrong way. This
phenomenon is known as Ugly Duckling Theorem [123].
Many methods are used in literature to select features and
can be categorized into three main methods: filter methods,
wrapper methods, and hybrid methods (which is composed
of both the filter and wrapper methods).

Filter methods assign ranks to the features to denote how
useful each feature is for the classifier. Once these ranks are
computed and assigned, the features set is then composed
with the highest N rank features. Pearson’s correlation
coefficient method, as a filter method, looks at the strength of
the correlation between the feature and the class of data
[124]. If this correlation is strong, then this feature will be
selected as it will help in separating the data and will be
useful in classification. The mutual information method is
another filter method. The mutual information method
measures the shared information between a feature and the
class of the labeled data. If there is a lot of shared infor-
mation, then this feature is an important feature to dis-
tinguish between different classes in the data [125].The relief
method looks for the separation capability of randomly
selected instances. It selects the nearest-class instant and the
opposite-class instance and then calculates a weight for each
feature. The weights are updated iteratively with each ran-
dom instance. This method is known for its low compu-
tational time with respect to other methods [126]. Ensemble
with the data permutation method is another filter method;
the concept is to combine many weak classifiers to give a
better classifier than any of the single classifiers used. The
same concept is used to features selection where many weak
rankings are combined to give much better ranking [127].

The general idea in wrapper methods is to calculate the
efficacy for a certain set of features and to update this set
until a stopping criterion is reached. A greedy forward
search is an example of wrapper methods. This method
calculates the efficacy of the set of features on hand and
replaces the current set with this set only if its efficacy is
better than the efficacy of the current set; otherwise, it keeps
the current set. The greedy forward method starts with one
feature and keeps adding features one at a time.The classifier
is evaluated each time a new feature is added, and only if the
efficacy of the classifier improved, the feature is maintained
[128]. This method does not guarantee an optimal solution
but it picks up the features that work best together. The
exhaustive search method is considered a wrapper method.
Exhaustive search features selection method, also known as

(a) (b)

Figure 2: (a) Original mdb028 mammogram for a malignant patient. (b) The corresponding region of interest.
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the brute force method, looks for every possible combination
of features and selects the combination that gives the best
metrics for the classifier [128]. Of course, this can be only
done within a reasonable computational time with a small
number of features or if the number of possible combina-
tions is reduced by searching certain combinations only. To
see how large the number of possible combinations could be,
consider a dataset with 300 features, and then the number of
possible sets of features is 2300 ≈ 2 × 1090 which is a huge
number. To reduce this number, we may specify that the
number of features that we want is 20 features, and then the
number of possible sets is 300C20 � 7.5 × 1030 (300 choice
20) which is much lower than the first case but still im-
practical in terms of computational time. If we are able
somehow to reduce the 300 features into 50 features and we
want to choose a set of 20 features out of them, the number
of sets is 50C20 � 2.7 × 1013 which is still a very huge
number. This illustration shows that the exhaustive search
method for features selection works only when the method is
highly constrained.

The principal component analysis is a widely used
method for dimensionality reduction. The principal com-
ponent analysis is a statistical procedure used to transfer a set
of possibly correlated features into a set of linearly uncor-
related features by orthogonal transformation using eigen-
value decomposition on covariance matrices of the observed
regions to determine their principal components. The
transformation is carried out such that the first principal
component has the highest variance, which means that it
accounts for the largest amount of variability in the data, and
the second principal component has the second highest
variance under the constraint that it is orthogonal to all other
components and so on. Principal component analysis reveals
the internal structure of the data. It reveals how important
each feature is in explaining the variability in the data. It
simply shows the higher dimensional data space onto a
shadow of lower-dimensional data space [127, 129–133].

Another method in dimensionality reduction is factor
analysis. Factor analysis is a statistical method that describes
variability in correlated observed factors (features) in terms
of a lower number of unobserved new factors (new features).
The principal component analysis is often confused with
factor analysis. In fact, the twomethods are slightly different.
The principal component analysis does not involve any new
features and it only ranks the features according to their
importance in describing the data while the factor analysis
involves creating new features by replacing a number of
correlated features with a linear combination of them to
create a new feature that does not exist originally [127].

4. Classification

Classification is the process of categorizing observations
based on a training set of data. Classification predicts the
value of a categorical variable, i.e., class of the observation,
based on categorical and/or numerical variables, i.e., fea-
tures. In mammograms, classification is used to predict the
type of mass based on the extracted set of features. Clas-
sification algorithms can be grouped into four main groups

according to their ways of calculations: frequency table
based, covariance matrix based, similarity functions based,
and others.

ZeroR classifier is the simplest type of frequency table
classifiers that ignores the features and does classification
based on the class only.The class of any observation is always
the class of the majority [134, 135]. The ZeroR classifier is
usually used as a baseline for benchmarking with other
classifiers.

OneR classifier algorithm is another type of frequency
table classifier. It generates a classification rule for each
feature based on the frequency and then selects the feature
that has the minimum classification error. This method is
simple to construct and its accuracy is sometimes compa-
rable to the more sophisticated classifiers with the advantage
of easier results interpretation [136, 137].

Näıve Bayesian (NB) classifier is also a frequency clas-
sifier based on Bayes’ theorem with a strong independence
assumption between the features. NB classifier is especially
useful for large datasets. Its performance sometimes out-
performs the performance of the more sophisticated clas-
sifiers as discussed in [138–141]. Unlike ZeroR classifier that
does not use any features in the prediction and OneR
classifier that uses only one feature, the NB classifier uses all
the features in the prediction.

NB classifier calculates the posterior probability of the
class c given the set of features X � x1, x2, . . . , xn  as

P(c | x) � P x1
 c  × P x2

 c  × · · · × P xn

 c  × P(c),

(33)

where P(xi | c) is the probability of the feature xi given the
class c and P(c) is the prior probability of the class [135].
Both probabilities can be estimated from the frequency table.

One problem facing the NB classifier is known as the
zero-frequency problem. It happens when a combination
of a feature and a class has zero frequency. In this case, one
is added for every possible combination between features
and classes, so no feature-class combination has a zero
frequency.

The decision tree (DT) classifier is widely used in breast
cancer classification [142–144]. The strength of DT is that it
can be translated to a set of rules directly by mapping from
the root nodes to the leaf nodes one by one and hence
the decision-making process is easy to interpret. DT can be
built based on a frequency table. It develops decision nodes
and leaf nodes by repetitively dividing the dataset into
smaller and smaller subsets until a stopping creation is
reached or a pure class with single entry is reached. DTs can
handle both categorical or numerical data. The core algo-
rithm for DTs is called ID3, which is a top-down, greedy
search algorithm with no backtracking that uses entropy and
information gain to divide the subset with dependency
assumption between the features [145].

Entropy was introduced in the context of features se-
lection as one of Haralick’s texture features earlier. In the
ID3 algorithm, entropy has the same meaning as before and
it is a measure of homogeneity in the sample. It has the same
basic formula of
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E(S) � − 
x∈X

P(i) × logP(i), (34)

where S is the current dataset under consideration which
changes at each step, X is the set of classes in S, and P(i) is
the probability of class i, which can be estimated from the
frequency table based on the dataset as the proportion of the
number of elements in class x to the number of elements in
S. A zero entropy for a dataset indicates a perfect
classification.

Information gain is the change of entropy after a dataset
is split based on a certain feature, i.e., the reduction of
uncertainty in S after splitting it using the feature.

IG(S, F) � E(S) − 
t∈T

p(t)E(t) � E(S) − E(S | F), (35)

where T is the subsets created by splitting S with F such that
S � ∪t∈Tt and p(t) is the cardinality of t divided by the
cardinality of S.

Overfitting is a significant problem in DTs. Overfitting
is the problem of enhancing the prediction based on the
training data on the expense of the prediction based on the
test data. Prepruning and postpruning are used to avoid
overfitting in DTs. In prepruning, the algorithm is stopped
earlier before it classifies the training set perfectly while, in
postpruning, the algorithm is allowed to perfectly classify
the training data but then the tree is postpruned. Post-
pruning is more successful than prepruning because it is
hard to know when exactly to stop the growth of the tree
[146].

Linear Discriminant Analysis (LDA) is widely used in
analyzing mammograms [51, 147] for breast cancer. LDA is
a simple classifier that sometimes produces classification
that is as good as the classification of the complex classifiers.
It searches for a linear combination Z of features X that best
separates two classes c1 and c2 such that

Z � β1x1 + β2x2 + · · · + βdxd, (36)

where βi is the coefficient corresponding to feature i and
i � 1, 2, . . . , d and d is the number of features. The coef-
ficients are determined such that the score function S(β) in
equation (37) is maximized.

S(β) �
βTμ1 − βTμ2

βTCβ
, (37)

where β is a vector of coefficients for the linear model given
in equation (36) and can be calculated as

β � C
− 1 μ1 − μ2( , (38)

where μ1 and μ2 are the mean vectors of the two classes, and
C is pooled covariance matrix given as

C �
1

n1 + n2
C1n1 + C2n2( , (39)

where C1, n1, C2, and n2 are covariance matrix for the first
class, the number of elements in the first class, the covariance
matrix for the second class, and the number of elements for

the second class, respectively. A new point x is classified as
C1, i.e., class 1, if the inequality (40) stands:

βT
x −

μ1 + μ2
2

  > −log
P C1( 

P C2( 
, (40)

where P(C1) is the first-class probability and P(C2) is the
probability of the second class. These probabilities can be
estimated from the data.

The logistic regression classifier is another covariance
classifier that is used to analyze mammograms for breast
cancer prediction [148–151]. It can be used only with
binary classification where there are only two classes just
like classifying the masses into benign or malignant in a
mammogram. It uses categorical and/or numerical fea-
tures to predict a binary variable (the class either 0 or 1).
Linear regression is not appropriate to predict a binary
variable because the residuals will not be normal and the
linear regression may predict values outside the permis-
sible range, i.e., 0 to 1 while logistic regression can only
produce values between 0 and 1 [152].

Logistic regression uses the natural logarithm of the odds
of the class variable. The logistic regression equation is
written in terms of the odd ration as in

p

1 − p
� exp b0 + b1x1 + b2x2 + · · · + bnxn( , (41)

where p is the logistic model predicted probability, and b0,
b1, . . ., bn are the estimations of the coefficients in the logistic
regression model for the n features, i.e., x’s [151, 153]. The
estimation of the model coefficients is carried out using
maximum likelihood estimation.The predicted probability p

by the logistic model can be calculated as

p �
1

1 + e− b0+b1x1+b2x2+···+bpxp( 
. (42)

One way to do classification is to calculate p for the data
instance, and if its probability is below 0.5, it will be assigned
to class 1, and if it is above or equal to 0.5, it will be assigned
to class 2.

K nearest neighbors (KNN) classifier is used in litera-
ture to diagnose mammograms [154–157]. This classifier is a
type of majority vote and a nonparametric classifier based on
a similarity function. It stores all available cases and then
classifies a new data instance based on its similarity to other
points in the nearest K classes measured by distance. If
K � 1, then the new data instance will be assigned to the
nearest neighbor’s class. Generally speaking, increasing the
number of classes, i.e., the value of K, increases the precision
as it reduces the overall noise. Cross-validation is one way to
determine the best value of K by using an independent
dataset to validate the value of K. Also, the cross-validation
technique can reduce the variance in the test error estimate
calculations. A good practice is to have K between 3 and 10.

There are three well-known distance functions used in
KNN classifier [158] for continuous features: Euclidean,
Manhattan, and Minkowski distance functions. Their
equations are as in
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Euclidean �

�����������



k

i�1
xi − yi( 

2




,

Manhattan � 
k

i�1
xi − yi


,

Minkowski � 
k

i�1
xi − yi


 

q⎛⎝ ⎞⎠

1/q

,

(43)

where k is the number of features, xi is the value of feature i

for object x, yi is the value of feature i for object y, and q is
the order of the Minkowski metric.

These three distances are valid for continuous features
only. If the features are categorical, the Hamming distance
given in equation (44) is used, which basically measures the
number of mismatches between two vectors.

Hamming � 
k

i�1
1xi≠yi

. (44)

If features are mixed, then numerical features should be
standardized between 0 and 1 before the distance is calculated.

There are three types of classifiers that are not based on
the frequency table, covariance matrix, or similarity func-
tions. These classifiers are support vector machines, artificial
neural networks, and recently deep learning.

Support vector machines (SVM) classifier is first pro-
posed by [159] and is used extensively in breast cancer
detection and diagnosis using mammograms [160–166].

A linear SVM classifies a linearly separable data by
constructing a linear hyperplane in N-dimensional feature
space (N is the number of features) to maximize the margin
distance between two classes [160]. Figure 3 shows a linear
hyperplane for 2-dimensional feature space, the support
vectors, and the marginal width for a linear SVM [167].

If the data is not linearly separable, it is mapped into
higher-dimensional feature space by various nonlinear
mapping functions like sigmoid and radial basis functions.
The strength of the SVM classifier is that it does not need to
have a priori density functions between the input and the
output like some other classifiers and this is very important
because, in practice, these prior densities are not known and
there are not enough data to estimate them precisely.

The linear SVM classifier uses the training data to find
the weight vector w � [w1, w2, . . . , wn]T and the bias b for
the decision function [161, 168] in

d(X,w, b) � 
n

i�1
wixi + b. (45)

The optimal hyperplane is the hyperplane that satisfies
d(X, w, b) � 0.

In the testing phase, a vector y is created such that

y � sign(d(X,w, b)). (46)

Equation (46) is used to classify a new point Xnew such
that if y(Xnew) is positive, thenXnew belongs to class 1 and to
class 2 otherwise.

The weight vector w and the bias b are found by min-
imizing the following model:

Ld(α) � 0.5αT
Hα − f

Tα,

Subject toy
Tα � 0,

α≥ 0,

(47)

where H is the Hessian matrix given by

H � yiyj xixj , (48)

and f is a unit vector.The values of α0i can be determined by
solving the dual optimization problem in equation (47).
These values are used to find the values of w and b as follows:

w � 
l

i�1
α0iyixi,

b �
1
N



N

i�1

1
yi

− x
T
i w ,

(49)

where N is the number of support vectors.
As mentioned before, for nonlinearly separable data, the

data has to be mapped to a higher-dimensional feature space
first using a suitable nonlinear mapping function φ(x). A
kernel function K(xi, xj) that maps the data into a very
high-dimensional feature space is defined as

K xi, xj  � φ xi( 
Tφ xj , (50)

and the hyperplane is defined as

d(X) � 
l

i�1
yiαiK xi,X( . (51)

The SVM produced in model (47) is called a hard margin
classifier. Soft margin classifier can be produced with the
same model (47) but with adding an additional constraint
0≤ αi ≤C, whereC is defined by the user. Soft margin SVM is
preferred over the hard SVM to preserve the smoothness of
the hyperplane [161].
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Figure 3: Support vectors, hyperplane, and marginal width with
SVM [167].
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One other classifier used extensively in detecting cancer
inmammograms is the artificial neural network (ANN).This
classifier is imitating the biological neural network, such as
the brain. The biological neural network consists of a tre-
mendous amount of connected neurons through a junction
called synapses. Each neuron is connected to thousands of
other neurons and receives signals from them. If the sum of
these signals exceeds a certain threshold, a response is sent
through the axon. ANN imitates this setup. In an ANN, the
neurons are called nodes and these nodes are connected to
each other.The strength of the connections is represented by
weights such that the weight between two nodes represents
the strength of the connection between them. Figure 4 shows
the generic structure for ANN in mammography where the
network receives the features at the input nodes and pro-
vides the predicted class at the output node [169].

The inhabitation occurs when the weight is -1 and the
excitation occurs when the weight is 1. Within each node’s
design, a transfer function is introduced [169]. The most
used transfer functions are a unit step function, sigmoid
function, Gaussian function, linear function, and a piecewise
linear function. ANN usually has three layers of nodes: an
input layer, a hidden layer, and an output layer.

ANNs have certain traits that make them suit breast
cancer detection and diagnosis using mammograms. They
are capable of learning complicated patterns [170, 171], they
can handle missing data [172], and they are accurate clas-
sifiers [173–175]. In breast cancer detection and diagnosis
using mammograms, the nodes of the input layer usually
represent the features extracted from the region of interest
(ROI) and the node in the output layer represents the class
(either malignant or benign). The nodes of the input layer
receive activation values as numeric information such that
the higher the information, the greater the activation. The
activation value is passed from node to node based on the
weights and the transfer function such that each node sums
the activation values that it receives and then modifies the
sum based on its transfer function.The activation spread out
in the network from the input layer nodes to the output layer
node through the hidden layer where the output node
represents the results in a meaningful way. The network
learns through gradient descent algorithm where the error
between the predicted value and the actual value is prop-
agated backward by apportioning them to each node’s
weights according to the amount of this error the node is
responsible for [176].

A deep learning (DL) or hierarchical learning classifier is
a subset of machine learning that uses networks to simulate
humanlike decision making based on the layers used in
ANN. Unlike other machine learning techniques discussed
until now, DL classifiers do not need features selection and
extraction step as they adaptively learn the appropriate
features extraction process from the input data with respect
to the target output [177]. This is considered a big advantage
for DL classifiers as the features selection and extraction step
is challenging in most cases. For an image classification
problem, the DL classifier needs three things to work
properly: a large number of labeled images, neural network
structure with many layers, and high computational power.

It can reach high classification accuracy [178]. The most
common type of DL architecture used to analyze images is
Convolution Neural Network (CNN).

Different types of CNN were proposed recently to deal
with breast cancer detection and diagnosis using mam-
mograms problem [20, 166, 179–186]. For example, the
VGG16 network is a deep CNN used to detect and diagnose
lesions in mammograms. VGG16 consists of 16 layers with
the final layer capable of detecting two kinds of lesions
(benign and malignant) in the mammogram [186, 187].
VGG16 encloses each detected lesion with a box and attaches
a confidence level in the predicted class for each detected
lesion. Faster R-CNN is also a deep CNN used in breast
cancer detection and diagnosis using mammograms. The
basic Faster R-CNN is based on a convolutional neural
network with an additional layer on the last convolutional
layer called Region Proposal Network to detect, localize, and
classify lesions. It uses various boxes with different sizes and
aspect ratios to detect objects with different sizes and shapes
[185]. A fast microcalcification detection and segmentation
procedure utilizing two CNNs was developed in [186]. One
of the CNNs was used for quick detection of candidate
regions of interest and the other one was used to segment
them. A context-sensitive deep neural network (DNN) is
another CNN for detecting and diagnosing breast cancer
using mammograms [188]. DNN takes into consideration
both the local image features of a microcalcification and its
surrounding tissues such that the DNN classifier automat-
ically extracts the relevant features and the context of the
mammogram. Handcraft descriptors and deep learning
descriptors were used to characterize the microcalcification
in mammograms [189]. The results showed that the deep
learning descriptors outperformed the handcraft features.
Pretrained ResNet-50 architecture and Class ActivationMap
technique along with Global Average Pooling for object
localization were used in [190] to detect and diagnose breast
cancer in mammograms. The results showed an area under
the ROC of 0.96. A recent comprehensive technical review
on the convolutional neural network applied to breast cancer
detection and diagnosis using mammograms is found in
[191].

To overcome the problem of overfitting in machine
learning techniques such as DL and CNN, data augmen-
tation techniques were used to generate artificial data by
applying several transformations techniques to the actual
data such as flipping, rotations, jittering, and random scaling
to the actual data. Data augmentation is a very powerful
method for overcoming overfitting. The augmented data
represents a more complete set of data points. This will
minimize the variance between the training and validation
sets and any future testing sets. Data augmentation has been
used in many studies along with DL and CNN such as
[192–196].

It is well established among the scholars who work on the
problem of breast cancer detection and diagnosis using
mammograms and on classification problems in general that
there is no “one size fits all” classifier. The classifier who is
trained on a certain dataset and certain features space may
not work with the same efficacy on other datasets. This
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problem is rooted in the “No Free Lunch Theorem” coined
in [197]. “No Free LunchTheorem” showed that there are no
a priori differences between learning algorithms when it
comes to an off-training-set error in a noise-free scenario
where the loss function is the misclassification rate [197].
Therefore, each classifier has its own advantages and dis-
advantages based on the feature space and dataset used for
learning [198]. For example, the features come in different
representations like continuous, categorical, or binary var-
iables and the features may have different physical meanings
like energy, entropy, or size. Lump sums these diverse
features into one features vector and then uses a single
classifier that requires normalizing these features first, which
is a tedious job. It may be easier to aggregate those features
that share the same characteristics in terms of representation
and physical meaning into several homogenous features
vectors and then apply a different classifier to each vector
separately. Moreover, even if the features are homogeneous
in terms of representation and physical meaning but the
number of features is large with a small number of training
data points, then the estimation of the classifier parameters

degrades as a result of the curse of dimensionality and
peaking phenomena discussed earlier [118–120].

Because of this, scholars can improve their classification
accuracy by combining outputs from different classifiers
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Figure 4: Structure of ANN for typical breast cancer detection using mammogram [169].

Table 1: The area under the ROC for some common classification
techniques for mammograms.

Method Area under ROC
Binary decision tree [210] 0.90
Linear classifier [210] 0.90
PCA–LS SVM [211] 0.94
ANN [212] 0.88
Multiple expert system [213] 0.79
Texture measure with ANN [214] 0.87
Multiresolution texture analysis [215] 0.86
Subregion Hotelling observers [216] 0.94
Logistic regression [217] 0.81
KNN [218] 0.82
NB [219] 0.56
DL [190] 0.96
Genetic algorithms with SVM [220] 0.97
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through a combining schema. From an implementation point
of view, combination topologies can be categorized into
multiple, conditional, hierarchical, or hybrid topologies [199].
For a thorough discussion of combinational topologies, one
can consult [200, 201]. A combining schema includes a rule to
determine when a certain classifier should be invoked and
how each classifier interacts with other classifiers in the
combination [78, 202]. The majority votes and weighted
majority votes are two widely used combining schemas in
literature. In majority votes, all classifiers have the same vote
weight and the test instance will have the class that has the
highest number of votes from different classifiers, i.e., the class
that is predicted by the majority of the classifiers used in the
combination. In majority votes, the classifiers have to be
independent [78] as it has been shown that using majority
votes with a combination of dependent classifiers will not
improve the overall classification performance [203]. In
weightedmajority votes, each classifier has its ownweight that
will be changed according to its efficacy such that the weight
will be decreased every time the classifier has a wrong class.
The test instance will be classified according to the highest
weighted majority class [203, 204].

Boosting and Bagging are also used to improve the
accuracy of classification results. They were used suc-
cessfully to improve the accuracy of the classifiers, like the
DT classifier, by combining several classification results
from the training data. Bagging combines classification
results from different classifiers or from the same classifier
using different subsets of training data, which is usually
generated by bootstrapping. The main advantage of
bootstrapping is to reduce the number of training datasets
used. Bootstrapping resamples the same training dataset to
create different training datasets that can be used with
different classifiers or the same classifier. Bagging uses
bootstrapping to create different datasets from one dataset.
Bagging can be viewed as a voting combining technique
and it has been implemented with majority voting or
weighted majority voting such that the prediction is the
class that has the majority votes or the weighted majority
votes from different classifiers (or same classifier) with
different training subsets. Bagging was used in the context
of breast cancer detection using mammograms in several
manuscripts like [205, 206]. Boosting technique attaches
weights to different instances of training data such that
lower weights are given to instances that were frequently
classified correctly and higher weights for those who were
frequently misclassified; therefore, these classes will be
selected more frequently in the resampling to improve their
performance. This is followed by another iteration of
computing weights and this sequence is repeated until a
termination condition is reached.Themost popular version

of boosting techniques is AdaBoost (stands for Adaptive
Boosting) algorithm [207–209] which classifies the data
instance as a weighted sum of the output of other weak
classifiers. It is considered adaptive because the weights of
the weak classifiers are changed adaptively based on their
performance.

Table 1 shows a list of some common classifiers and their
performance measures by the area under the receiver op-
erating characteristic ROC curve registered in the respective
papers where they were proposed/used.

For the sake of completeness, Table 2 shows a list of
common databases used in CAD-related techniques. It
should be noticed that the acquisition protocol of these
databases normally must be rigorous and they are expensive.

5. Conclusions

In this study, we shed some light on CAD methods used in
breast cancer detection and diagnosis using mammograms.
We reviewed the different methods used in literature in the
three major steps of the CAD system, which include pre-
processing and enhancement, feature extraction, and se-
lection and classification.

Studies reviewed in this article have shown that com-
puter-aided detection and diagnosis of breast cancer from
mammograms is limited by the low contrast between normal
glandular breast tissues and malignant ones and between the
cancerous lesions and the background, especially in dense
breasts tissue. Moreover, quantum noise also reduces
mammogram quality especially for small objects with low
contrast such as a small tumor in a dense breast. The
presence of noise in a mammogram gives it a grainy ap-
pearance, which reduces the visibility of some features
within the image especially for small objects with low
contrast. A wide range of histogram equalization techniques,
among other techniques, were used in many articles for
image enhancement to reduce the effect of low contrast by
changing the intensity of the pixels for the input image.
Different filters were proposed and used to reduce noises in
mammograms such as Wiener filter and Bayesian estimator.

Morphological features were widely used by scholars to
distinguish between benign and malignant masses. Benign
masses are characterized by smooth, circumscribed, mac-
rolobulated, and well-defined contours, while malignant
masses are vague, irregular, microlobulated, and spiculated
contours. Differential analysis was also used to compare the
prior mammographic image with the most current one to
find if the suspicious masses have changed in size or shape.
The bilateral analysis is also used to compare the left and
right mammograms to see any unusual differences between
the left breast and right breast.

Table 2: List of common databases used in CAD-related techniques.

MIAS [221] DDSM [222] UCSF/LLNL [223] CALMa [224] Banco Web [225]
Origin UK USA USA Italy Brazil
Number of images 320 10480 198 3000 1400
File access Free Free Paid closed Free, requires registration
Type of images PGM LJPEG N/A N/A TIFF
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Table 1 gives a rough estimation of the average per-
formance of the different CAD methods used and measured
as the area under the ROC curve, which is about 0.86. This
performance is encouraging but still not reliable enough to
accept CAD systems as a standalone clinical procedure to
detect and diagnose breast cancer using mammograms.
Moreover, many results that were reported in the literature
with excellent performance in cancer detection using CAD
systems cannot be generalized as their analyses were con-
ducted and tuned using a specific dataset.Therefore, unless a
higher performance is reached with CAD systems by
exploiting new promising methods like deep learning and
higher computational power systems, CAD systems can only
be used as a second opinion clinical procedure.

Conflicts of Interest

The author declares that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The author is grateful to the German Jordanian University,
Mushaqar, Amman, Jordan, for the financial support
granted to this research.

References

[1] M. Hejmadi, Introduction to Cancer Biology, Bookboon,
London, UK, 2nd edition, 2010.

[2] American Cancer Society, Breast Cancer Facts and Figures
2017-2018, American Cancer Society, Atlanta, GA, USA,
2017.

[3] American Cancer Society, Breast Cancer Facts and Figures
2019, American Cancer Society, Atlanta, GA, USA, 2019.

[4] O. Ginsburg, F. Bray, M. P. Coleman et al., “The global
burden of women’s cancers: a grand challenge in global
health,” The Lancet, vol. 389, no. 10071, pp. 847–860, 2017.

[5] J. Eric, L. M. Wun, C. C. Boring, W. Flanders, J. Timmel, and
T. Tong, “The lifetime risk of developing breast cancer,”
Journal of the National Cancer Institute, vol. 85, no. 11,
pp. 892–897, 1993.

[6] B. E. Sirovich and H. C. Sox, “Breast cancer screening,”
Surgical Clinics of North America, vol. 79, no. 5, pp. 961–990,
1999.

[7] R. M. Rangayyan, F. J. Ayres, and J. E. Leo Desautels, “A
review of computer-aided diagnosis of breast cancer: toward
the detection of subtle signs,” Journal of the Franklin In-
stitute, vol. 344, no. 3-4, pp. 312–348, 2007.

[8] R. L. Helms, E. L. O’Hea, and M. Corso, “Body image issues
in women with breast cancer,” Psychology, Health and
Medicine, vol. 13, no. 3, pp. 313–325, 2008.

[9] “Mayo clinic,” 2019, https://www.mayoclinic.org/diseases-
conditions/breast-cancer/diagnosis-treatment/drc-20352475.

[10] S. Njor, L. Nyström, S.Moss et al., “Breast cancer mortality in
mammographic screening in Europe: a review of incidence-
based mortality studies,” Journal of Medical Screening,
vol. 19, no. 1_suppl, pp. 33–41, 2012.

[11] S. Morrell, R. Taylor, D. Roder, and A. Dobson, “Mam-
mography screening and breast cancer mortality in Aus-
tralia: an aggregate cohort study,” Journal of Medical
Screening, vol. 19, no. 1, pp. 26–34, 2012.

[12] Independent UK Panel on Breast Cancer Screening, “The
benefits and harms of breast cancer screening: an inde-
pendent review,” The Lancet, vol. 380, no. 9855, pp. 1778–
1786, 2012.

[13] E. D. Pisano, C. Gatsonis, E. Hendrick et al., “Diagnostic
performance of digital versus filmmammography for breast-
cancer screening,” New England Journal of Medicine,
vol. 353, no. 17, pp. 1773–1783, 2005.

[14] P. A. Carney, D. L. Miglioretti, B. C. Yankaskas et al.,
“Individual and combined effects of age, breast density, and
hormone replacement therapy use on the accuracy of
screening mammography,” Annals of Internal Medicine,
vol. 138, no. 3, pp. 168–175, 2003.

[15] D. B. Woodard, A. E. Gelfand, W. E. Barlow, and
J. G. Elmore, “Performance assessment for radiologists
interpreting screening mammography,” Statistics in Medi-
cine, vol. 26, no. 7, pp. 1532–1551, 2007.

[16] E. B. Cole, E. D. Pisano, E. O. Kistner et al., “Diagnostic
accuracy of digital mammography in patients with dense
breasts who underwent problem-solving mammography:
effects of image processing and lesion type,” Radiology,
vol. 226, pp. 153–160, 2003.

[17] N. F. Boyd, H. Guo, L. J. Martin et al., “Mammographic
density and the risk and detection of breast cancer,” New
England Journal of Medicine, vol. 356, no. 3, pp. 227–236,
2007.

[18] R. E. Bird, T. W. Wallace, and B. C. Yankaskas, “Analysis of
cancers missed at screening mammography,” Radiology,
vol. 184, no. 3, pp. 613–617, 1992.

[19] K. Kerlikowske, P. A. Carney, B. Geller et al., “Performance
of screening mammography among women with and
without a first-degree relative with breast cancer,” Annals of
Internal Medicine, vol. 133, no. 11, pp. 855–863, 2000.

[20] M. G. Ertosun and D. L. Rubin, “Probabilistic visual search
for masses within mammography images using deep
learning,” in Proceedings of the IEEE International Confer-
ence on Bioinformatics and Biomedicine (BIBM), Wash-
ington, DC, USA, November 2015.

[21] F. L. Nunes, H. Schiabel, and C. E. Goes, “Contrast en-
hancement in dense breast images to aid clustered micro-
calcifications detection,” Journal of Digital Imaging, vol. 20,
no. 1, pp. 53–66, 2007.

[22] G. Maskarinec, I. Pagano, Z. Chen, C. Nagata, and
I. T. Gram, “Ethnic and geographic differences in mam-
mographic density and their association with breast cancer
incidence,” Breast Cancer Research and Treatment, vol. 104,
no. 1, pp. 47–56, 2007.

[23] H. D. Nelson, K. Tyne, A. Naik et al., “Screening for breast
cancer: an update for the US preventive services task force,”
Annals of Internal Medicine, vol. 151, no. 10, pp. 727–737,
2009.

[24] M. P. Sampat, M. K. Markey, and A. C. Bovik, “Computer-
aided detection and diagnosis in mammography,”Handbook
of Image and Video Processing, Elsevier, London, UK, 2003.

[25] J. L. Jesneck, J. Y. Lo, and J. A. Baker, “Breast mass lesions:
computer-aided diagnosis models with mammographic and
sonographic descriptors,” Radiology, vol. 244, no. 2,
pp. 390–398, 2007.

[26] J. Dinnes, S. Moss, J. Melia, R. Blanks, F. Song, and
J. Kleijnen, “Effectiveness and cost-effectiveness of double
reading ofmammograms in breast cancer screening: findings
of a systematic review,” The Breast, vol. 10, no. 6,
pp. 455–463, 2009.

Journal of Healthcare Engineering 15

https://www.mayoclinic.org/diseases-conditions/breast-cancer/diagnosis-treatment/drc-20352475
https://www.mayoclinic.org/diseases-conditions/breast-cancer/diagnosis-treatment/drc-20352475


[27] R. Warren and W. Duffy, “Comparison of single reading
with double reading of mammograms, and change in ef-
fectiveness with experience,” The British Journal of Radiol-
ogy, vol. 68, no. 813, pp. 958–962, 1995.

[28] R. G. Blanks, M. G.Wallis, and S. M.Moss, “A comparison of
cancer detection rates achieved by breast cancer screening
programmes by number of readers, for one and two view
mammography: results from the UKNational Health Service
breast screening programme,” Journal of Medical Screening,
vol. 5, no. 4, pp. 195–201, 1998.
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